SCANDIUM

(Data in kilograms of scandium oxide content unless otherwise noted)

Domestic Production and Use: Demand for scandium increased slightly in 2004. Although scandium was not mined domestically in 2004, quantities sufficient to meet demand were available in domestic tailings. Principal sources were imports from China, Russia, and Ukraine. Domestic companies with scandium processing capabilities were located in Mead, CO; Urbana, IL; and Knoxville, TN. Capacity to produce ingot and distilled scandium metal was located in Phoenix, AZ; Urbana, IL; and Ames, IA. Scandium used in the United States was essentially derived from foreign sources. Principal uses for scandium in 2004 were aluminum alloys for sporting equipment (baseball and softball bats, bicycle frames, golf clubs, gun frames, lacrosse shafts, and tent poles), metallurgical research, high-intensity metal halide lamps, analytical standards, electronics, oil well tracers, and lasers.

Salient Statistics—United States:

<table>
<thead>
<tr>
<th></th>
<th>2000</th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
<th>2004e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price, yearend, dollars:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Per kilogram, oxide, 99.0% purity</td>
<td>700</td>
<td>700</td>
<td>700</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>Per kilogram, oxide, 99.9% purity</td>
<td>2,000</td>
<td>2,300</td>
<td>2,000</td>
<td>1,300</td>
<td>1,300</td>
</tr>
<tr>
<td>Per kilogram, oxide, 99.99% purity</td>
<td>3,000</td>
<td>2,700</td>
<td>2,500</td>
<td>2,500</td>
<td>2,500</td>
</tr>
<tr>
<td>Per kilogram, oxide, 99.999% purity</td>
<td>6,000</td>
<td>4,100</td>
<td>3,200</td>
<td>3,200</td>
<td>3,200</td>
</tr>
<tr>
<td>Per gram, dendritic, metal</td>
<td>270.00</td>
<td>279.00</td>
<td>178.00</td>
<td>185.00</td>
<td>193.60</td>
</tr>
<tr>
<td>Per gram, metal, ingot</td>
<td>175.00</td>
<td>198.00</td>
<td>198.00</td>
<td>119.00</td>
<td>124.00</td>
</tr>
<tr>
<td>Per gram, scandium bromide, 99.99% purity</td>
<td>91.80</td>
<td>94.60</td>
<td>94.60</td>
<td>98.40</td>
<td>NA</td>
</tr>
<tr>
<td>Per gram, scandium chloride, 99.9% purity</td>
<td>39.60</td>
<td>40.80</td>
<td>40.80</td>
<td>42.40</td>
<td>44.30</td>
</tr>
<tr>
<td>Per gram, scandium fluoride, 99.9% purity</td>
<td>80.10</td>
<td>173.00</td>
<td>173.00</td>
<td>180.00</td>
<td>188.20</td>
</tr>
<tr>
<td>Per gram, scandium iodide, 99.999% purity</td>
<td>151.00</td>
<td>156.00</td>
<td>156.00</td>
<td>162.00</td>
<td>169.00</td>
</tr>
</tbody>
</table>

Net import reliance as a percentage of apparent consumption

100 100 100 100 100

Recycling: None.

Import Sources (2000-03): Not available.

Tariff: Item Number Normal Trade Relations 12-31-04

Mineral substances not elsewhere specified or included:
- Including scandium ores 2530.90.8050 Free.
- Rare-earth metals, scandium and yttrium, whether or not intermixed or interalloyed including scandium 2805.30.0000 5.0% ad val.
- Mixtures of rare-earth oxides except cerium oxide, including scandium oxide mixtures 2846.90.2010 Free.
- Rare-earth compounds, including individual rare-earth oxides, hydroxides, nitrates, and other individual compounds, including scandium oxide 2846.90.8000 3.7% ad val.
- Aluminum alloys, other: Including scandium-aluminum 7601.20.9090 Free.

Depletion Allowance: 14% (Domestic and foreign).

Government Stockpile: None.

Events, Trends, and Issues: Nominal prices for domestically produced scandium compounds decreased from the previous year. The supply of domestic and foreign scandium remained strong despite increased demand. Although demand increased in 2004, the total market remained very small. Domestic increases in demand were primarily from recently developed applications in welding wire, scandium-aluminum baseball and softball bats, scandium-aluminum bicycle frames, and high-strength, lightweight handgun frames and cylinders. New demand is expected to come from future fuel-cell markets and aerospace applications.

Prepared by James B. Hedrick, [(703) 648-7725, jhedrick@usgs.gov, fax: (703) 648-7757]
Scandium’s use continued to increase in metal halide lighting. Scandium, as the metal or the iodide, mixed with other elements, was added to halide light bulbs to adjust the color to simulate natural sunlight. Demand also continued to increase for scandium-aluminum alloys. Future development of alloys for aerospace and specialty markets, including sports equipment, is expected. Scandium’s availability from Kazakhstan, Russia, and Ukraine increased substantially in 1992, after export controls were relaxed, and sales continue to provide the Western World with most of its scandium alloys, compounds, and metal. China also continued to supply scandium compounds and metal to the U.S. market.

World Mine Production, Reserves, and Reserve Base: Scandium was produced as a byproduct material in China, Kazakhstan, Russia, and Ukraine. Foreign mine production data were not available. No scandium was mined in the United States in 2004. Scandium occurs in many ores in trace amounts, but has not been found in sufficient quantities to be considered as a reserve or reserve base. As a result of its low concentration, scandium has been produced exclusively as a byproduct during processing of various ores or recovered from previously processed tailings or residues.

World Resources: Resources of scandium are abundant, especially when considered in relation to actual and potential demand. Scandium is rarely concentrated in nature due to its lack of affinity to combine with the common ore-forming anions. It is widely dispersed in the lithosphere and forms solid solutions in more than 100 minerals. In the Earth’s crust, scandium is primarily a trace constituent of ferromagnesium minerals. Concentrations in these minerals (amphibole-hornblende, biotite, and pyroxene) typically range from 5 to 100 parts per million equivalent Sc₂O₃. Ferromagnesium minerals commonly occur in the igneous rocks, basalt and gabbro. Enrichment of scandium also occurs in aluminum phosphate minerals, beryl, cassiterite, columbite, garnet, muscovite, rare-earth minerals, and wolframite. Recent domestic production has primarily been from the scandium-yttrium silicate mineral, thortveitite, and from byproduct leach solutions from uranium operations. One of the principal domestic scandium resources is the fluorite tailings from the mined-out Crystal Mountain deposit near Darby, MT. Tailings from the mined-out fluvial operations, which were generated from 1952 to 1971, contain thortveitite and associated scandium-enriched minerals. Resources also are contained in the tantalum residues previously processed at Muskogee, OK. Smaller resources are associated with molybdenum, titanium-tungsten, and tungsten minerals from the Climax molybdenum deposit in Colorado and in crandallite, kolbeckite, and varisite at Fairfield, UT. Other lower grade domestic resources are present in ores of aluminum, cobalt, iron, molybdenum, nickel, phosphate, tantalum, tin, titanium, tungsten, zinc, and zirconium. Process residues from tungsten operations in the United States also contain significant amounts of scandium.

Foreign resources are known in Australia, China, Kazakhstan, Madagascar, Norway, Russia, and Ukraine. Resources in Australia are contained in nickel and cobalt deposits in Seyerston and Lake Innes, New South Wales. China’s resources are in iron, tin, and tungsten deposits in Fujian, Guangdong, Guangxi, Jiangxi, and Zhejian Provinces. Resources in Russia and Kazakhstan are in the Kola Peninsula apatites and in uranium-bearing deposits, respectively. Scandium in Madagascar is contained in pegmatites in the Befanomo area. Resources in Norway are dispersed in the thortveitite-rich pegmatites of the Iveland-Evje Region and a deposit in the northern area of Finnmark. In Ukraine, scandium is recovered as a byproduct of iron ore processing at Zheltye Voda. An occurrence of the mineral thortveitite is reported from Kobe, Japan. Undiscovered scandium resources are thought to be very large.

Substitutes: In applications, such as lighting and lasers, scandium is generally not subject to substitution. In metallurgical applications, titanium and aluminum high-strength alloys and carbon fiber may substitute in sporting goods, especially bicycle frames.

*Estimated. NA Not available.
1See also Rare Earths.
2Scandium pieces, 99.9% purity, distilled dendritic, 2000-04 prices converted from 0.5-gram price, from Alfa Aesar, a Johnson Matthey company.
4Bromide, chloride, and fluoride in crystalline or crystalline aggregate form and scandium iodide as ultradry powder from Alfa Aesar, a Johnson Matthey company.
5Defined as imports – exports + adjustments for Government and industry stock changes.
6See Appendix C for definitions.