HRV:
What does this mean in practice?
Guidelines

Heart rate variability

Standards of measurement, physiological interpretation, and clinical use

Task Force of The European Society of Cardiology and The North American Society of Pacing and Electrophysiology (Membership of the Task Force listed in the Appendix)
Simplicity

Time domain method:
1. Do ECG
2. Measure NN Interval
3. Find the mean between successive NN intervals.
Visualization

Frequency domain method:

1. Do ECG
2. Power Spectral Density (PSD) analysis

Figure 4 Example of an estimate of power spectral density obtained from the entire 24-h interval of a long-term Holter recording. Only the LF and HF components correspond to peaks of the spectrum while the VLF and ULF can be approximated by a line in this plot with logarithmic scales on both axes. The slope of such a line is the α measure of HRV.
Accuracy

- Statistical Methods

Figure 1 Relationship between the RMSSD and pNN50 (a), and pNN50 and NN50 (b) measures of HRV assessed from 857 nominal 24-h Holter tapes recorded in survivors of acute myocardial infarction prior to hospital discharge. The NN50 measure used in panel (b) was normalized in respect to the length of the recording (Data of St. George's Post-infarction Research Survey Programme.)
Figure 7 Flow chart summarizing individual steps used when recording and processing the ECG signal in order to obtain data for HRV analysis.
Clinical Applications of Heart Rate Variability in the Triage and Assessment of Traumatically Injured Patients

Mark L. Ryan, Chad M. Thorson, Christian A. Otero, Thai Vu, and Kenneth G. Proctor

Academic Editor: Jamal Alhashemi

Published: 10 Feb 2011
Extensive Uses

Heart rate variability analysis techniques and their uses in trauma.

<table>
<thead>
<tr>
<th>Technique</th>
<th>Description</th>
<th>Metrics</th>
<th>Evidence of changes in trauma</th>
<th>Population</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Uncoupling</td>
<td></td>
<td>↑ reflects acidosis, coagulopathy, MOSF, AI, severe TBI, ↑ ICP, predicts mortality [6, 9, 12, 22]</td>
<td>ICU</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SDNN</td>
<td>↓ predicts TBI, mortality, acidosis, LSI [16, 23]</td>
<td>Prehospital ER ICU</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RMSSD</td>
<td>↓ reflects TBI, hemorrhage, mortality [23, 28, 47]</td>
<td>ER ICU</td>
</tr>
<tr>
<td>Frequency domain</td>
<td>Calculation of power (amplitude) of contributing frequencies to an underlying signal [18]</td>
<td>TP</td>
<td>↓ reflects ↑ICP, TBI, prolonged neurologic recovery, need for LSI, mortality, brain death [10, 28, 43]</td>
<td>ICU Outpatient</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LF</td>
<td>↓ reflects ↑ICP, TBI, hemorrhage, need for LSI, mortality, brain; ↑ reflects ↑CI, HR, MAP death [4, 10, 27, 28, 37, 43, 48, 49]</td>
<td>ER ICU</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HF</td>
<td>↓ reflects trauma, ↑ICP, need for LSI, hemorrhage, brain death, and mortality [10, 37, 43, 47, 50, 51]</td>
<td>Prehospital</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LF/HF</td>
<td>↑ reflects ↑ICP, ↓CPP; ↓ reflects brain death, mortality, hemorrhage, JGCS, poor neurologic outcome [5, 7, 10, 27, 48, 51]</td>
<td>Prehospital ICU</td>
</tr>
</tbody>
</table>
6. Summary

There are at least 23 different variables using the 3 different methods of analysis that reflect HRV (Table 4), each with strengths and weaknesses. Decreases in HRV in trauma patients indicate significant injury or pathology and accurately predict morbidity and mortality. However, there are multiple challenges which must be overcome before HRV can become a routine monitoring and triage tool in trauma. The key issues for future investigations are

(1) how to implement HRV in the triage of civilian and military trauma,
(2) guidelines for the monitoring and assessment of trauma patients using HRV,
(3) development of normal values and thresholds for treatment,
(4) target values for resuscitation.
Back to our clinician...
• **Responsibility** – analyzing HRV and linking it to pathology vs. calculating HRV.

• **Important diagnostic tool** – e.g. risk assessment for pts. suffering MIs.

• **SDNN** – combined with ejection fraction and baroreflex sensitivity.
Coding Plan

- Input Raw ECG
- Pre-processing/Denoising
- R Peak Detection
- RR Intervals in Time Domain

- Mains Noise (50Hz)
- Electromyogram (EMG) Noise
- Baseline Drift
<table>
<thead>
<tr>
<th>Type of Noise</th>
<th>Removal Method</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mains Noise</td>
<td>IIR Notch Filter</td>
<td>Eliminates the interference with a bandwidth range e.g. 49-51Hz which is eliminated. Uses past inputs and outputs and present inputs to do this. Can result in filter ringing which distorts the QRS segment.</td>
</tr>
<tr>
<td></td>
<td>FIR Filter</td>
<td>Similar to above but doesn’t use the previous outputs, only inputs.</td>
</tr>
<tr>
<td></td>
<td>Adaptive Filter</td>
<td>Automatically changes its characteristics based on which algorithm is used to filter the signal. Methods used may be least mean square (LMS), recursive least squares (RLS), stochastic gradient (SG) and others. These algorithms are applied to change the elimination region of filters such as IIR and FIR. This is an added layer of complexity on top of the filters mentioned above.</td>
</tr>
<tr>
<td>EMG Noise</td>
<td>Low Pass Filter</td>
<td>The frequency of QRS complex overlaps that of EMG noise, so noise removal is extremely difficult without losing ECG morphology</td>
</tr>
<tr>
<td>Baseline Drift</td>
<td>High Pass Filter</td>
<td>Baseline Drift has low frequency of generally below 0.5Hz, so a high pass filter with a cut-off point of 0.5Hz should remove it. Must be aware though that ECG signals have frequencies starting at around this value.</td>
</tr>
</tbody>
</table>
On to this week’s code...