Math 708

Mathematics in Teaching

Math 708 takes us into the classroom of Eva Reimer. Eva teaches grades 4 through 7 at Gruenfeld Christian School. She has seven boys and eleven girls in her classroom. Among Eva's students is Nancy Friesen, a Down syndrome child who spends her afternoons in Eva's classroom. Eva's co-teachers, Mary Bergen and Henry Klassen, teach the twenty-nine students in the other grades.

This is Eva's fourth year in the classroom. She boards with the John Dyck family because her home is 95 kilometers from school. Eva is an avid reader, and she enjoys teaching her students about the wonders of God's Creation. Although she has always known the Canadian prairies as home, Eva is interested in other parts of the world, such as Europe and Mexico where her Mennonite ancestors once lived.

Besides teaching mathematics to her students, Eva uses math in many other aspects of her work. Learn along with her as you work through this LightUnit. God may some day call you to be a teacher too.

Introduce the LightUnit

Hand each student LightUnit 708. Read page 1 and discuss the theme of this LightUnit. The theme appears in story problems and in the blackboard illustrations throughout the LightUnit.

Lesson 1 pp. 2-6

Multiplying Variables With Exponents

Lesson Preparation

- LightUnit 708 for each student

Working in the LightUnit

What's New?

\rightarrow Multiplying Variables With Exponents. Whenever we multiply a variable by itself, we simply write the variable as a base, then write the exponent which shows how many times the base is a factor. For example, $n \cdot n=n^{2}$, and $n \cdot n \cdot n=n^{3}$. But when multiplying several like variables that already have exponents, we add the exponents together to simplify the expression. For example, $n^{2} \cdot n^{3}$ means $(n \cdot n) \cdot(n \cdot n \cdot n)$, or n^{5}. Instead of writing out the full solution to multiply variables with exponents, just mentally add the exponents and keep the base. Think: $n^{(2+3)}=n^{5}$

Lesson 1

Simplify the expressions. Watch the signs!

1. a. $x \cdot x \cdot x \cdot x$
x^{4}
b. $x+x+x+x$ $4 x$
c. $y^{2} \cdot y^{2} \cdot y$
y^{5}
d. $2 a+3 a+a$
6a
2. a. $s \cdot s^{3} \cdot s$
s^{5}
b. $b^{2} \cdot b$
b^{3}
c. $z+z$
$2 z$
d. $c \cdot c$
c^{2}

We Remember

Convert. Round to the nearest whole.

3. $75 \mathrm{~m} \approx$ \qquad yd 3. $\begin{aligned} & \frac{1 \mathrm{~m}}{1.1 \mathrm{yd}}=\frac{75 \mathrm{~m}}{n \mathrm{yd}} \\ & 1.1 \times 75 \div 1 \approx 83\end{aligned} \begin{array}{r}75 \\ \times 1.1 \\ \end{array} \begin{aligned} & \frac{750}{82.5} \approx 83\end{aligned}$
4. $\frac{1 \mathrm{~m}}{1.1 \mathrm{yd}}=\frac{n \mathrm{~m}}{115 \mathrm{yd}}$
5. $115 \mathrm{yd} \approx 105 \mathrm{~m}$
6. $12 \mathrm{~cm} \approx 5$ in 6. $1 \mathrm{~kg} \approx 95 \mathrm{~kg}$

7. $\frac{1 \mathrm{~kg}}{2.2 \mathrm{lb}} \approx \frac{95 \mathrm{~kg}}{n \mathrm{lb}}$

$$
2.2 \times 95 \div 1 \approx 209
$$

95
$\times 2.2$
190
1900
209.0

A number or variable with no exponent is the same as a number or variable with an exponent of $1.10=10^{1}$, and $n=n^{1}$. Therefore, $n \cdot n^{2}=n^{3}$.

Tips for Struggling Students

\rightarrow Make sure students understand that adding variables and multiplying variables are not the same thing. For example, $n+n+n=3 n$, but $n \cdot n \cdot n=n^{3}$.

Board Work

\rightarrow Simplify the expressions. Watch the signs!

1. a. $y \cdot y \cdot y \cdot y$
y^{4}
b. $3 b+b$
4b
c. $g^{2} \cdot g^{5}$
g^{7}
c. $7 j+4 j$

Lesson 1

F
11. Eva needs to calculate the total cost for the school trip to the zoo for her 18 students, herself, and 4 additional adult chaperones. Transportation will cost $\$ 102$. Zoo admission tickets cost $\$ 6.75$ for each adult and $\$ 4.50$ for each student. What will be the total cost for the trip? \qquad $\$ 216.75$ \qquad

	$\$ 4.50$
$\times \quad 18$	
$\$ 6.75$	3600
$\times \quad 5$	$\underline{4500}$
$\$ 33.75$	$\$ 81.00$
$\$ 33.75$	$\$ 114.75$
+81.00	+102.00
$\$ 114.75$	$\$ 216.75$

Use the formula to find the volume of the cylinder.

Find the surface area of the rectangular prism.
13. \qquad

Top \& Bottom	Front \& Back	2 Sides	12
$A=I w$	$A=I w$	$A=I w$	12
$A=4 \times 3$	$A=9 \times 4$	$A=9 \times 3$	36
$A=12$	$A=36$	$A=27$	27
Solutions may vary.		$+\frac{27}{150}$	

You have learned that the surface area of a solid is the sum of all its faces.

To find the surface area of a cube that is 10 cm by 10 cm by 10 cm :

$10 \times 10=100 \mathrm{~cm}^{2}$ (area of one face)
100×6 faces $=600 \mathrm{~cm}^{2}$
Surface is measured in square units.
Volume is the number of cubic units a solid holds inside its faces. This box can hold 1,000 cubic centimeters. $10 \times 10 \times 10=1,000 \mathrm{~cm}^{3}$
Volume is measured in cubic units.

4

Teacher Notes:
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

- Mastery Drill

14. The middle number in an ordered list is the __median_.
15. A reflex angle measures between 180 응 ${ }^{\circ}$.
16. An acute angle measures between $0 \quad{ }^{\circ}$ and $90{ }^{\circ}$.
17. The number that occurs most often in a list is the mode
18. The formula for finding the area of a triangle is $A=\frac{1}{2} b h$
19. a. 1 gallon ≈ 3.8 liters
b. 1 kilogram ≈ 2.2 pounds
20. a. Another name for average is ___ mean
b. A straight angle measures 180 .
21. a. $2^{3}=$
b. $\frac{1}{8}=12^{\frac{1}{2}} \%$
c. $\sqrt{225}=15$
d. $5^{3}=125$

Use the perimeter formula to find the width of the rectangle.

22. The width is $\quad 7 \mathrm{~m}$.

$$
\begin{aligned}
P & =2 l+2 w \\
30 & =2 \times 8+2 w \\
30 & =16+2 w \\
\frac{-16}{\frac{14}{2}} & =\frac{2 w}{2} \\
7 & =w
\end{aligned}
$$

Match each kind of triangle with its definition.

23. b equiangular triangle
a. two congruent sides
24. _g_ right triangle
b. three congruent angles
25. f acute triangle
c. three congruent sides
26. d obtuse triangle
d. one obtuse angle
27. C equilateral triangle
e. no congruent sides
28. \quad a isosceles triangle
f. three acute angles
29. e scalene triangle
g. one 90° angle

Teacher Notes:

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Math 708, Lesson 1

Lesson 1

\qquad

$$
+_{\div}^{-} \mathbf{X} \text { Skill Builders }
$$

Write the repeating

 decimal with a bar.30. a. $16=\frac{x}{5}+13$

-13	
3	$=\frac{x}{5}-13$
$3 \cdot 5$	$=\frac{x}{5} \cdot 5$
15	$=x$

b. $16+6 \cdot 4=5 n+8 \div 2 \cdot 5$
$16+24=5 n+4 \cdot 5$ $40=5 n+20$
c. $4.2 \begin{array}{r}1.33 \\ \sqrt{500} \\ \frac{42}{140} \\ \frac{126}{140} \\ 126 \\ 14\end{array}$

Translate the sentences into equations using n as the variable.
31. The quotient of a number and twenty-five is six.
32. Twelve more than a number is sixteen. \qquad $n+12=16$
33. The difference between a number and nine is sixteen. \qquad
34. Twice a number is twenty-four. \qquad $2 n=24$

Solve. Then graph the solution.
35. a. $x-2=-4$

$+2+2$
$x=-2$
36. a. $x+9 \leq 9$

$$
\frac{-9-9}{x \leq 0}
$$

Round to the nearest $\mathbf{1 0}$ to estimate. Then copy and solve.

Simplify the expressions. Watch the signs!
38. a. $x \cdot x^{3} \cdot x \cdot x^{2}$
x^{7}
b. $6 x+2 x+x$
$9 x$
c. $e \cdot e^{3}$
e^{4}

6

Teacher Notes:

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Symbols for Perpendicular and Parallel;
 Constructing Parallel Lines

Lesson Preparation

- Make sure each student has compasses and a straightedge for constructing parallel lines.
- Study the method used to construct parallel lines in this lesson, and be prepared to teach this method step-by-step to your students.

Lesson 2

Match the points of the compass with A and C . With the compass point on D , make an arc to cross your previous arc. Label the point of intersection B.

Draw a line through A and B using the straightedge.

The words: Line $A B$ is parallel to line CD.
The symbols: $\overleftrightarrow{A B}|\mid \overleftrightarrow{C D}$

Use a compass and a straightedge to construct $\overleftrightarrow{E F}|\mid \overleftrightarrow{G H}$.

Use a compass and a straightedge to construct $\overleftrightarrow{I J}|\mid \overleftrightarrow{K L}$.

Simplify the expressions.
3. a. $x \cdot x$
b. $x+x$
$2 x$
c. $x^{2} \cdot x$
x^{3}
d. $2 x+x$
$3 x$

8

Working in the LightUnit

What's New?

\rightarrow Symbols for Perpendicular and Parallel. No doubt students will remember the definitions of perpendicular and parallel. Lines and segments are parallel to each other if they never intersect. The symbol for is parallel to is $\|$. Lines and segments are perpendicular to each other if they intersect at right angles to each other. The symbol for is perpendicular to is \perp.
\rightarrow Constructing Parallel Lines. Have your students watch as you demonstrate the use of the compass and straightedge to construct parallel lines. Or have them stand behind you at a table as you follow the steps in the LightUnit.

Lesson 2

\qquad $+{ }_{\div-} \mathbf{X}$ Skill Builders

Annex 0's to complete
\checkmark
4. a. $7 \longdiv { 1 1 ^ { \prime } } \quad 4 \frac { 1 } { 7 ^ { \prime \prime } }$
7_{9}

$\frac{7}{2 \times 12}$$\quad$| 29 |
| ---: |
| 28 |
| 2 |

b.

9 lb	8 oz
\times	7
63 lb	$56 \mathrm{oz}=$
66 lb	8 oz

c. $6 2 . 5 \longdiv { 6 5 . 0 0 0 }$ 625 2500 2500

Find the area. Show your work.

A	$=s^{2}$	$A=1 w$
A	$=5 \times 5$	$A=15 \times 5$
A	$=25$	$A=75$
		+75
	Solutions may vary.	

5. \qquad Solutions may vary.

Write the products or quotients.

6. a. $56 \div(-8)=-7$
b. $\frac{-36}{9}=-4$
c. $4 \longdiv { - 1 1 }$
7. a. $-\frac{1}{6} \times \frac{1}{5}=-\frac{1}{30}$
b. $6 \times(-3)=-18$
c. $-12 \times(-6)=72$

Solve the logic problem.

Kathryn and several classmates are practicing with a balance scale during free time at school. While weighing some of their school supplies they notice the following:

- the weight of 3 rulers +1 glue stick $=$ the weight of 12 new pencils
- the weight of 1 glue stick $=$ the weight of 1 ruler +8 new pencils

Now they are wondering how many pencils would equal the weight of a glue stick. Can you help them out?
8. 9 pencils $=$ the weight of one glue stick.

Solution: Since 1 glue stick is equal to the weight of 1 ruler +8 pencils, substitute one glue stick in the first equation with 1 ruler +8 pencils.
Solve algebraically as shown. Since rulers and pencils are of equal weight, a glue stick equals 9 pencils.

3 rulers +1 glue stick $=12$ pencils 3 rulers $+(1$ ruler +8 pencils $)=12$ pencils $(3$ rulers +1 ruler $)+8$ pencils $=12$ pencils 4 rulers +8 pencils $=12$ pencils

Teacher Notes:

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Lesson 2

9. The greater than or equal to symbol is \qquad -.
10. Any number except 0 with an exponent of 0 equals \qquad _.
11. Any number with an exponent of \qquad equals the number itself.
12. The formula for finding the volume of a cylinder is $\quad \mathrm{V}=\mathrm{Bh}$ \qquad
13. The sum of the measures of complementary angles equals 90 .
14. The sum of the measures of supplementary angles equals 1°.
15. The four angles made by two intersecting lines measure a total of $\quad 360$.
16. The formula for finding the perimeter of a rectangle or parallelogram is $P=2 l+2 w$.
17. a. 1 inch $=2.54$ centimeters
b. 1 meter ≈ 1.1 yards
18. a. The repeating decimal for $\frac{1}{3}$ is $0 . \overline{3}$.
b. The repeating decimal for $\frac{2}{3}$ is $0 . \overline{6}$.
19. a. $3^{3}=\underline{27}$
b. $\frac{1}{4}=\underline{25} \%$
c. $\frac{2}{3}=\underline{66 \frac{2}{3}} \%$
d. $2^{5}=32$

Solve for the unknown angle measure.
20. $m \angle E=35^{\circ}$

Convert. Round to the nearest whole.

21. $70 \mathrm{~m} \approx 77 \mathrm{yd}$
22. $40 \mathrm{yd} \approx 36 \mathrm{~m}$

$$
\text { 21. } \begin{aligned}
& \frac{1 \mathrm{~m}}{1.1 \mathrm{yd}}=\frac{70 \mathrm{~m}}{n \mathrm{yd}} \\
& 1.1 \times 70 \div 1=77
\end{aligned} \begin{array}{r}
1.1 \\
\times 70 \\
77.0
\end{array}
$$

22. $\begin{aligned} & \left.\frac{1 \mathrm{~m}}{1.1 \mathrm{yd}}=\frac{n \mathrm{~m}}{40 \mathrm{yd}} \quad \begin{array}{l}70 \\ 1 \times 40 \div 1.1 \approx 36 \\ \\ \\ \\ \\ \\ \frac{63}{4} 0 \\ \hline\end{array}\right]\end{aligned}$
23. $55 \mathrm{gal} \approx 209 \mathrm{~L}$
24. 55 miles $\approx \xlongequal[88]{ } \mathrm{km}$
25. $\frac{1 \mathrm{gal}}{3.8 \mathrm{~L}} \approx \frac{55 \mathrm{gal}}{n \mathrm{~L}}$
$3.8 \times 55 \div 1 \approx 209 \begin{array}{r}440 \\ \begin{array}{r}1650 \\ 209.0\end{array}\end{array} \quad 1.6 \times 55 \div 1 \approx 88 \begin{gathered}330 \\ \frac{550}{88.0}\end{gathered}$
Write as powers of 10.
b. $1,000,000=10^{6}$
c. $1=10^{\circ}$
26. a. $0.00001=10^{-5}$

Teacher Notes:
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

7
26. Seventy-five percent of the 52 students at Gruenfeld

Christian School have grandparents who emigrated from Mexico to Canada. How many students have grandparents who emigrated to Canada? Use a fractional equivalent of the percent to solve the problem. 39 students

27. Gruenfeld Christian School is planning to give a program for the parents and grandparents of the students. Eva's students, Grades 4-7, are planning to sing 3 songs and recite 2 poems and a Bible passage. The times in minutes and
seconds for each song and recitation are as follows: 3:05, $1: 45,2: 25,1: 35,2: 10$, and $1: 50$. What is the total time in minutes and seconds for these six items?
\qquad

Choose the correct equation for the problem. Solve the problem.

28. The distance Eva drives to school is $\frac{1}{10}$ of the distance to her parents' home. Eva has 95 kilometers to her parents' home. How far does she have to school from her boarding place?

$$
\frac{d}{10}=95 \quad d=\frac{95}{10} \quad d+10=95 \quad d=\frac{95}{10}
$$

a. Equation: $d=\frac{95}{10}$
b. Answer: 9.5 kilometers
$d=9.5$

Convert.

29. a. $58 \mathrm{~cm}=0.58 \mathrm{~m}$
b. $24 \mathrm{~kg}=24.000 \mathrm{~g}$
c. $5.6 \mathrm{~L}=\xrightarrow{5.600} \mathrm{~mL}$

Use a compass and a straightedge to construct $\overleftrightarrow{Q R}|\mid \overleftrightarrow{\text { ST }}$.

30.

Teacher Notes:

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Lesson 3 pp. 12-16

The range of a list of data is the difference between the highest and the lowest numbers in the list. To find the range, subtract the smallest number from the largest.

On their last Math LightUnit test, Eva's seventh-graders made these scores:
90\% 92\% 78\% 100\% 87\% 95\%
To find the range of these grades, subtract 78% from 100%. The range of the student's math scores was 22%

Practical Use of Mean and Median

Mean is the most common way to summarize numerical data. But sometimes the mean can be misleading. This is especially true when the range is large and a few numbers are much higher or much lower than most of the others. If you were finding the mean value of the homes in your community, and there were several million-dollar homes there, the average may be quite a bit higher than most of the homes are really worth. In this case, the median might be a better measure of the worth of the homes in your area. The median is especially useful when the range of the data is large and the set of data is relatively small. It may also be useful because it is not generally affected by data that is extreme, as in the example of the expensive homes above.

Find the range for each list of numbers.

1. $93,100,97,97,100,90,100,100,97$ range $\quad 10$
2. $15^{\circ}, 32^{\circ}, 19^{\circ}, 2^{\circ}, 7^{\circ}, 15^{\circ}, 12^{\circ}, 15^{\circ}, 17^{\circ}, 14^{\circ}, 20^{\circ}$
range 30°
3. $\$ 35, \$ 90, \$ 88, \$ 78, \$ 67, \$ 96, \$ 44, \$ 61, \$ 96$
range $\quad \$ 61$
4. 100
5. 32
6. 96
$\begin{array}{r}-90 \\ \hline 10\end{array}$
$\begin{array}{r}-2 \\ \hline 30\end{array}$
$\frac{-35}{61}$

The Range of Data

Working in the LightUnit

What's New?

\rightarrow The Range of Data. The range of a list of data is the difference between the highest and lowest numbers on the list. To find the range, subtract the smallest number from the largest. In future work with number data, students will find the range along with the mean, median, and mode of various groups of number data.

We Remember
Use a compass and a straightedge to construct $\overleftrightarrow{M N}|\mid \overleftrightarrow{O P}$.

4.

Simplify, solve, and check.
Number of steps in solutions may vary.
5. a. $4(x+9)-24=37+28 \div 4$ $4 x+36-24=37+7$
b. $4(8+9)-24=37+28 \div 4$ $4 x+12=44$ $32+36-24=37+7$

$$
68-24=44
$$

$$
\begin{gathered}
-12-12 \\
\frac{4 x}{4}=\frac{32}{4} \\
x=8
\end{gathered}
$$

$44=44$

Use the formula to find the volume.

$V=B h$
$V=\left(\frac{1}{2} b h\right) h$
$V=\left(\frac{1}{2} \times 6 \times 4\right) 10$
$V=12 \times 10$
$V=120$
6. \qquad Number of steps in solution may vary

Convert. Round to the nearest whole.

7. a. 85 days ≈ 12 weeks

8 days $\approx \frac{12}{}$ weeks	12.1
$\frac{1 \text { week }}{7 \text { days }}=\frac{n \text { week }}{85 \text { days }}$	$7 \longdiv { 8 5 . 0 }$
$1 \times 85 \div 7 \approx 12$	$\frac{7}{15}$
	$\frac{14}{1} 0$
$\frac{7}{3}$	

b. 36 months $=3$ years
$\frac{1 \text { year }}{12 \text { months }}=\frac{n \text { year }}{36 \text { months }}$ $1 \times 36 \div 12=3$ 10 3

Board Work

\rightarrow Find the range for each list of numbers.

1. $78,42,56,89,37,82,105,37,8768$
2. $657,954,347,261,678$

693
3. $12,13,15,13,13,16,11,11,11,18$

7

Math 708, Lesson 3

Lesson 3

M Mastery Drill
8. The less than or equal to symbol is \qquad \leq _.
9. The formula for finding the volume of a triangular prism is $\quad \mathrm{V}=\mathrm{Bh}$
10. The correct order of operations is Parentheses ; Exponents_; Multiplication and Division ; Addition and Subtraction.
11. a. The fraction for $0.1 \overline{6}$ is \qquad b. The fraction for $0 . \overline{3}$ is \qquad
12. a. The perpendicular symbol is \perp
b. The parallel symbol is
13. a. 1 yard $^{3}=27$ feet 3
b. 1 millennium $=1,000$ years
14. a. 1 kilometer $\approx \frac{5}{8}$ mile
b. 1 mile ≈ 1.6 kilometers

Simplify the expressions.

15. a. $x \cdot x^{2} \cdot x$
b. $x^{3} \cdot x^{2}$
x^{5}
c. $s+s+5 s$
Ts

Write the product. Use fractions for those with negative exponents.

16. a. $2^{0}=1$
b. $8^{1}=8$
\qquad c. $5^{-3}=\frac{\frac{1}{125}}{}$
d. $9^{-2}=\frac{1}{81}$

Change to decimal percents, then to decimals.
17. a. $2 \frac{7}{10} \%=$ \qquad $=\quad 0.027$
b. $\frac{1}{2} \%=\underline{0.5 \%}=\underline{0.005}$

Solve.

18. What is $2 \frac{7}{10} \%$ of 79 ? 2.133
19. What is $\frac{1}{2} \%$ of $46 ?-0.23$
20.

$\begin{array}{r}79 \\ \times 0.027 \\ \hline 553 \\ 1580 \\ \hline 2.133\end{array}$
19. $\begin{array}{r}46 \\ \times 0.005 \\ \hline 0.230\end{array}$

Solve. Round to the nearest dollar.
20. The price went up 40% from $\$ 162$.
18. a. 162
b. $\$ 162$ $\frac{\times 0.40}{64.80} \approx 65$ $+\quad 65$
$+\$ 227$
a. Amount of increase: $\$ 65$ $\$ 65$
b. New price: $\$ 227$
21. 18% more than $\$ 48=$
\qquad
21. 1.18 $\begin{array}{r}148 \\ \times \quad 48 \\ \hline 944\end{array}$ $\frac{4720}{56.64} \approx \$ 57$

14

Teacher Notes:
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
22. When the transmission went out on Mary's 12 -year-old car,
she borrowed $\$ 2,500$ from her brother to buy a newer used
car. Her brother charged her a low interest rate of 2%. If
Mary paid back the loan in $1 \frac{1}{2}$ years, how much did she pay
her brother altogether? $\$ 2,575$

Teacher Notes:

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Math 708, Lesson 3

Lesson 3

\qquad

$$
+_{\div}^{-} \times \text {Skill Builders }
$$

\qquad Round to the nearest hundredth.
$0.057 \approx 0.06$
29. a. $6=8 x-11$
$\frac{+11}{\frac{17}{8}}=\frac{8 x}{8}$
$2 \frac{1}{8}=x$
b. $6 9 \longdiv { 3 . 9 8 0 }$
345
530
483
c. $3(n+4)=7+12 \cdot 3$ $3 n+12=7+36$
$3 n+12=43$
$\frac{-12-12}{\frac{3 n}{3}=\frac{31}{3}}$
Use the formula to find the area of the trapezoid.

$$
n=10 \frac{1}{3}
$$

$A=\frac{1}{2}\left(b_{1}+b_{2}\right) h$
$A=\frac{1}{2}(6+10) 4.5$
$A=\frac{1}{2}(16) 4.5 \quad 4.5$
30. \qquad

Find the commission.
31. A salesperson receives 9% commission on sales of $\$ 10,345$. $\$ 931.05$

$$
\begin{array}{r}
\$ 10,345 \\
\times \quad 0.09 \\
\hline \$ 931.05
\end{array}
$$

Convert to decimals. Write the repeating decimals with a bar.
32. $\frac{5}{9}=\underline{0.5}$
33. $4 \frac{2}{11}=\underline{4 . \overline{18}}$
32. $0.55=0 . \overline{5}$
$9 \longdiv { 5 . 0 0 }$
4.5
45 45
33. $0.1818 \approx 0 . \overline{18}$

$1 1 \longdiv { 2 . 0 0 0 0 }$ 11 | 90 |
| :--- |
| 8 | 20

11 90
Find the mean, median, mode, and range. Round to the nearest whole. $\frac{88}{2}$
34. $5,7,5,7,4,7,1,6,6,4$
a. mean $\quad 5$
b. median
6
c. mode 7
d. range 6
a. $5+7+5+7+4+7+1+6+6+4=52 \div 10=5.2 \approx 5$
b. c. $1,4,4,5,5,6,6,7,7,7$ $5+6=11 \div 2=5.5 \approx 6$
d. $7-1=6$

Teacher Notes:
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
The interest formula, $\mathrm{i}=\mathrm{prt}$, is used for calculating interest on savings and loans. In this formula, i stands for interest, p stands for principal, r stands for rate, and t stands for time in years. However, interest on savings is often calculated by the month rather than the year, and the length of many short-term loans is expressed in months, such as a 42-month CD (certificate of deposit). In this case, we must convert months to fractions of a year or the decimal equivalents of these fractions.
Note the following equivalents when using business years:

1 month $=\frac{1}{12}$ year	7 months $=\frac{7}{12}$ year
2 months $=\frac{1}{6}$ year	8 months $=\frac{2}{3}$ year
3 months $=\frac{1}{4}$ year (or 0.25 year)	9 months $=\frac{3}{4}$ year (or 0.75 year)
4 months $=\frac{1}{3}$ year	10 months $=\frac{5}{6}$ year
5 months $=\frac{5}{12}$ year	11 months $=\frac{11}{12}$ year
6 months $=\frac{1}{2}$ year (or 0.5 year)	12 months $=1$ year

To find interest on $\$ 1,200$ of a 7 -month CD earning 4.25%, first convert 7 months to a fraction. Then use the simple interest formula, $\mathrm{i}=$ prt.
Convert months to years: $\quad 7$ months $=\frac{7}{12}$ year
Use the formula: $\quad i=p r t$
Substitute numbers for the variables: $\quad i=\$ 1,200 \times 0.0425 \times \frac{7}{12}$
Solve: $\quad i=\$ 29.75$
The CD will earn $\$ 29.75$ in seven months.

Add the principal and the interest to find out how much
the CD will be worth when it matures.
$\$ 1,200+29.75=\$ 1,229.75$

Calculating Interest for Months

Working in the LightUnit

What's New?

\rightarrow Calculating Interest for Months. In the interest formula, $i=p r t, t$ stands for time, where the standard unit of time is one year. So far students have worked with years or fractions of years that could be easily converted to decimals before multiplying. However, interest on savings is often calculated by the month rather than the year, and the length of many short-term loans is expressed in months, such as a 42-month certificate of deposit. In this case, convert months to fractions of years, or the decimal equivalents of these fractions.

Lesson 4

To find interest on $\$ 1,500$ in a 42-month CD earning 5.25%, first convert 42 months to years by dividing by 12 . Then use the simple interest formula, $\mathrm{i}=$ prt.

```
Convert months to years: 42 \div12=3.5 years
Use the formula: i = prt
Substitute numbers for the variables: i=$1,500 }\times0.0525\times3.
Solve: i = $275.63
```

The CD will earn $\$ 275.63$ in forty-two months.
Add the principal and the interest to find out how much the CD will be worth when it matures. $\$ 1,500+275.63=\$ 1,775.63$

Applying the associative property to the interest formula will often simplify the calculations so you can solve part of the problem mentally.

Find the interest due on $\mathbf{\$ 4 0 , 0 0 0}$ borrowed at $\mathbf{8 \%}$ interest for $\mathbf{6}$ years.
Think: $\frac{1}{8}$ of 8% is 1%, or 0.01
Find 1% of $\$ 40,000 \quad 0.01 \times 40,000=400$
Calculate: $\$ 400 \times 6=\$ 2,400$
Find the interest due on $\$ 12,000$ borrowed at $5 \frac{1}{2} \%$ for 3 months.
Convert months to years:
$\frac{3}{12}=\frac{1}{4}$
(Think: $\frac{1}{4}$ of 12,000 is 3,000 .)
$3,000 \times 0.055=\$ 165$
Find the interest gained on $\$ 250$ in a savings account earning $2 \frac{3}{4} \%$ for $\mathbf{3}$ years.
Use the formula: $\quad i=p r t$
Substitute numbers for the variables: $\quad i=\$ 250 \times 0.0275 \times 3$
(Think: 3 times 250 is 750 .)
Calculate: $\quad 750 \times 0.0275 \approx \$ 20.63$

2. Eva put $\$ 1,407.32$ in a savings account that pays 2% inter-
est. How much interest did the account earn in one month? $i=p r t$

$$
\$ 2.35 \quad \$ 1,407.32 \times 0.02 \times \frac{1}{12}=\$ 2.35
$$

If using a calculator to figure the interest for a number of months, multiply the other numbers in the formula along with the numerator of the fraction expressing time. Then divide the product by the denominator of the fraction for the final amount. Here is an example:

$\$ 1,200$ in savings at $1 \frac{1}{2} \%$ interest for 5 months

$1200 \cdot 0.015 \cdot 5 \div 12 \approx 7.5$ The interest after five months is $\$ 7.50$.

Board Work

\rightarrow Find the interest due. (Allow students to use their calculators.) Round to the nearest cent.

1. $\$ 500$ loan at $11 \frac{1}{4} \%$ interest for 11 months $500 \cdot 0.1125 \cdot 11 \div 12 \approx \$ 51.56$
2. $\$ 400$ savings at $2 \frac{1}{4} \%$ interest for 18 months $400 \cdot 0.0225 \cdot 18 \div 12 \approx \$ 13.50$
3. $\$ 2,250$ loan at 12% interest for 4 months $2,250 \cdot 0.12 \cdot 4 \div 12 \approx \$ 90.00$

We Remember

Find the range for each set of numbers.
3. $36,38,40,45,37,10,39$
4. $96,84,90,91,90,98,85,89$
range $\quad 35$
range $\quad 14$
3. $\begin{array}{r}45 \\ -\quad 10 \\ \hline 35\end{array}$
4. 98
$\begin{array}{r}-84 \\ \hline 14\end{array}$

Find the mean, median, mode, and range for each list. Round to the nearest whole.
5. $46^{\circ}, 57^{\circ}, 64^{\circ}, 66^{\circ}, 61^{\circ}, 70^{\circ}, 59^{\circ}, 51^{\circ}, 50^{\circ}, 59^{\circ}, 69^{\circ}$
a. mean 59°
b. median 59°
c. mode 59°
d. range 24° a. $46+57+64+66+61+70+59+51+50+59+69=652 \div 11 \approx 59.27 \approx 59$ b. c. $46,50,51,57,59,59,61,64,66,69,70$
d. $70-46=24$
6. $91,86,90,95,80,95,88,93,82,97$
a. mean 90
b. median 91
c. mode 95
d. range \qquad a. $91+86+90+95+80+95+88+93+82+97=897 \div 10 \approx 89.7 \approx 90$
b. c. $80,82,86,88,90,91,93,95,95,97$
d. $97-80=17$

$$
90+91=181 \div 2=90.5 \approx 91
$$

Simplify and solve. Number of steps in solutions may vary.
7. a. $4(x+3)-6=27 \div 3+5$ $4 x+12-6=9+5$
$4 x+6=14$

$-6 \quad-6$
$\frac{4 x}{4}=\frac{8}{4}$

Solve.
$x=2$
b. $\begin{aligned} 12+6 \cdot 8 & =6(x+7) \\ 12+48 & =6 x+42 \\ 60 & =6 x+42 \\ \frac{-42}{18} & =\frac{6 x}{6} \\ 3 & =x\end{aligned}$

c. $7 n+37+n-5=8 \cdot 5$ $8 n+32=40$ | $-32-32$ |
| :---: |
| $\frac{8 n}{8}=\frac{8}{8}$ |
| $n=1$ |

a. $\mathrm{i}=\mathrm{prt}$
8. $\$ 4,500$ borrowed at 12% interest for 2 years.
a. Amount of interest owed: $\$ 1.080$
b. Total amount to repay: \qquad $\$ 4,500 \times 0.12 \times 2=\$ 1080.00$

4,500	540	b. 4,500
$\times 0.12$	$\begin{array}{r} \\ \times \quad 2 \\ \hline\end{array}$	+ 1,080
9000	1,080	5,580
45000		
540.00		

Find the percent of increase or decrease to the nearest percent.
9. A change from 40 to 110 is an increase of 175%

10. $\quad 5.5 \approx 6$
10. A change from 90 to 85 is a decrease of \qquad \%
9. $\begin{array}{rl}110 & \frac{70}{40}=\frac{n}{100} \\ -40 & 70 \\ 70 \times 100 \div 40 \approx 175\end{array}$
10. $\begin{array}{r}90 \\ -85 \\ \hline 5\end{array} \quad \frac{5}{90}=\frac{n}{100}$
200 $\begin{array}{r}450 \\ \hline 50\end{array}$

Teacher Notes:

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Math 708, Lesson 4

20.

21. $\begin{array}{r}85 \\ \times 1.1 \\ \hline 85 \\ 850 \\ \hline 93.5 \approx 94\end{array}$
22. 2.54 72
$\times \quad 508$
17780
$\overline{182.88} \approx 183$

Lesson 4

11. The middle number in an ordered list is the __median_.
12. The number that occurs most often in a list is the ___ mode
13. The sum of the measures of supplementary angles equals 180°.
14. The sum of the measures of complementary angles equals 90 .
15. The difference between the least and greatest numbers in a list is the \qquad ange -.
16. a. 1 inch $=2.54$ centimeters
b. 1 gallon ≈ 3.8
liters
17. a. Another name for average is \qquad b. 1 meter ≈ 1.1 yards
18. a. The perpendicular symbol is \perp.
b. The parallel symbol is \quad.
19. a. $2^{6}=\underline{64}$
b. $\frac{5}{6}=$

83 $\frac{1}{3} \%$
c. $\sqrt{144}=\underline{12}$
d. $2^{4}=16$

Convert. Round to the nearest whole.

20. $70 \mathrm{yd} \approx 64 \mathrm{~m}$
21. $\frac{1 \mathrm{~m}}{1.1 \mathrm{yd}}=\frac{n \mathrm{~m}}{70 \mathrm{yd}}$
22. $\frac{1 \mathrm{~m}}{1.1 \mathrm{yd}}=\frac{85 \mathrm{~m}}{n \mathrm{yd}}$
23. $85 \mathrm{~m} \approx$ \qquad yd

$$
1 \times 70 \div 1.1 \approx 64
$$

$$
1.1 \times 85 \div 1 \approx 94
$$

22. $72 \mathrm{in} \approx 183 \mathrm{~cm}$
23. $\frac{1 \mathrm{in}}{2.54 \mathrm{~cm}} \approx \frac{72 \mathrm{in}}{n \mathrm{~cm}}$ $2.54 \times 72 \div 1 \approx 183$

Find the surface area of the triangular prism.

23. \qquad

\quad2 Triangular Faces	2 Congruent Rectangle Faces	Bottom Rectangle	77 77 $\mathrm{~A}=\frac{1}{2}(\mathrm{bh})$
$\mathrm{A}=\mathrm{Iw}$	Iw	195	
$\mathrm{~A}=\frac{1}{2}(14 \times 11)$	$\mathrm{A}=15 \times 13$	$\mathrm{~A}=15 \times 14$	
$\mathrm{~A}=\frac{1}{2}(154)$	$\mathrm{A}=210$	$\frac{195}{754}$	

$A=77$
Solutions may vary
Choose the correct equation for the problem. Solve the problem.
24. The number of problems Eva's seventh grade students had on a math quiz was two less than one-third the number of problems on their previous lesson. The lesson had forty-five problems. How many problems were on the quiz?

$$
q-2=\frac{45}{3}
$$

$$
q=\frac{45}{3}-2
$$

$$
q=3(45-2)
$$

45

$$
\begin{aligned}
& q=\frac{45}{3}-2 \\
& q=15-2
\end{aligned}
$$

a. Equation:

b. Answer: 13 problems

$$
q=13
$$

Teacher Notes:

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad ${ }_{+}^{+}{ }^{-} \mathbf{X}$ Skill Builders \qquad
25. a. $\frac{3}{4} \times \frac{5}{9} \times \frac{4}{5}=\underline{\frac{1}{3}}$ b. $\frac{\frac{7}{8}}{4 \frac{2}{3}}=\underline{\frac{3}{16}}$
$\frac{7}{8} \div 4 \frac{2}{3}$
$\frac{7}{8} \div \frac{14}{3}$
$\frac{1}{8} \times \frac{3}{14}=\frac{3}{16}$
Translate the phrases into equations using n as the variable. Variables may vary.
26. Seven added to a number is twenty-three. \qquad $n+7=23$
27. A number less eight is five. \qquad $n-8=5$
28. The product of a number and nine is thirty-six.

29. A number divided into twenty-one is seven.

Use a compass and a straightedge to construct UV || WX.

30.

31. Due to an extended period of dry weather, the school's well went dry in October. The contractor who drilled a new well展 for the school agreed to accept $\$ 500$ as a down payment and then be paid the remainder 9 months later plus 6% interest on the unpaid balance. The original cost of the new well before interest was added was $\$ 1,275$.
a. On how much of the original amount did the school owe

Solutions may vary. interest? $\$ 775.00$ a. $\$ 1,275-500=\$ 775$
b. How much interest did the school owe after 9 months?

$\$ 34.88$

b. $\$ 775 \times 0.06 \times \frac{3}{4} \approx \$ 34.88$
c. Including the interest, how much did the school pay for the
well? \$1,309.88
c. $\$ 775+500+34.88=\$ 1,309.88$

21

Teacher Notes:

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

