Core Function 4: Monitoring

Webcast Focus

In previous webcasts, the first three core functions of risk management were examined. This webcast will focus on monitoring which is the fourth core function of risk management.

This webcast will focus on the history and importance of monitoring, and when and how to implement monitoring preventive strategies. A section of the webcast provides an overview of types of charts that can be used to analyze data. You have the option of whether or not to watch this section of the webcast.

Monitoring can be used for a variety of reasons such as monitoring the impact of preventive strategies, results of or side effects of a medication change, or implementing a new or revised system or process.

If a consumer is identified who is experiencing a high frequency of incidents, monitoring would be an activity to help determine if actions taken to prevent future incidents are successful.

For example, incidents reported for injuries of an unknown source, individual-to-individual abuse, abuse, neglect, multiple emergency room visits or hospitalizations in a brief period of time would red flag a consumer for monitoring. Another reason for monitoring a consumer would be after a new service or support has been implemented to gain insight into whether a change occurred.
Before we jump into the steps of monitoring, let’s take a moment to refresh our memories as to how we got to this point in the core functions of risk management.

We began by talking about how we determine who is at risk and what they are at risk for. We did this by identifying factors that might put the person at risk for an adverse event. Factors include those documented for us already such as demographic information and any medical conditions including both physical health and mental health. We may also discover factors by analyzing incident management data or population-based data such as Healthy People 2020, or the literature that describes risk factors for people with an intellectual disability.

Then, we put knowledge into action by recommending and implementing preventive strategies. Possible strategies were identified by analyzing incident data or by conducting a root cause analysis.

Just because we implemented preventive strategies, that does not mean we are finished and can close the book on that situation. We need to monitor to see if the issue or concern has been resolved. We need to find out if the actions that were taken were effective or successful. Did the actions result in reducing the person’s risk levels?

In order to answer these questions, we need to collect data during the monitoring activities.

Reviewing the data and learning from our understanding of the data findings helps us to identify who is at risk and what they are at risk for. Data helps us to identify appropriate risk mitigation and management strategies to implement. Data also informs us about whether actions taken had an impact on the outcome.

The methods used to organize the data to facilitate understanding are those used in the practice of quality management. The practice of quality management draws upon a wide variety of tools and techniques. However, for the purpose of this webcast, there is a section, if you desire to view it, that focuses on how data is organized and displayed to inform. In this case, about the success of the actions taken.

Historically, monitoring took place in the form of retrospective auditing or quality assurance that looked at specific areas that were considered problematic.

In 1979, the Surgeon General issued a report on health promotion and disease prevention. What followed shortly afterwards was the first national health promotion and improvement plan called Healthy People 1990. Since that time, each decade has had a Healthy People health promotion and improvement plan which led to the current Healthy People 2020 which contains nearly 600 objectives with 1200 measures. These objectives cover approximately 42 areas including Disability and Health, Injury and Violence Prevention, and Environmental Health, just to name a few. What each of these areas, objectives, and all of the national health plans have in common is that they all use data to determine if the objectives are being achieved or showing progress.
A few years after the Surgeon General released the 1979 report, JCAHO, also known as the Joint Commission on the Accreditation of Healthcare Organizations, shifted its focus from time-limited audits to ongoing monitoring of the quality of care and used data to identify problematic areas and monitor performance. Data collection became a mechanism to inform and guide decision-making.

When ODP conducts monitoring activities, data is collected specific to topical areas, objectives, and measures to evaluate performance and outcomes. In risk management, ODP utilizes a variety of data including incident data, hospitalizations, demographics, and fiscal data in order to determine challenges and what contributes to success in assuring health and safety. This requires that data collection, analysis and evaluation, and improvement planning be an ongoing activity. Conducting these activities essentially is what monitoring is…the ongoing, systematic collection and analysis of data.

Monitoring Today

Ongoing routine monitoring is critical to identifying emergent issues that may require a speedy response in order to contain adverse outcomes. When an infectious disease outbreak occurs, it is through routine and comprehensive monitoring that the outbreak is discovered. Instead of the term monitoring, surveillance is often used in public health.

Ongoing monitoring occurs in Pennsylvania’s intellectual disability service system.

The Office of Developmental Program’s, or ODP’s, Central Office conducts numerous monitoring activities such as monitoring patterns and trends in incident reporting. The ODP Statewide Positive Practices Committee routinely monitors the incidence of restraints and psychiatric hospitalizations. In order to understand restraint applications and psychiatric hospitalizations, the Committee looks at a variety of data elements.

Additionally, ODP regional offices, administrative entities, and provider agencies monitor data for two improvement areas: individual-to-individual abuse and restraint reductions. In addition to monitoring this data, these entities may also monitor incidents for an individual, a specific group such as people diagnosed with autism or dually diagnosed with a mental illness, or a specific service area or incident category such as Neglect – Failure to Provide Needed Care; or Law Enforcement - Crisis Intervention.

Monitoring is a critical component of risk management. In the past, monitoring focused on compliance with policy and regulation. Today, in addition to compliance monitoring, monitoring also looks at data. Without monitoring, problems may arise and go undetected for a long period of time before action is taken. The cost is too high to accept when it impacts quality of life, rights, safety, health, or even mortality.

Monitoring Example

Let’s look at an example of how monitoring data can make a difference in someone’s life.

In a previous webcast, we met Ivan. If you recall, Ivan has a risk for falling. Ivan’s Support Coordinator, Bill, was preparing for his monitoring visit and looked at his incident history for the current year. Bill noted that Ivan had 10 fall-related incidents reported during the first six months. This prompted Bill to look more closely at Ivan’s incident history.
When Bill graphed the fall related data, he observed that Ivan had an increase of falls in 2011 and was well on the way of surpassing that in 2012.

Bill wanted to learn more about the falls so he looked at the data by month to see what he could learn.

Bill discovered that Ivan had experienced falls occasionally during 2010, but started to experience falls on a monthly basis beginning in April 2011. The number of falls continued to increase until February 2012 when this trend reversed itself beginning in March.

Bill also noted that the total number of falls during 2011 was almost equal to the number of falls in only three months of 2012. Bill wondered why Ivan began to experience falls more frequently.

Bill read Ivan’s ISP, his medical information, and the fall incident reports. Bill was looking for information about what happened, the corrective actions taken and if any preventive measures were implemented.

Bill discovered that the provider did a post-fall analysis that resulted in Ivan having a fall risk assessment which was completed in late January 2012. In addition, he learned the following:

- Ivan had been hospitalized for pneumonia for several weeks during late 2011.
- The lengthy hospital stay left Ivan with generalized weakness that also worsened his gait.
- Following his hospital stay, during his follow up doctor’s visit, his doctor made some medications changes.

All of this combined with Ivan’s age, his impaired balance and recent medication changes resulted in an increase in Ivan’s risk level for falls. The fall risk assessment included a number of recommendations to manage and mitigate the factors that contributed to Ivan’s elevated risk level.

Armed with this new information, Bill researched what puts people with Ivan’s demographic and health information at risk for falls, possible consequences of falls, and evidence-based strategies. Bill felt adequately informed before conducting his next monitoring visit.
<table>
<thead>
<tr>
<th>Transcript</th>
</tr>
</thead>
<tbody>
<tr>
<td>During Bill’s monitoring visit and follow up with the provider, he noticed a number of changes. Ivan’s bedroom was no longer on the second floor which reduced the need for Ivan to navigate the stairs where about half of the falls occurred.</td>
</tr>
<tr>
<td>The other half of the falls occurred in the bathroom. The bathroom had been outfitted with a call button so Ivan could call for assistance. The commode had grab bars strategically secured on either side and the seat had been raised.</td>
</tr>
<tr>
<td>Bill reviewed Ivan’s progress notes while visiting with the provider and noted that he was involved in a new physical regimen designed to increase his muscle tone and improve his balance. He walked daily with staff who provided support which helped to address his gait and imbalance.</td>
</tr>
<tr>
<td>There was one recommendation to mitigate Ivan’s risk that had not yet been implemented. The provider was planning to build a ramp so Ivan would not need to use the steps when he left his home.</td>
</tr>
<tr>
<td>Because it was not known whether the preventive measures to reduce fall frequency or severity of any fall-related injuries would be effective, Bill continued to monitor incident reports for Ivan. He also noted he would check for the new ramp walkway during his next monitoring visit.</td>
</tr>
<tr>
<td>Several months after implementing the preventive measures, Ivan’s fall incident data looked like what you see on the screen.</td>
</tr>
<tr>
<td>The data indicate a decrease in the number of falls that Ivan experienced after the preventive measures recommended by the fall risk assessment were implemented. In order to assure that the preventive measures were effective and the results sustainable, Bill continued to monitor the incident and fall data for Ivan on an ongoing basis. This is one example of a monitoring activity.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Monitoring Levels</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ivan’s situation provides an example of data collection at the individual level. There are other levels of data collection as well. Data for the provider could be based on a single residence, multiple residences, or even in multiple administrative entities.</td>
</tr>
<tr>
<td>The next few slides provide examples of data at different levels. Take a moment to review each example. Click [Continue] when you are finished reviewing each slide.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>In order to monitor, data is needed. In the example, Ivan’s Supports Coordinator reviewed incident management data. So the question is, “What is data?” Data is un-interpreted observations, facts, or material usually collected as a result of assessment, monitoring, or reporting activities. The observations or facts are usually numbers or measurements collected as a result of observations.</td>
</tr>
</tbody>
</table>
Those un-interpreted facts or data become information when transformed through analysis and interpretation into a form that is useful for decision making.

Why does data need to be transformed into information? By transforming data into meaningful information, it becomes knowledge. That knowledge then leads to informed decision-making.

So, data is the foundation of informed decision making.

Levels of Monitoring
In monitoring, there are also individual as well as system levels of monitoring. Take a moment to review examples of each on the screen and then click [Continue].

Monitoring Steps - Introduction
Let’s take a look at the steps involved in monitoring. Ivan’s provider agency and/or his Supports Coordinator, Bill, probably used these steps to monitor Ivan’s falls.

Monitoring activities fit very nicely into PDCA improvement model that is used in quality management. Let’s first look at what PDCA stands for.

P or Plan is when we develop a plan in response to what was learned from the data. This would be what we learned about risk factors and evidence-based preventive strategies.

D or Do is when the strategies are implemented and relevant data is collected to monitor their impact.

C stands for Check, or you may have heard an S for Study. This is when you analyze and interpret the data. You may ask questions such as what do the data findings indicate, what have we learned, or is further action warranted.

A or Act is when you continue to implement the original plan or modify and implement revisions to the plan based on what was learned from the data analysis.

Once you Act, then you begin the cycle again.

This slide shows how the Plan, Do, Check, Act cycle fits in with the sequential steps of monitoring. Take a moment to review it and then click [Continue].

Monitoring Steps – Describe the Data
The first step is to determine what it is you want to know and to identify the data that will answer your questions. You need to determine what you are monitoring and why. Recognizing what you want to know will lead you to the data to collect. Another way to look at describing the data is stating the questions you want the data to answer.
Transcript

Once you have the question you want to answer, some details to consider about the data are:

- How will you use the data?
- What is the data source? Is it reliable? Is it accurate?
- How frequently will the data be collected?
- Will the data be used to improve outcomes for an individual?
- Will the data be used to evaluate a process or system?
- What data elements will be collected?

And,

- How will you evaluate the data to determine if strategies have been successful?

In thinking about the PDCA cycle, a question you might be answering is, *Do the additional supports implemented in February have an impact on reducing the frequency of falls for Ivan?* In this example, the additional supports would be part of the Plan in the PDCA cycle. The implementation of the supports is the Do part of the cycle.

We can use the Restraint Elimination Initiative to provide an example at the system or process level for the PDCA cycle. Having a debriefing for staff after a restraint is used may be part of the plan to reduce restraints across the state. In this example, part of the Plan in the PDCA cycle is to incorporate a debrief for staff after a restraint. The Do part of the PDCA cycle would be staff actually conducting a debrief after a restraint.

Monitoring Steps – Organize the Data

Once you know what you want to collect, the data is collected and then you need to think about how to organize it so that it can be analyzed. When organizing the data, think about the data elements and timeframes that will be used.

A data element might be gender, age, health status, living area, etc. Timeframe refers to when the data will be collected and aggregated by. In other words, the data will be totaled and organized by day, week, month, quarter, annually, or some other measure of time.

In looking at the example of Ivan, the data element or variable that was collected was the number of times Ivan fell. What was the timeframe that was used in the example? Click on the button for the timeframe that was used.

- **Correct. Ivan’s data was collected by month.**
- **That is incorrect. Ivan’s data was collected by month.**

Most likely the data element to collect will be apparent to you as it most likely is what you are interested in. However, the timeframe may be a bit more difficult to determine. Think about what makes most sense in regard to the situation. For Ivan, he’s falling, but not every day or even every week, so it seemed fine to collect the data on a monthly timeframe.

However, if we are monitoring reducing the frequency of restraints for Jonas, maybe the team is meeting weekly to review his progress so it makes sense to have the timeframe be a week.

But, if Jonas is experiencing multiple restraints in a day, it may make sense to use a daily timeframe so that it can be quickly determined if the plan is working or not.

In a healthcare situation, if vital signs are being monitored, the timeframe may be hourly due to the critical nature of what is being collected.
So what it comes down to is the issue at hand and how critical it is, the level at which the data is being collected, individual or system, and the frequency with which the data will be reviewed.

Here is a sample table that Ivan’s provider or SC might use to organize the data. When you’re ready, click [Continue].

Additional examples of how data might be organized are listed on the next few slides. Take a moment to review them and then click [Continue] when you are ready.

<table>
<thead>
<tr>
<th>Monitoring Steps - Analyze the Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>The next step is to analyze the data. This step is part of Check in the PDCA cycle. This is where the data in the table is made into a chart or graph. In Ivan’s example, the data was analyzed in a run chart.</td>
</tr>
</tbody>
</table>

There are some tips to keep in mind when analyzing the data. The first thing to think about is how to organize the data into a meaningful graphical display.

If you are looking to detect a shift, or a trend or a pattern, you will need to have enough data points on the graph to detect them. A shift, trend, or pattern would clue you to an underlying cause. A guiding rule of thumb is to display at least 22 to 25 data points in the chart.

If you are analyzing the frequency of restraints for Jonas, you may have 22 to 25 data points with each one representing a week. Fewer than that does not provide enough information to draw conclusions. If you’re looking at the Restraint Elimination Initiative, the data points may be months instead of weeks.

Most importantly, be sure to look at the data on a regular basis. Don’t fall into the trap of looking at your data once every three months just because you submit a report on a quarterly basis. If you fall into this trap, hopefully a quote from the Robot in Lost in Space will come to mind, “Danger, Will Robinson!” You want to look at the data on a frequent, ongoing basis so that you can pay attention to potential emergent concerns revealed through patterns, shifts, and trends, or possible outliers in the chart.
Some people have a tendency to condense three months of data into one data point because they are reporting on a quarterly basis. However, this means that it may take a year or more to see a pattern emerge. It would be better to have a data point for each month so that if there is a pattern it will be more evident. You may not see the variation from month to month when it is condensed into a quarterly data point. This concept should be applied to other timeframes as well, not just a quarter.

If you have a short time period, but you need to get more information from your graphical display, consider shortening the timeframe with one data point for each timeframe. In the case of Ivan, tracking the data on a weekly basis may not work if you want to implement support strategies more quickly. In this case, daily counts may work better.

Take a moment to compare the two graphs on the screen. The one on the left shows the data by quarter and the one on the right shows the data by month. You get a different analysis of the data depending on which timeframe you use. Click [Continue] when you are ready to go to the next slide.

At this point in the webcast if you would like to delve further into how to organize data for risk management purposes, click on the [Graphs] button on the screen. If you would prefer not to listen to this information at this time, click on the [Continue] button. You can always come back to the graphs section by clicking on it in the Table of Contents on the left of the screen.

Before we learn about the next monitoring step, let’s first review a few things to keep in mind when looking at charts.

When interpreting results, you can state only what the findings are based on what is displayed in the chart. Although as part of the analysis the findings are interpreted, be careful not to draw conclusions or make inferences beyond the basic findings. Practice caution in interpreting the data in the chart so that you don’t misinterpret it or go beyond what is shown. It’s easy to look at a chart and contrast or compare details, but this may not be appropriate in terms of drawing conclusions from the chart. For example, if you’re looking at the number of reported restraints in homes in an agency, you can say which one has more or fewer restraints, but you can’t answer the question why there are fewer or more restraints without further analysis which takes us to the next step of monitoring.

Monitoring Steps - Graphs

Let’s take a look at some of the types of graphs that we can create and when we would want to use them.

The most common one and the one used in Ivan’s example is a run chart. This chart monitors data over time. Run charts can also be used to look at performance after a process change.

A run chart displays data over a period of time and is usually displayed as a line chart, although a column is acceptable.
From a run chart, we learn the pattern of variation across the data points. Examples of variation are shift, trend or cycle.

A shift is when the direction of the data points change and all the data points are either above or below the mean.

A trend is when the data points may increase, decrease, or plateau. It is recommended to have at least seven points to determine either a shift or a trend.

A cycle is when a pattern is repeated across the data points in the graph. For example, a W or M shape repeated; or every fourth data point spikes or drops noticeably on the chart.

Let’s look at some examples.

<table>
<thead>
<tr>
<th>Graph Description</th>
<th>Example Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>This graph illustrates a downward trend. Prior to April 2008, beginning with November 2007, the monthly data points display a decrease in restraint applications.</td>
<td></td>
</tr>
<tr>
<td>This graph illustrates an upward trend. Beginning with May 2008, the monthly frequency of restraints reversed its downward trend and began to increase.</td>
<td></td>
</tr>
<tr>
<td>This graph illustrates a shift in the data. Although all of the data points are below the mean in this illustration, there are at least seven data points below the mean which meets the criterion for a shift. When a data point falls on the mean, it is not counted. If you look closely at the data point for December 2007, you can see that it is actually 402 which places it below the mean of 405.</td>
<td></td>
</tr>
<tr>
<td>A run chart is the most common graph you will create and use. However, there are others that may be helpful in organizing your data depending on the question being asked.</td>
<td></td>
</tr>
<tr>
<td>A histogram would be used when you want to look at the distribution of one variable. You would use a histogram over a run chart as you can look at it and the image is apparent. In this example, we are looking at the monthly incidence of restraints in Pennsylvania over a state fiscal year.</td>
<td></td>
</tr>
<tr>
<td>If you have 100 percent of the data, a pie chart can be used as it shows the whole and how each portion contributes to the whole. Generally, it is used to display no more than eight slices of the pie. In this example, the labels identify the region and the slices show how many incidents are reported from each region.</td>
<td></td>
</tr>
<tr>
<td>In this example, a column chart is useful to show the difference in reported incidents of neglect by month for two different fiscal years. So a column chart can display the month of one year to the month of the next year. Your electric or water bills may display usage this way. This is so that you can compare usage across a year as well as to usage between months of a different year.</td>
<td></td>
</tr>
</tbody>
</table>
Transcript

A clustered column chart is used when you want more information in the graph. You would do this when you think the data elements are related. In this example, the two related items we wanted to consider were the number of restraints and the number of consumers that experienced restraints by policy requirements. The restraints were categorized into emergency and per an approved plan according to ODP policy. The graph also separates the data by region.

This graph informs about the frequency of emergency restraints and as per approved plan restraints and the number of consumers for each, all by region. In this example, you can see the number of restraints per an approved plan is far greater than emergency restraints. But, the number of unique consumers for the two categories of restraints does not show so large a difference.

A stacked column chart shows the frequency each type contributes to the total in that column. In this example, the two stacked columns show the total number of unique consumers that experienced restraints for each fiscal year. Each column has five segments that show the number of consumers in each region and data not available that contributed to the total in that column. It shows multiple levels of the system, statewide and by region. In this graph, data not available means no region was assigned to this group of consumers.

This graph displays the same data as the prior slide in a clustered column chart. Is the information you learn from looking at this chart the same as in the preceding chart? Hopefully you’re thinking no. The previous one organized the data by year, whereas in this one the data is organized by region.

These two charts illustrate the point about the importance of choosing the right chart for the question being asked.

A risk manager may want to use a Pareto chart when he or she wants to know which types of incidents were most frequently reported and the percentage of each type of incident. A Pareto chart can help to focus improvement efforts as it shows frequency in rank order.

The Pareto chart displays the 80-20 rule where 80 percent of the result is attributed to 20 percent of the contributing factors. This type of data display supports identifying where targeted focus for improvement and preventive efforts is warranted.

Take a moment to review when you would want to use each type of graph and then click [Continue].

When creating a graph, there are a few things to keep in mind.

First, be sure to provide any details that help to put the data into context. This includes such things as the chart title, the axes labels, the timeframe the chart covers, etc.

As appropriate, include the total frequency or total number that is represented on the graph. Include a legend as appropriate.
When interpreting results, you can state only what the findings are based on what is displayed in the chart. Although as part of the analysis the findings are interpreted, be careful not to draw conclusions or make inferences beyond the basic findings. Practice caution in interpreting the data in the chart so that you don’t misinterpret it or go beyond what is shown. It’s easy to look at a chart and contrast or compare details, but this may not be appropriate in terms of drawing conclusions from the chart. For example, if you’re looking at the number of reported restraints in homes in an agency, you can say which one has more or fewer restraints, but you can’t answer the question why there are fewer or more restraints without further analysis which takes us to the next step of monitoring.

Monitoring Steps – Findings

Now that we have organized our data, we are ready to interpret the findings. This is a continuation of Check of the PDCA cycle as we delve further to understand any patterns in the data.

Here are some questions to ask when interpreting the data.

- Are there any patterns, cycles, trends or shifts? Are they going up, down, or staying the same?
- Is there any variation? If yes, what kind?
- Is there enough information to answer these questions?
- Is there any information other than what is in the chart that we need to take into account before drawing any conclusions?
- What additional information is needed?
- Is there a possibility the data can be misinterpreted?

And,

- What conclusions can be drawn from this information?

One always needs to be cautious when delving further into the data to understand it so that misinterpretations do not occur and then decisions are not faulty. So it is always good to take some time to think about the limitations of the data and how it can be misinterpreted.

One example is using a percent. A percent is always based on the total number so you need to know what the total number is in addition to the percent. For example, 50 percent of 500 conveys something different from 50 percent of 10.

If there is a pattern or trend in the chart data, or not, you would want to describe what you see in the chart. If there is a trend, you would want to describe it and if possible explain why it occurred. This may require information other than the graphed data. Once the trend is explained, you would relate it back to the impact on the situation that is being monitored.

In the fifth core function of risk management, reporting, we will look at sample conclusions that may be incorporated in a report.

As you can see from the data displayed in this graph, there was a downward trend that occurred over the years until it reached its lowest point, 273. Following April 2008, the downward trend reversed itself and started to increase. In order to explain why this reversal occurred, further analysis and review needed to be done.
Let’s look at what was done in Ivan’s example. We can see that there was a decreasing trend in the number of falls that Ivan experienced.

Then, we would want to explain the trend. From the note on the slide we can see the beginning of that downward trend occurred after the preventive measures for falling were put in place.

So, if we see that the falls have decreased and the decrease occurred over several months and it stabilized, what conclusions can we draw? We might say that the increasing trend was stopped and replaced by a decreasing trend that stabilized to a low frequency. We might not be able to prevent all of Ivan’s falls, but the preventive measures appear to have managed the factors that put Ivan at risk for falling.

Now that we have a conclusion, it’s time to make an informed decision. For Ivan, our decision would be to determine whether to continue the preventive measures, discontinue them altogether, or modify them.

You may decide to make no changes and just continue to monitor. Or, you may implement additional changes and then continue to monitor and evaluate to see what impact, if any, the changes had. This is the Act part of the PDCA cycle.

The questions on the screen should be thought about when determining next steps. Take a moment to review them and then click [Continue] when you are ready.

When next steps or the actions to be taken have been determined for the person, the results of the monitoring, conclusions and actions can all be documented in the appropriate section of the person’s record.

Is this the end of the monitoring activity? No, not really.

Once it has been determined that actions will be implemented, documentation includes the who, what, when, where, and how details. This includes who implemented them and the date they were implemented. Monitoring would continue to assure that the initial positive impact seen is sustained in the long term. Sometimes this involves policy development or revision. It could mean staff training, identifying others who may be at similar risk, etc.

Thank you for viewing this webcast about the fourth core function of risk management, monitoring.

Please watch the next webcast in the series which looks at the fifth core function of risk management, reporting.

This webcast has been developed and produced by the Office of Developmental Programs Consulting System on behalf of the Pennsylvania Department of Public Welfare, Office of Developmental Programs.