Plasticization Regimes in Biopolymers

Ahmad Athamneh and Justin Barone

Biological Systems Engineering, Virginia Tech
Motivation

• Proteins
 – Renewable feedstock
 • Abundant, readily separated in waste stream, chemically versatile molecules

• Glycerol plasticization: simple, tried and true technology
 – easy processing, enhances properties
 – Not fully understood
Technical approach
Glycerol effect on secondary structure

Amide II peak position of FK films made with varied %Glycerol

XRD patterns of FK films made with varied %Glycerol
Protein plasticization with glycerol

Dehydrated protein

Glycerol

Net change in secondary structure
FTIR Amide I peak

XRD patterns of FK films made with varied %Glycerol
Using %Glycerol > c*
Modulus vs. Glycerol - *

- **Elastic Modulus, E (GPa)**
 - 10^{-3}
 - 10^{-2}
 - 10^{-1}
 - 10^0
 - 10^1

- **Molar ratio, (mol glycerol/mol protein)**
 - 10^{-3}
 - 10^{-2}
 - 10^{-1}
 - 10^0

- **Glycerol content, %(w/w)**

- **Molar ratio, (mol glycerol/mol protein)**

- **Elastic Modulus, E (GPa)**
 - 10^{-3}
 - 10^{-2}
 - 10^{-1}
 - 10^0

Legend:
- FK
- LA
- WG

Graphs show the relationship between elastic modulus and molar ratio, as well as glycerol content.
Sensitivity to plasticization vs. cysteine content and number polar side chains*

(Sensitivity)

Range \[\frac{I(1660)+I(1650)}{I(1625)} \]

No. Polar side groups

Chain fraction Cysteine
Thermodynamic model

\[E \propto \rho \frac{RT}{Me} \]

\[\rho \propto \frac{1}{[\text{Glycerol}]} = \text{v.weak dep.} \sim \text{const.} \]

\[Me \propto \frac{[\text{Glycerol}]}{[\text{Cys}]} \]

\[Me \propto \frac{[\text{Glycerol}]}{[\text{Cys}]} \]

\[\Leftrightarrow E \propto RT \frac{[\text{Cys}]}{[\text{Glycerol}]} \]
Modulus at c^* is function of cysteine content

\[E \propto RT [Cys] \]

$R^2 = 0.90$
Acknowledgment

VT- ICTAS, USDA/CSREES, U.S. Poultry and Egg Association

Questions?

Ahmad Athamneh: athamneh@vt.edu and Justin Barone, jbarone@vt.edu

Renewable Materials Research Group
Biological Systems Engineering, Virginia Tech

http://renewablemat.bse.vt.edu

Virginia Tech
Invent the Future

Biological Systems Engineering