

Finding the Areas of Irregular Shapes

What is the area covered by this irregular figure? For this kind of problem, divide the irregular area into several regular shapes. Find each area separately, then add the areas together.

This figure could be divided several different ways.

20' 20' 10'

The left rectangle is $20' \times 10'$.

The right rectangle is $20' \times 10'$.

$$A = Iw$$

$$A = 20 \times 10$$

$$A = 200 \text{ ft}^2$$

The second rectangle has the same dimensions and the same area as the first one, so the total area is $200 \times 2 = 400 \text{ ft}^2$.

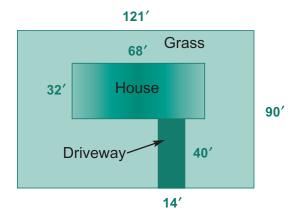
The top rectangle is $30' \times 10'$.

The bottom rectangle is $10' \times 10'$.

$$A = Iw$$

$$A = Iw$$

$$A = 30 \times 10$$


$$A = 10 \times 10$$

$$A = 300 \text{ ft}^2$$

$$A = 100 \text{ ft}^2$$

Add the totals of the two rectangles.

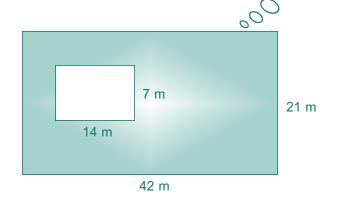
$$300 + 100 = 400 \text{ ft}^2$$

Macorkel Construction built a house with a driveway on a quarter-acre lot, and seeded the rest with grass. How many square feet had to be seeded?

For this problem, find the area of the house plus the driveway. Then subtract that amount from the area of the lot.

Area of House	Area of Driveway	Area of Irregular part	Area of Lot	Seeded Part
A = Iw	A = Iw	2,176	A = Iw	10,890
A = 68 × 32	A = 40 × 14	+ 560 2,736	A = 121 × 90	$\frac{-2,736}{8,154}$
A = 2,176	A = 560		A = 10,890	•

The area to be seeded is 8,154 ft².


Subtract the area of the white rectangle from the area of the larger rectangle.

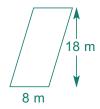
22 mm

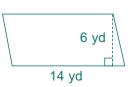
44 mm

11
mm

Find the areas. Show your work.

1. a. _____


b. area of shaded part _____



Check using digit sums. Put an x after each wrong product.

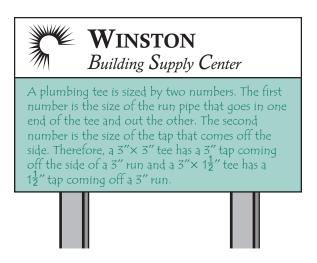
 $\stackrel{\textstyle \sim}{\sim}$ If a product in either problem above is wrong, check each partial product and x the wrong ones.

Use the formula to find the area of each parallelogram.

Combine integers.

4. a.
$$-15 + (-6) =$$
 b. $-8 + (-9) =$ **c.** $9 + (-8) =$

b.
$$-8 + (-9) =$$


Mastery Drill —

- **6.** The formula for finding the area of a rectangle is ______.
- 7. The formula for finding the area of a trapezoid is _______.
- 8. The formula for finding the circumference of a circle is ______.
- **9. a.** A quadrilateral has _____ sides.
- **b.** 1 yard³ = _____ feet³
- **10.** a. The fraction we use for π is ______. b. The decimal we use for π is _____.

Complete the tally chart.

After completing the rough plumbing on an addition that included a kitchen and a half bath, Melvin listed the following plumbing fittings he had used. Tally them for him.

3" 90	½″ 90	$1\frac{1}{2}''$ 90
3" coupling	3″ 90	$1\frac{1}{2}''$ 90
3" 90	3" bowl flange	$1\frac{1}{2}''$ 90
3" × 3" tee	$1\frac{1}{2}''$ 90	$1\frac{1}{2}''$ 45
3" 90	$1\frac{1}{2}''$ 90	$1\frac{1}{2}''$ 45
3" 90	½″ 90	$3'' \times 1\frac{1}{2}''$ tee
½″ 90	1/2 " 90	3″ 90
$\frac{1}{2}$ " 90 $\frac{1}{2}$ " tee	$1\frac{1}{2}''$ tee	$1\frac{1}{2}''$ 90
$\frac{1}{2}$ " tee	$1\frac{1}{2}''$ 45	½″ 90
3" × 3" tee	$1\frac{1}{2}''$ 90	½" 90
$3'' \times 1\frac{1}{2}''$ tee	$1\frac{1}{2}''$ tee	½" 90
$\frac{1}{2}$ " tee $\frac{1}{2}$ " 90	$\frac{1}{2}$ " tee	$\frac{1}{2}$ " tee $\frac{1}{2}$ " tee
½″ 90	½″ 90	$\frac{1}{2}$ " tee

11.	Type of fitting	Tally	Total
	3″ 90		
	3" coupling		
	3" × 3" tee		
	½″ 90		
	$\frac{1}{2}$ " tee		
	$3'' \times 1\frac{1}{2}''$ tee		
	3" bowl flange		
	1 ¹ / ₂ " 90		
	$1\frac{1}{2}''$ tee		
	1 <u>1</u> ″ 45		

Solve, using proportions if needed. Write any remainder as a fraction in simplest form.

Write the remainder with R.

Round to the nearest hundredth.

Change the mixed number percents to decimal percents, then to decimals.

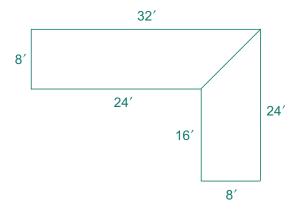
14. a.
$$6\frac{3}{10}\% = \underline{} = \underline{}$$

b.
$$12\frac{3}{5}\% = \underline{} = \underline{}$$

Solve.

15. What is
$$6\frac{3}{10}\%$$
 of 240? _____

Solve and check. Follow the example shown.



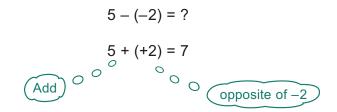
16. a.
$$\frac{X}{11} = 2$$

c.
$$\frac{x}{4} = 8$$

Lessons 12, 13

After Macorkel Construction replaced the roof on a wraparound porch, the customer decided to have them replace the floor boards as well. What is the square footage of the porch floor plan?

Melvin needed to prime and paint the floor. Primer covers 300 square feet per gallon and paint covers 400 square feet per gallon. What quantities of primer and paint should he buy? Round up to the next gallon. ______ primer _____ paint



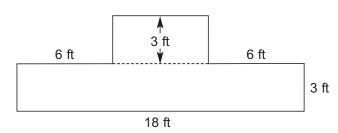
Subtracting Negative Integers

In your early school years, you memorized the subtraction facts such as 8-2=6 and 9-7=2. However, you subtracted only positive, not negative, numbers. How can you subtract a negative number in a problem such as 5-(-2)=? The solution lies in thinking about subtraction in a different way. Look at the following two problems:

$$7 - 3 = 4$$
 $7 + (-3) = 4$

Both problems give us the same answer. This shows us that instead of thinking *subtract* when we see a minus sign, we can think *add* the *opposite*.

In this way we can find the difference between any positive and negative numbers:

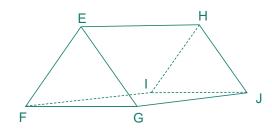

Subtraction: 8 – (+3) = ?	Subtraction: $-8 - (+3) = ?$	
Add the opposite: $8 + (-3) = _{5}$	Add the opposite: $-8 + (-3) = -11$	
Subtraction: $8 - (-3) = ?$	Subtraction: $-8 - (-3) = ?$	
Add the opposite: 8 + (+3) = <u>11</u>	Add the opposite: $-8 + (+3) = -5$	

Change each subtraction to adding the opposite. Then combine integers as usual. The first one shows you how.

We Remember —

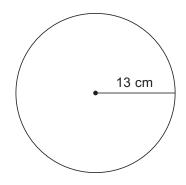
Find the area of the irregular shape.

3. _____



4. On one remodeling project, Macorkel Construction worked $182\frac{1}{2}$ hours. Their labor rate is \$42.00 per hour. What was the cost of their labor? Check your answer using digit sums.

Tell whether each part is a face, an edge, or a vertex.


- **5.** a. QR _____
- **b**. M _____
- 6. a. KLPO _____
- **b**. FGJI _____

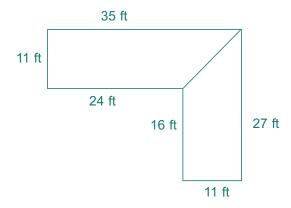
Use the formula to find the area of the circle. Use 3.14 for π .

7. _____

— Mastery $oldsymbol{D}$ rill -

- **8.** The abbreviation for greatest common factor is ______.
- **9. a.** A half circle has ______°.

- **b.** A circle has _____°.
- **10.** a. The decimal for $\frac{3}{4}$ is _____.
- **b.** The decimal for $\frac{1}{4}$ is _____.
- **11. a.** 1 cup = _____ fluid ounces
- **b.** 1 fluid ounce = _____ tablespoons
- **12.** a. $\sqrt{169} =$ _____ b. $\sqrt{121} =$ _____ c. $12^2 =$ _____ d. $14^2 =$ _____


- **13. a.** *Deci* means ______. **b.** *Kilo* means _____. **c.** *Milli* means _____.

14. The Shuey twins helped their youth group pick up 20 bushels of dropped apples at a local orchard. The orchard donated the apples to a children's home. The dropped apples had about the same value as 12 bushels of top quality apples. If the orchard sells top quality apples at \$14.50 per bushel, what was the donated value of the apples? _____

15. Macorkel Construction removed a rusted metal porch roof and replaced it with shingles. The porch wraps around the corner of the house, making the roof surface the shape of two trapezoids. How many square feet of shingles were needed for the porch roof? ___

☆ 16. If each square of shingles covers 100 square feet, how many squares of shingles did Macorkel Construction need to purchase to finish the roof job? Give your answer in the nearest whole square.

Find the prime factors and the GCF of each pair of numbers.

- **17**. **a**. Factors of 60 = _____
 - **b.** Factors of 84 = _____
 - **c**. GCF = _____
- **18. a.** Factors of 99 = _____
 - **b.** Factors of 132 = _____
 - **c.** GCF = _____

Simplify the expressions.

19. a.
$$4x + 9x - 6x + x$$

b.
$$3x + 8 - 6 - 2x$$

$\stackrel{\wedge}{\succsim}$ Solve the logic problem.

Four men with different occupations drive trucks of different colors. Using the clues, fill in the chart to find out which occupation each man has and what color of truck each drives.

Name	Occupation	Truck Color
Wayne	Farmer	Black
Bruce	Janitor	White
Paul	Banker	Blue
Jacob	Electrician	Gray

20.	Name		
	Occupation		
	Color of truck		

Clues.

- a. The driver of the white truck hired the driver of the gray truck to replace the wiring in his milking parlor.
- b. Wayne works for a school and Jacob wears a suit to work.
- c. Paul's truck is the opposite color of the banker's truck.

— + x Skill Builders —

Figure out the patterns and fill in the missing numbers.

$$12 \cdot 9 + 3 = 111$$

$$1,234 \cdot 9 + 5 = 11,111$$

b.
$$1,089 \cdot 1 = 1,089$$

$$1,089 \cdot 2 = 2,178$$

$$1,089 \cdot 3 = 3,267$$

$$1,089 \cdot 5 = 5,445$$

$$1.089 \cdot 6 = 6.534$$

$$1,089 \cdot 8 = 8,712$$

$$1.089 \cdot 9 = 9.801$$

Substitute 8 for n. Simplify the expressions.

23. a.
$$\frac{64}{n}$$

Change each subtraction to adding the opposite. Combine integers as usual.

b.
$$-8 - (+19)$$

c.
$$-8 - (-9)$$