

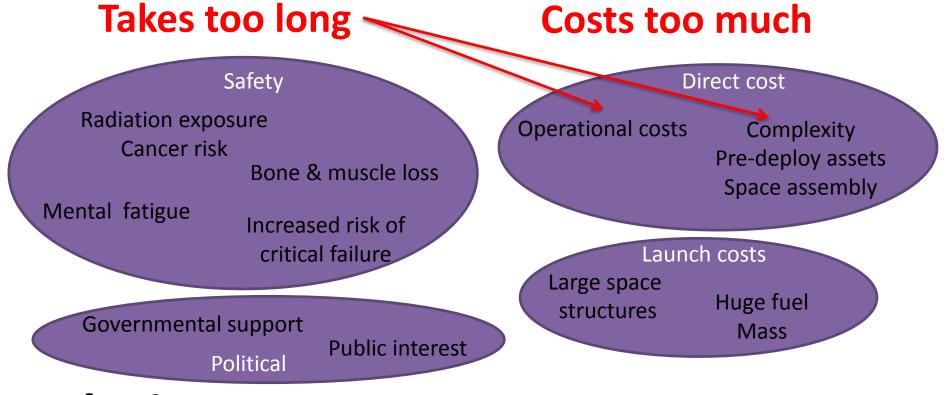
The Fusion Driven Rocket

Pl: John Slough Anthony Pancotti David Kirtley, Michael Pfaff, Christopher Pihl, George Votroubek

MSNW LLC, Redmond, WA, 98052

Background

Benchmarks of FDR program

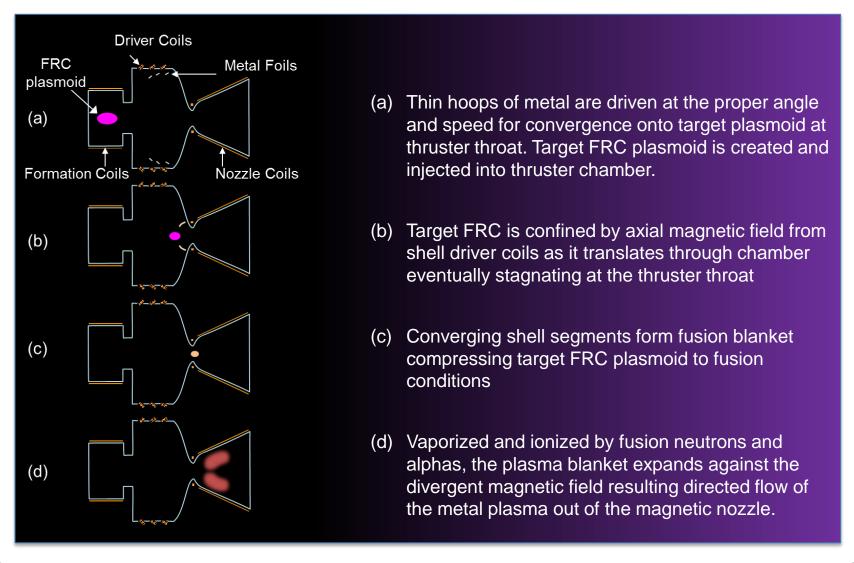

- Mission Architecture Study
- Spacecraft Design
- Theoretical work

Research Plan

- Experiment validation
- Numerical & Analytical Studies
- Spacecraft Design
- Mission Architecture

Roadmap

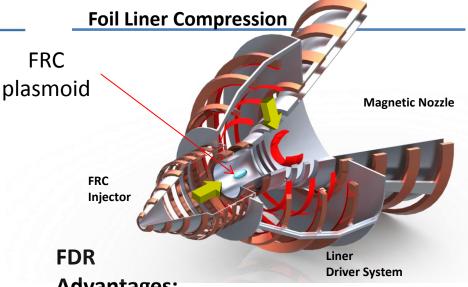
Why We Are Not on Mars Yet?


Solution: New method of propulsion is needed

The Fusion Driven Rocket

Schematic of the inductively driven metal propellant compression of an FRC plasmoid for propulsion

Magneto-Inertial Fusion Two Approaches



Shell (liner) implosion driven by B_{θ} from large axial currents in shell.

Preheated fuel

Plasma
Injector

Liner implosion from j x B force between external coil and induced liner currents

Issues:

MTF

- Extremely low inductance load difficult to drive (massively parallel HV caps and switches)
- Close proximity and electrical contact ⇒ major collateral damage with each pulse
- Small FRC must be formed close to implosion ⇒
 marginal B for ignition w injector destruction
- Only inefficient 2D compression possible ⇒ requires much larger driver energy

Advantages:

- Large driver coil easy to power with ample standoff
- Driver electrically isolated from liner and magnetically from fusion process
- Large FRC can be formed external to implosion with abundant B for ignition
- Full 3D compression can be realized for efficient compression and translation

FDR offers the first realistic approach to fusion-based propulsion

	Benefit	Result
1	Direct transfer of fusion energy to the propellant	High efficiency, low mass engine
2	Uses solid propellant	No significant tankage
3	High exhaust velocities (2000- 5000s Isp)	Short trip time, high mass fraction Low IMLEO
4	Magnetic insulated reaction chamber and nozzle	No significant physical interaction with the spacecraft Minimal thermal heat load and Low radiator mass
5	Low energy requirements to achieve MIF	Low mass (single launch) and greatly reduced cost

Background

Benchmarks of FDR program

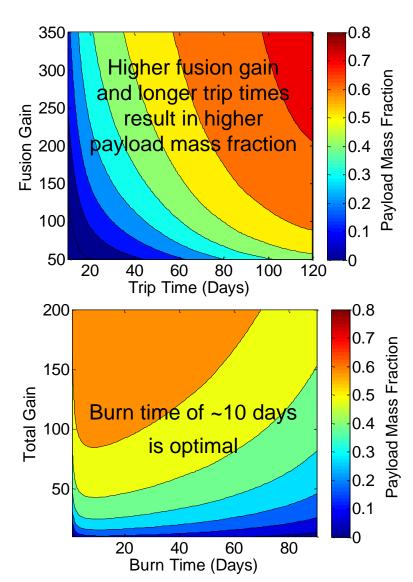
- Mission Architecture Study
- Spacecraft Design
- Theoretical work

Research Plan

- Experiment validation
- Numerical & Analytical Studies
- Spacecraft Design
- Mission Architecture

Roadmap

Initial Mission Studies



Fusion Assumptions:

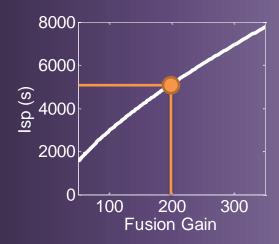
- Ionization cost is 75 MJ/kg
- Coupling Efficiency to liner is 50%
- Thrust conversion η_t ~ 90%
- Realistic liner mass are 0.28 kg to 0.41 kg
 - Corresponds to a Gain of 50 to 500
- Ignition Factor of 5
- Safety margin of 2: G_F =G_F(calc.)/2

Mission Assumptions:

- Mass of Payload= 61 MT
 - Habitat 31 MT
 - Aeroshell 16 MT
 - Descent System 14 MT
- Specific Mass of capacitors ~ 1 J/g
- Specific Mass of Solar Electric Panels 200 W/kg
- Tankage fraction of 10% (tanks, structure, radiator, etc.)
- Payload mass fraction =Payload Mass/Initial Mass
- System Specific Mass = Dry Mass/SEP (kg/kW)
- Analysis for single transit optimal transit to Mars
- Full propulsive braking for Mars Capture no aerobraking

Anthony Pancotti, John Slough, David Kirtley, Micheal Pfaff, Christopher Pihl, George Votroubek, "Mission Design Architecture for the Fusion Driven Rocket", AIAA 48th JPC, July 2012

Fusion Equation


$$E_{out} = G_F E_{in}$$

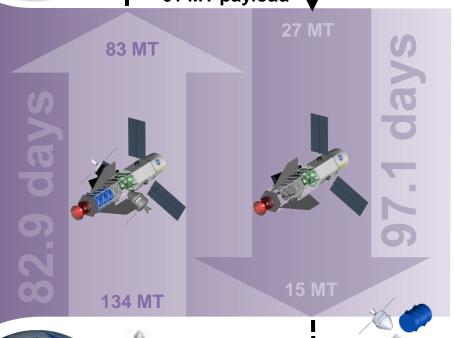
$$G_F = 1.1 \times 10^{-7} M_L^{1/2} E_L^{11/8}$$

$$E_{in} = E_L = \frac{1}{2} M_L v_L^2$$

$$E_k = \eta_T (Eout - \Psi_{ion} M_L)$$

$$I_{sp} = \frac{(2E_k/M_L)^{1/2}}{q_0}$$

lsp = 5000 s


Power Input= 180 kW Gain 200

Power(Jet)= 36 MW

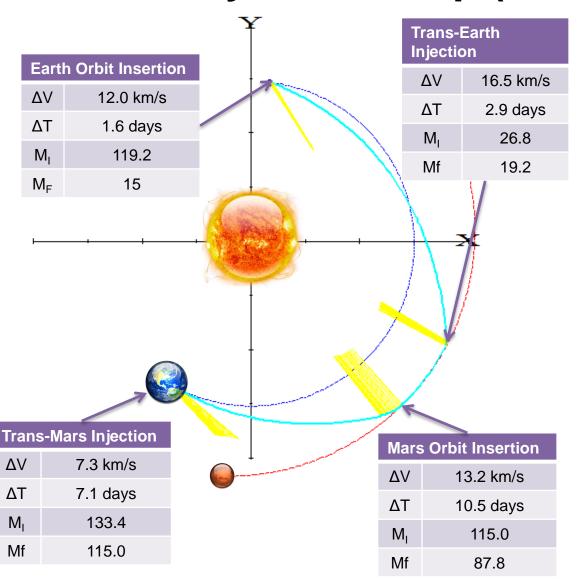
Spacecraft Mass = 15 MT Payload Mass = 61 MT

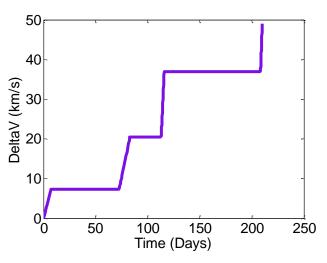
210 day Round-trip Manned Mars Mission 30 days

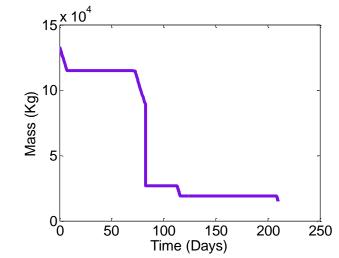
61 MT payload

FDR

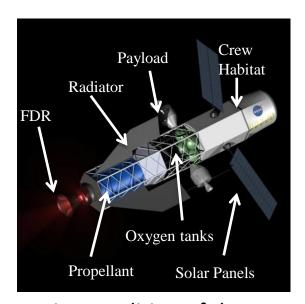
1 launch 134 MT (IMLEO) 210 days




DRA 5.0 (NTP), 9 launches, 848.7 MT IMLEO, 1680 days



210 day Round-trip (Mission Details)



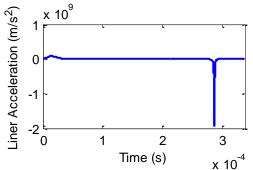
Spacecraft Design

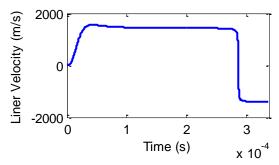
Artists rendition of the FDR spacecraft

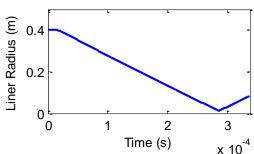
Spacecraft Component	Mass (MT)
Spacecraft structure ¹	6.6
Lithium containment vessel	0.1
FRC Formation ²	0.2
Propellant Feed mechanism	1.2
Energy storage ³	1.8
Liner driver coils ⁴	0.3
Switches and cables ⁵	1.8
Solar Panels ⁶	1.5
Thermal Management	1.3
Magnetic Nozzle	0.2
Spacecraft Mass	15
Crew habitat (DRA5.0)	61
Lithium Propellant	57
Total Mass	133

Payload mass fraction 46%

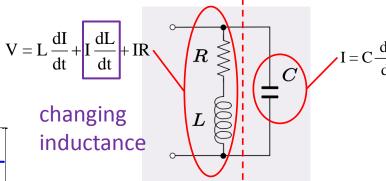
- 1. Fairings, support structure, communication, data handling ACS, Batteries
- 2. Hardware responsible for formation and injection of Fusion material (FRC)
- 3. Capacitors (1.8 MJ @ 1 kJ/KG), switches, power bus
- 4. Electromagnetic coil used to drive inductive liner
- 5. Pulsed power electronic components need to charge and discharge capacitor bank
- 6. 180 kW @ 200 W/kg



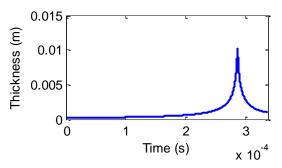

1D Liner Code

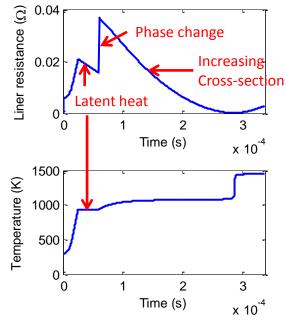


Circuit Parameters


R=3 mΩ L=20 nH 420 uF 40,000 V

Source Free RLC Circuit

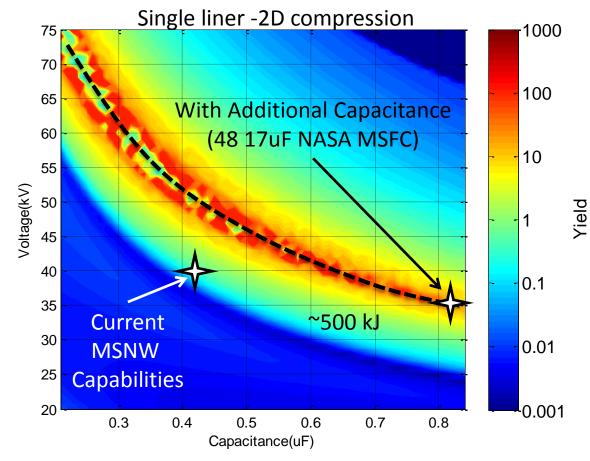


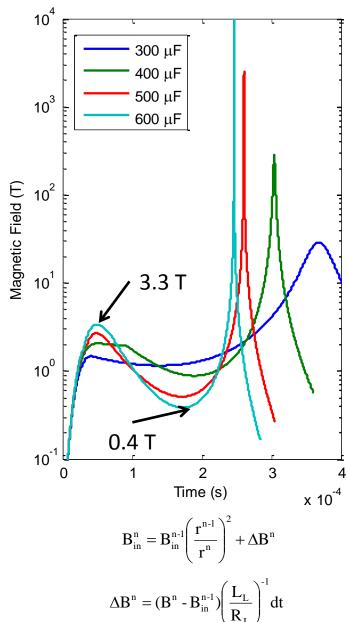

Solved as 2 First Order equations

- Various Current waveforms
 - Ringing
 - Crowbar
 - Diode
- Magnetic flux diffusion
- Resistivity ρ(T)
- Latent heats
- Radiative cooling
- Energy conservation

Data for actual coil and collector plate used In Foil Liner Compression (FLC) Test bed

Liner Parameters r=0.41 m w=6 cm l=0.2 mm

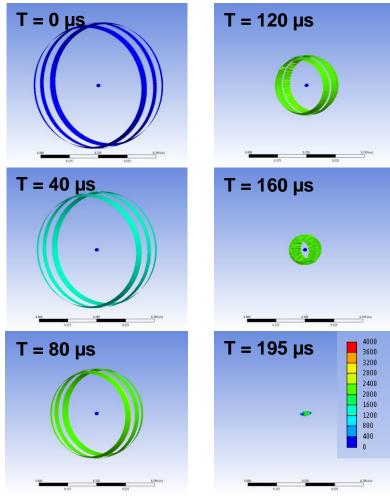



Possible operating condition

$$Yield = E_{fus} / E_{input} \cong \frac{1.2 \times 10^{-12}}{(2\mu_0 e)^2} B_0^4 r_l^2 l_l \tau_D / E_{input}$$

Dwell time (70% of peak field)

John Slough, Anthony Pancotti, David Kirtley, "Inductively Driven Liner Compression of an FRC to Megagauss Fields", IEEE 14th MEGAGAUSS, Oct 2012.



ANSYS Explicit Dynamics® Calculations

- ➤ Three 0.4 m radius, 5 cm wide, 0.2 mm thick Aluminum liners converging onto a stationary test target.
- First 3D structure compression of metallic liner
- No gross instabilities were observed due to the structure rigidity of the material
- Forces are well beyond the plastic deformation limit of the material, resulting in a uniform compression
- Low internal energy from the liner compression which is different from plasma or thick liner compression

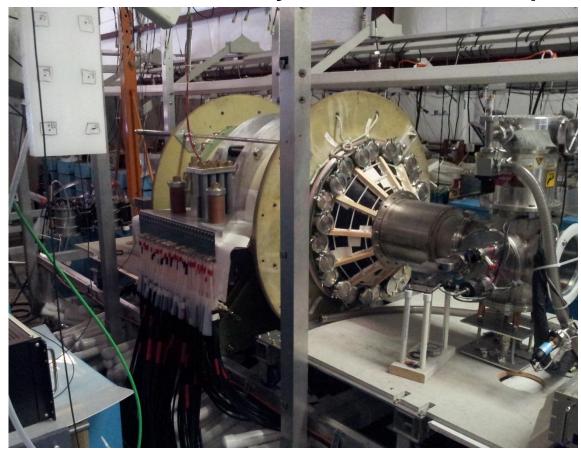
Background

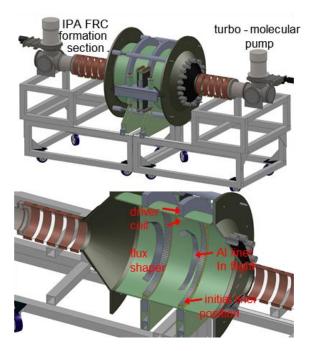
Benchmarks of FDR program

- Mission Architecture Study
- Spacecraft Design
- Theoretical work

Research Plan

- Experiment validation
- Numerical & Analytical Studies
- Spacecraft Design
- Mission Architecture


Roadmap

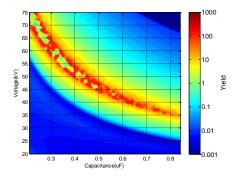


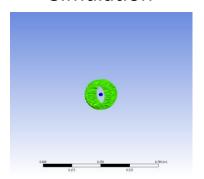
Task 1 – Fusion Physics – Experimental

IDL Unity Gain Validation Experiment at MSNW

CAD rendering of the Foil Liner Compression (FLC) test facility at MSNW

Picture of the FDR validation experiment construction now underway.


- Pulse Power System operation at rated voltage (6 mo)
- Double liner compression demonstrated (1 yr)
- Megagauss (100T) field compression achieved (1.5 yrs)
- FRC operation (2 yrs)



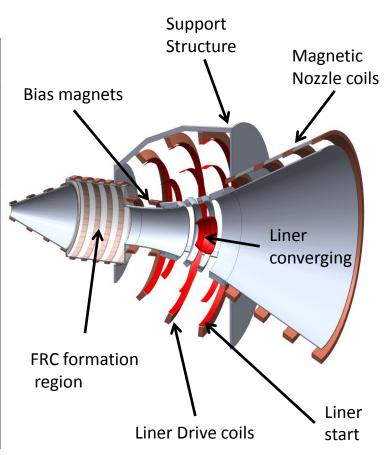
Task 2 – Numerical & Analytical Studies

1D Liner Compression Model

3D ANSYS Simulation

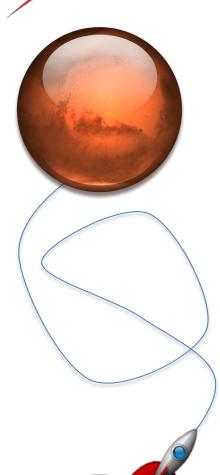
> Liner dynamics trade studies

- Liner energy
- Magnetic pulse shaping
- Bias field
- Geometry
- Scale
- Mass
- Temperature
- Analysis of lithium propellant
- Full scale FDR engine analysis
 - Thermal analysis
 - Structural analysis
- > Apply model results to refine:
 - Spacecraft design
 - Mission architecture
- Model fusion neutronics


- 2 coil 1D compression model (6 mo)
- FDR engine design (1 yr)
- > 3D Thermal analysis (1.5 yr)
- Fusion/spacecraft interaction characterized (2 yr)

Task 3 – Spacecraft Design

Spacecraft Component	Mass (MT)	TRL	Mission Dependent	Fusion Dependent
Spacecraft structure	6.6	4	Χ	
Propellant tank	0.1	5	Χ	Χ
FRC Formation	0.2	4		Χ
Propellant Feed	1.2	2		Χ
Energy storage	1.8	7		Х
Liner driver coils	0.3	3		Х
Switches and cables	1.8	6		Х
Solar Panels	2.7	8	Χ	Х
Thermal Management	1.3	5		Х
Nozzle	0.5	2		Х
Spacecraft Mass	15		X	X
Crew habitat	61		Χ	
Propellant	57		Х	Х
Total Mass	133		X	X



For a more accurate spacecraft design and total launch mass A more defined mission and fusion conditions are need

- Initial TRL assessment (6 mo)
- FDR flight system design (1 yr)
- Detailed Hardware list (1.5 yrs)
- Overall spacecraft design (2 yrs)

Task 4 – Mission Architecture

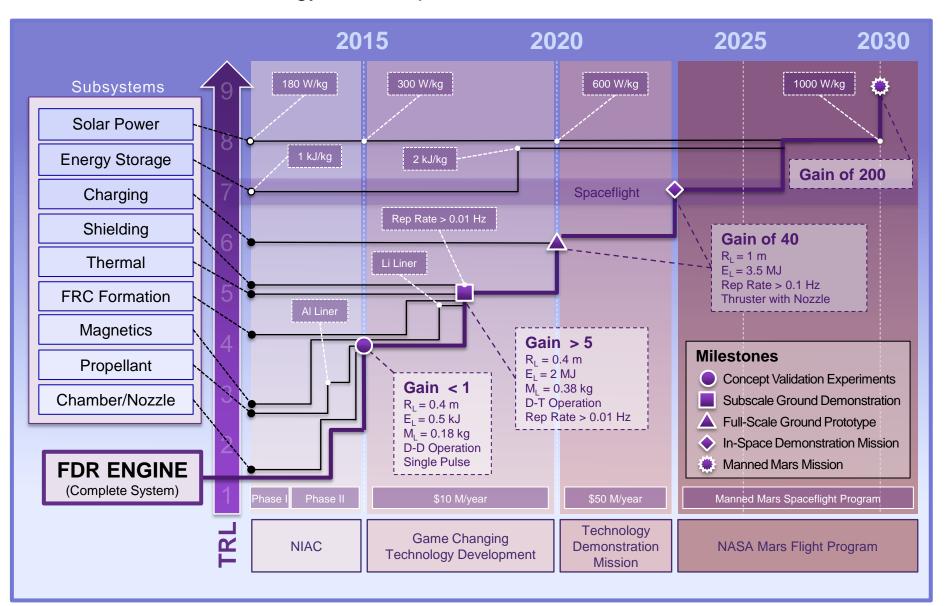
> Mars

- Single launch to Mars (Sortie)
 - Mission refinement
- Long Stay Mission (>500 day)
- Single trip on orbit assembly
 - Larger s/c (fuel launched separate)
- Pre-deploy mission architecture
 - Classic DRA style with pre-curser cargo mission
- Ultra-fast (30 day) transfers

> Jupiter

- Enter and exit gravity well
- Moon mission

> NEO


- Sample return
- Redirection?

- Investigate relevant Mars missions (6 mo)
- Incorporate 1D Compression code results (1 yr)
- NASA assisted high fidelity mission design (1.5 yr)
- DRA report based on FDR (2 yrs)

Technology Roadmap for the Fusion Driven Rocket

