Negative Exponents as Fractions

A number with a negative exponent represents a fraction or decimal. The numerator is 1 and the denominator is the same base but with a positive exponent. Notice the patterns in these examples.

$$2^4 = 2 \times 2 \times 2 \times 2 = 16$$

$$2^3 = 2 \times 2 \times 2 = 8$$

$$2^2 = 2 \times 2 = 4$$

$$2^1 = 2$$

$$2^0 = 1$$

$$2^{-1} = \frac{1}{2^1} = \frac{1}{2}$$

$$2^{-2} = \frac{1}{2^2} = \frac{1}{2 \times 2} = \frac{1}{4}$$

$$2^{-3} = \frac{1}{2^3} = \frac{1}{2 \times 2 \times 2} = \frac{1}{8}$$

$$2^{-4} = \frac{1}{2^4} = \frac{1}{2 \times 2 \times 2 \times 2} = \frac{1}{16}$$

$$10^4 = 10 \times 10 \times 10 \times 10 = 10,000$$

$$10^3 = 10 \times 10 \times 10 = 1,000$$

$$10^2 = 10 \times 10 = 100$$

$$10^1 = 10$$

$$10^0 = 1$$

$$10^{-1} = \frac{1}{10^1} = \frac{1}{10}$$

$$10^{-2} = \frac{1}{10^2} = \frac{1}{10 \times 10} = \frac{1}{100}$$

$$10^{-3} = \frac{1}{10^3} = \frac{1}{10 \times 10 \times 10} = \frac{1}{1,000}$$

$$10^{-4} = \frac{1}{10^4} = \frac{1}{10 \times 10 \times 10 \times 10} = \frac{1}{10,000}$$

What patterns can you see?

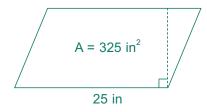
Do you see that with powers of two, each number is two times the number below it even when we move into negative exponents? Did you notice that with powers of ten, each number is ten times the number below it?

Notice that 2^4 is 16, but 2^{-4} is $\frac{1}{16}$. Notice that same type of pattern for each positive exponent and its opposite negative exponent.

Write the products first with an exponent in the denominator, then as a common fraction. The first one shows you how.

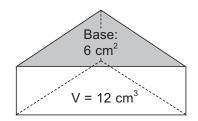
1. a.
$$3^{-3} = \frac{1}{3^3} = \frac{1}{27}$$

b.
$$2^{-5} =$$
 _____ = ___ = ___ = ___ = ___ = ___


2. a.
$$7^{-2} =$$
 b. $10^{-4} =$ **c.** $9^{-2} =$ **...**

3. a.
$$5^{-3} =$$
 _____ = ____ = ___ = ____ = ____ = ____ = ____ = ____ = ____ = ____ = ____ = ____ = ____ = ____ = ____ = _____ =

4. a.
$$10^{-1} =$$
 _____ = ____ = ____ = ____ = ____ = ____ = ____ = ____ = ____ = ____ = ____ = ____ = ____ = _____



Use the formula to find the height of the parallelogram.

5. The height is __

Use the volume formula to find the height of the triangular prism.

6. The height is _____

Write the products.

7. a.
$$10^{0} =$$
 _____ **b.** $10^{1} =$ _____ **c.** $53^{0} =$ _____ **d.** $72^{1} =$ _____

c.
$$53^0 =$$

d.
$$72^1 =$$

Solve. Use proportions if necessary.

8. What is
$$\frac{5}{6}$$
 of 24? _____

9. 6 is
$$\frac{3}{8}$$
 of what number? _____

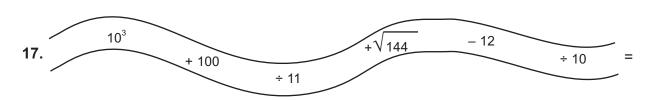
10. 22 is what fraction of 33? _____

Write the quotients.

11. a.
$$-56 \div 7 =$$
 b. $\frac{17}{-16} =$

b.
$$\frac{17}{-16} =$$

- 12. Elmer Lapp's cattle feed expenses were $87\frac{1}{2}\%$ of all his farm expenses. If his farm expenses totaled \$7,200, how much went for cattle feed? Change the percent to its fractional equivalent to solve the problem. _
- 13. A gift edition of a classic children's book costs \$49.50. If you purchase the book on the installment plan, the finance charge is \$10.50. What percent of the original price is the finance charge? Round your answer to the nearest tenth of a percent. ___


14. Mary saw a collectible china plate advertised for \$39.99. The advertisement offered to let the buyer have the plate for only \$12.99 down, and four monthly payments of \$9.25.

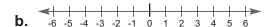
- **a.** What is the cost of the plate on the installment plan?
- **b.** What is the finance charge on this plan? _

Would it be a wise use of money to start such a collection on the installment plan? What else could be done with the money that goes for the finance charge?

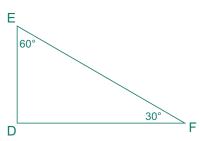
List the prime factors using exponents if possible.

- ?... $M_{\it ental}$ $M_{\it ath}$

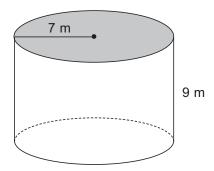
Write the remainder with R.


18. a.
$$\frac{4}{5} \times \frac{7}{12} \times \frac{5}{7} =$$
 b. $\times \frac{2.5}{12}$

b.
$$\frac{642}{\times 2.5}$$


Solve each inequality. Graph the solutions.

19. a.
$$n - 13 \le -3$$


20. a.
$$x + 1 < 0$$

Solve for the unknown angle measure.

Use the formula to find the volume of the cylinder.

- 23. A reflex angle measures between _____° and _____°.
- 24. Any number (except 0) with an exponent of _____ equals 1.
- 25. Any number with an exponent of _____ equals the number itself.
- **26.** The formula for finding the area of a triangle is ______.
- **27. a.** 1 mile ≈ _____ kilometers

- **b.** 1 kilometer ≈ ____ mile
- **28.** a. The fraction for $0.\overline{3}$ is _____.
- **b.** The fraction for $0.1\overline{6}$ is _____.
- **29.** a. The fraction for $0.8\overline{3}$ is _____.
- **b.** The fraction for $0.\overline{6}$ is _____.

Solve. Round to the nearest cent.

- **30.** Original price of \$11.49 with decrease of 25%.
 - a. Amount of decrease:
 - b. New price:
- **31.** 82% more than \$55 = _____

Solve and check.

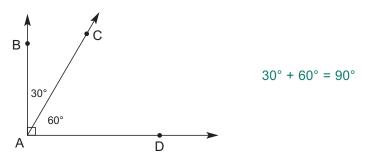
 \checkmark

 \checkmark

32. a.
$$12 + \frac{y}{6} = 24$$

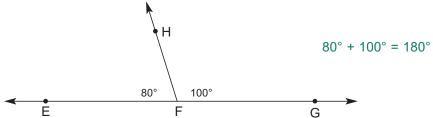
b.

c.
$$10 = \frac{y}{6} + 8$$


d.

Write the products first with an exponent in the denominator, then as a common fraction.

Complementary and Supplementary Angles

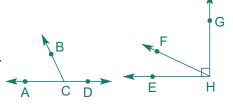

Complementary angles are two angles whose sum equals 90° . $\angle BAC$ and $\angle CAD$ are complementary angles.

The words: "The measure of angle BAC plus the measure of angle CAD equals 90°."

The symbols: $m\angle BAC + m\angle CAD = 90^{\circ}$

Supplementary angles are two angles whose sum equals 180°. \angle HFE and \angle HFG are supplementary angles.

The words: "The measure of angle HFE plus the measure of angle HFG equals 180°."


The symbols: $m\angle HFE + m\angle HFG = 180^{\circ}$

Write the answers.

- 1. The sum of the measures of complementary angles equals _____°.
- 2. The sum of the measures of supplementary angles equals _____°.

Name the angles.

- 3. Name the complementary angles. _____ and ____
- 4. Name the supplementary angles. _____ and ____

Write complementary and supplementary.

5. _____ angles are two angles whose measures equal 180°.

6. _____ angles are two angles whose measures equal 90°.

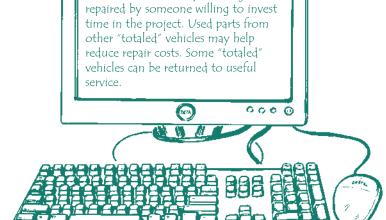
Write complementary and supplementary.

- 7. \angle QTR and \angle RTS are _____angles.
- 8. ∠UXV and ∠VXW are _____angles.

Write the products first with an exponent in the denominator, then as a common fraction.

9. a.
$$2^{-4} =$$
 ____ = ____ = ____ = ____ = ____ = ____ = ____ = ____ = ____ = ____ = ____ = ____ = ____ = ____ = ____

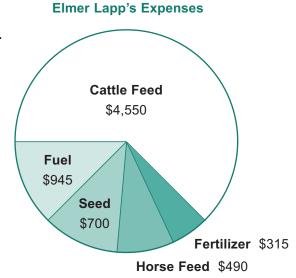
Find the total cost.


10. \$16.60 with 8% sales tax = _____

Use the circumference formula to find the diameter of the circle. Use 3.14 for pi.

C = 15.7 m

11. The diameter is ______.


A damaged vehicle is "totaled" if the cost of repairing it exceeds the value of the vehicle itself. However, some "totaled" vehicles may be bought and

Convert.

Victor gathered information from Elmer Lapp, one of his farming clients. The graph shows Elmer's expenses for the last quarter of the year.

Find the percent for each sector of the circle graph. The answers for numbers 16 and 18 will be fraction percents.

- **13.** Mr. Lapp's total expenses for the last quarter were _____.
- **14.** Cattle feed was _____ % of the total.
- **15.** Horse feed was _____ % of the total.
- **16.** Fuel was _____ % of the total.
- **17.** Seed was _____ % of the total.
- **18.** Fertilizer was _____ % of the total.

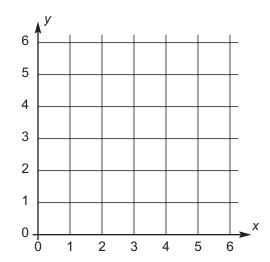
deer on an icy road and rolled the vehicle. He is thinking about buying a similar used van for \$7,500, but he has only \$4,500 available to spend. Louis plans to make a down payment of \$4,500 and pay the rest on 36 monthly payments of \$145.00.

0

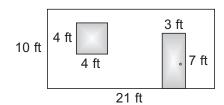
000

- a. How much will the minivan cost on the installment plan?
- **b.** How much will the finance charge be? _____

— + x Skill Builders —


Write the repeating decimal with a bar.

20. a. 7)2 4 hr 3 7 min × 567


c. 27)84

Plot and label each point on the graph.

- **21. a.** A (1, 2)
- **b.** B (5, 4)
- **22.** a. C (3, 6)
- **b.** D (6, 4)
- **23**. **a**. E (0, 5)
- **b.** F (4, 1)
- **24.** a. G (3, 4)
- **b.** H (2, 0)

The diagram shows a wall that Dawn wants to re-paper. Find the number of square feet to be papered, excluding the door and the window.

25. __

Write the percents as decimals.

Find the total income.

27. A salesman receives a salary of \$2,166 per month plus 6% commission on sales of \$8,560.

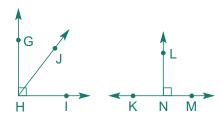
- **28.** The less than or equal to symbol is _____.
- **29.** Any number (except 0) with an exponent of _____ equals 1.
- **30.** Any number with an exponent of _____ equals the number itself.
- **31.** The formula for finding the volume of a cylinder is ______.
- **32.** The four angles made by two intersecting lines measure a total of ______°.
- **33.** The formula for finding the volume of a rectangular prism is ______.
- **34.** The formula for finding the perimeter of a rectangle or parallelogram is ______.
- **35. a.** *Centi* means ______. **b.** *Deci* means _____. **c.** *Kilo* means _____.

Change to fractions.

Simplify, solve, and check.

$$\checkmark$$

37. a.
$$6n + 15 \div 3 = 6 \times 7 + 5$$


b.

Write complementary and supplementary.

- 38. _____ angles are two angles whose measures equal 90°.
- **39.** _____ angles are two angles whose measures equal 180°.

Name the angles.

- **40.** Name the complementary angles. _____ and ____
- 41. Name the supplementary angles. _____ and ____

