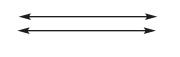
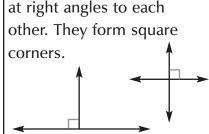
Geometry

Work Sheets

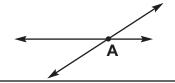
The work sheets are grouped according to math skill. Each skill is then arranged in a sequence of work sheets that build from simple to complex. Choose the work sheets that best fit the student's need and will bring him up to the desired level.


Contents

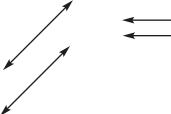
Work	Sheet Title	Introduced	Page	
1	Parallel, Perpendicular, Intersecting Lines	Math 302, Lesson 9 . Math 307, Lessons 7, 9	1	
2	Lines and Line Segments	Math 402, Lesson 1	2	
3	Rays	Math 402, Lesson 4	3	
4	Similar Figures	Math 404, Lesson 8	4	
Angle	S			
5	Degrees Measure Angles	Math 407, Lesson 13	5	
6	Using a Protractor to Measure Angles	Math 504, Lesson 3	6	
7	Naming Angles; Vertex	Math 504, Lesson 3	7	
8	Drawing Angles; Congruent Angles	Math 504, Lesson 11	8	
9	Classifying Angles by Degrees	Math 603, Lesson 3	9	
10	Measuring Angles of Intersecting Lines/Finding Sum	Math 602, Lesson 3	10	
11	Reflex Angles	Math 705, Lesson 7	11	
12	Complimentary and Supplementary Angles	Math 706, Lesson 14	12	
Triangles				
13	Naming Triangles	Math 403, Lesson 9	13	
14	Classifying Triangles by Length of Sides	Math 602, Lesson 14	14	
15	Classifying Triangles Using Their Angels	Math 606, Lesson 13	15	
16	Measuring the Angles of a Triangles The Sum of the Angles of a Triangle	Math 607, Lesson 13	16	
17	Opposite and Adjacent Sides in Trigonometry	Math 807, Lesson 11	18	
Circles				
18	Parts of a Circle Math 507, Lesson 4,	Math 307, Lessons 7, 9	19	
19	Circle Terms	Math 605, Lesson 13	20	
20	Measuring Circles	Math 402, Lesson 3	21	
21	Finding Circumference and Diameter	Math 406, Lesson 4	22	
22	Formula for the Circumference of a Circle	Math 503, Lesson 13	23	
23	Formula for Circumference of a Circle With Fractions	Math 603, Lesson 13	24	
Quad	ilaterals			
24	Quadrilaterals	Math 505, Lesson 11	25	
25	Parallelograms	Math 506, Lesson 2	26	
26	Rhombuses	Math 507, Lesson 3	27	
27	Understanding Trapezoids	Math 602, Lesson 15	28	


Work	Sheet Title	Introduced	Page		
28	Angles of a Quadrilateral	. Math 605, Lesson 7 .	. 29		
29	Polygons	. Math 604, Lesson 9 .	. 30		
30	Line Symmetry	Math 603, Lesson 83.	. 31		
Solids					
31	Common Solids	Math 403, Lesson 13.	. 32		
32	Parts of a Solid	Math 607, Lesson 11.	. 33		
Volume					
33	Volume	. Math 405, Lesson 3 .	. 34		
34	Measuring Volume	Math 405, Lesson 11.	. 35		
35	Formula for the Volume of a Cylinder	. Math 705, Lesson 8 .	. 36		
36	Finding Volume With Varied Units	. Math 805, Lesson 1 .	. 37		
37	Finding the Volume of Pyramids and Cones	. Math 806, Lesson 3 .	. 39		
38	Formula for the Volume of a Triangular Prism	. Math 703, Lesson 1 .	. 40		
Perim	eter and Area				
39	Perimeter and Area	. Math 404, Lesson 3 .	. 41		
40	Finding Perimeter	Math 503, Lesson 14.	. 42		
41	Formula for Perimeter of Rectangles and Parallelograms	Math 606, Lesson 12.	. 43		
42	Area of Rectangles and Squares	Math 502, Lesson 13.	. 44		
43	Areas of Triangles	Math 406, Lesson 12 .	. 45		
44	Formula for the Area of a Triangle	. Math 503, Lesson 4.	46		
45	Formula for the Area of a Circle	. Math 606, Lesson 1 .	. 47		
46	Formula for the Area of a Parallelogram	. Math 702, Lesson 1 .	. 48		
47	Formula for the Area of a Trapezoid	. Math 702, Lesson 6 .	. 49		
48	Finding the Areas of Irregular Shapes	Math 702, Lesson 12 .	. 50		
49	Finding the Surface Area of Prisms	Math 707, Lesson 12 .	. 51		
50	Finding the Areas of Irregular Shapes Containing Circle Parts	. Math 802, Lesson 1 .	. 53		
51	Finding the Surface Area of Pyramids	. Math 802, Lesson 6 .	. 54		
52	Finding the Surface Area of Cylinders	. Math 803, Lesson 7 .	. 55		
53	Finding the Surface Area of Cones	. Math 804, Lesson 7 .	. 57		
54	Formula for the Surface Area of a Sphere	Math 805, Lesson 12 .	. 58		
Missi	ng Dimensions				
55	Finding Missing Dimensions for Area/Perimeter of Rectangles	. Math 703, Lesson 6 .	. 59		
56	Finding Missing Angle Measures in Triangles	Math 704, Lesson 81.	. 60		
57	Finding the Missing Dimensions for Any Measurement Formula	Math 706, Lesson 12.	. 61		
Pythagorean Theorem					
58	The Pythagorean Theorem	Math 802, Lesson 11.	. 63		
59	Finding Lengths Using the Pythagorean Theorem	Math 804, Lesson 11.	. 64		

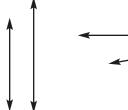
Parallel, Perpendicular, Intersecting Lines


Parallel lines are exactly the same distance apart. They never intersect.

Perpendicular lines sit at right angles to each other. They form square corners.

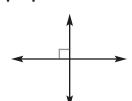


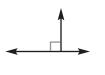
Intersecting lines meet or cross one another. The point where they meet or cross is an intersection.



Circle the pairs of lines that are parallel to each other.

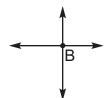
1.

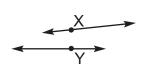


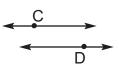


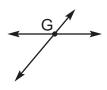
Circle the pairs of lines that are perpendicular to each other.

2.









For each pair, name the point of intersection. If the lines do not intersect with each other, write none.

- 3. a._____

Match.

- **4.** _____ intersecting
- a. never touching each other
- 5. _____ perpendicular
- b. forming a square corner
- 6. ____ parallel
- c. crossing each other

Lines and Line Segments

A line is straight and neither end stops. If a line is marked with two points we can name

it. A B

Say the points in either order.

Say "Line AB" or "Line BA."

Say "Line DC" or "Line CD."

Write the points in either order and draw a little *line symbol* (\leftrightarrow) above the letters. Notice the *line symbol*.

Write \overrightarrow{AB} or \overrightarrow{BA} .

Write \overrightarrow{CD} or \overrightarrow{DC} .

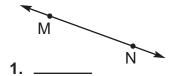
A **line segment** is part of a line and has two end points.

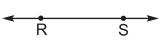
If the endpoints of a line segment are marked, we can name the line segment.

Say the endpoints in either order.

Say "Line segment AB" or "Line segment BA."

Say "Line segment DC" or "Line segment CD."


Write the endpoints in either order. Draw a little *line* segment symbol (-) above the letters.



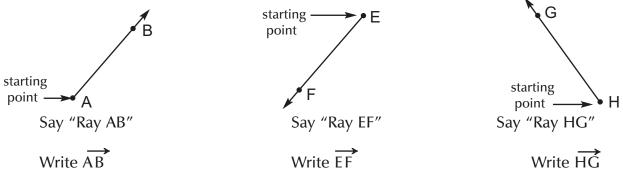
Write $\overline{\mathbf{AB}}$ or $\overline{\mathbf{BA}}$.

Write $\overline{\mathbf{CD}}$ or $\overline{\mathbf{DC}}$.

Use letters and symbols to name the lines.

2.

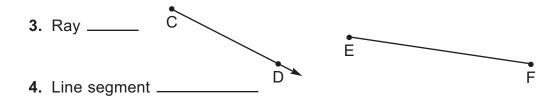
Use letters and symbols to name the line segments.

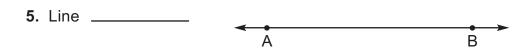

3. Q

4. G

Rays

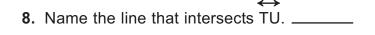
A ray starts at a point. An arrow is used to show that the ray keeps going in one direction without stopping.

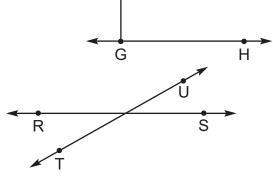

If a ray is marked with two points, we can name it. Always say and write the starting point first. Draw a little ray symbol (\rightarrow) above the two letters.



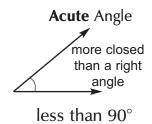
Use letters and symbols to name the rays.

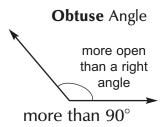
Use letters and symbols to name these.




3

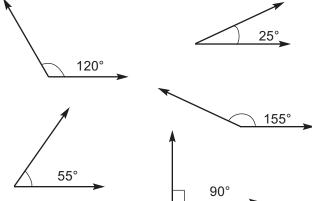
Follow the directions. Use symbols.


Types of Angles

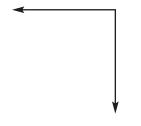

To measure how wide open an angle is we use **degrees**.

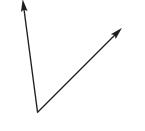
Right Angle

perfectly square
like the corner of a
piece of paper


90°

These angles are measured in degrees. Write right, acute, or obtuse to classify each angle.


- **1.** 120° is a(n) _____ angle.
- **2.** 55° is a(n) _____ angle.
- **3.** 90° is a(n) _____ angle.
- **4.** 155° is a(n) _____ angle.
- **5.** 25° is a(n) _____ angle.


Write acute, obtuse, or right.

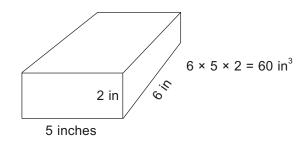
- **6.** A 90° angle is called a _____ angle.
- 7. An angle measurement of 115° is called an _____ angle.
- **8.** An angle with a measurement of 75° is called an _____ angle.

Write acute, obtuse, or right under each angle.

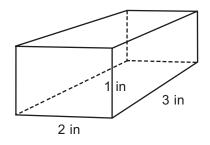
- 9. a. _____
- b. _____
- C. _____

Measuring Volume

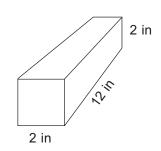
How do we measure volume? We use cubic measures.

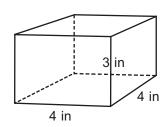

Volume = length × width × height (3 dimensions)

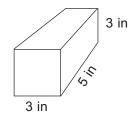
1 cubic inch


$$1 \times 1 \times 1 = 1 \text{ in}^3$$

Put a little 3 after the unit of measure to show cubic measures.


1 in³


Write a number sentence for each. Give the volume in cubic inches (in³).

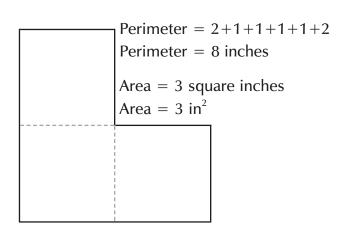

1. a. ___ × ___ = ____

b. ___ × ___ = ___

2. a. ___ × ___ = ___

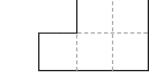
b. ___ × ___ = ____

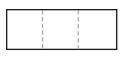
Perimeter and Area


Perimeter is the distance around the edge of a shape. It is measured in units of length.

Area is the space inside of a shape. It is measured in square units.

Write the label for area with a small raised ². Example: 3 in²


The small raised ² means "square." Read, "Three square inches."


Perimeter = $2+4+2+4$ Perimeter = 12 cm
 Area = 8 square centimeters Area = 8 cm^2

Write the perimeter and area of each shape. Use cm, cm², in, or in².

1. a. Perimeter: ____ <u>CM</u>

Area: ____ cm²

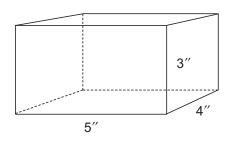
b. Perimeter: ____ **c.** Perimeter: ____

Area: _____

Area: _____

2. a. Perimeter: _____

Area: _____


b. Perimeter: ____ **c.** Perimeter: ____

Area: _____

Area: _____

Finding the Surface Area of Prisms

A rectangular prism has six rectangular faces. To find its surface area, we need to find the area of each face, and then find the sum of the area of the six faces. A diagram of the surface area could be drawn by tracing around each face of the box below, to form its net.

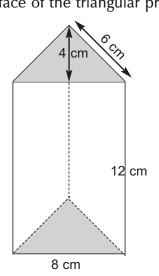
end bottom end top

front

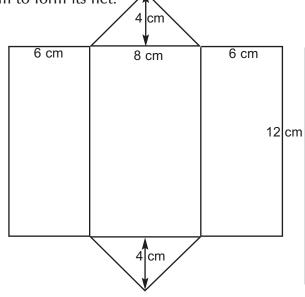
The top and bottom faces are $5'' \times 4''$. The two end faces are $4'' \times 3''$. The front and back faces are $5'' \times 3''$. Find each area:

Top & bottom faces Ends Front & back faces A = lw A = lw A = lw $A = 5 \times 4$ $A = 4 \times 3$ $A = 5 \times 3$ $A = 20 \text{ in}^2$ $A = 12 \text{ in}^2$ $A = 15 \text{ in}^2$

Top + bottom + end + end + front + back = Surface area


$$20 + 20 + 12 + 12 + 15 + 15 = 94 \text{ in}^2$$

The **surface area** of the box is 94 in².


Answer the questions and find the surface area. Draw or visualize the net to help you.

- 1. What are the dimensions (I and w) of the top and bottom faces? _____
- 2. Find the area of both the top and bottom faces.
- 3. What are the dimensions of the front and back faces? _____
- 4. Find the area of both the front and back faces.
- 5. What are the dimensions of the two side faces? _____
- 6. Find the area of both the two side faces.
- 7. Find the total surface area of the prism. _____

Work Sheet 49, continued

A triangular prism has five faces. Two of the faces are triangles, and the remaining three are rectangles. To find its surface area, find the area of each face, and then find the sum of the area of the five faces. A diagram of the surface area could be drawn by tracing around each face of the triangular prism to form its net.

- The two triangular faces have bases of 8 cm and heights of 4 cm.
- Two of the rectangular faces are $12 \text{ cm} \times 6 \text{ cm}$.
- One rectangular face is 12 cm \times 8 cm.

Find each area:

Triangular faces

Two Rectangles

One Rectangle

$$A = \frac{1}{2} bh$$

$$A = Iw$$

$$A = Iw$$

$$A = \frac{1}{2} \times 8 \times 4 \qquad A = 12 \times 6$$

$$A = 12 \times 6$$

$$A = 12 \times 8$$

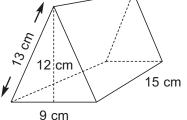
$$A = 16 \text{ cm}^2$$

$$A = 72 \text{ cm}^2$$

$$A = 96 \text{ cm}^2$$

Triangular faces + two rectangles + one rectangle = Surface area

$$16 + 16 + 72 + 72 + 96 = 272 \text{ cm}^2$$


The **surface area** of the triangular prism is 272 cm².

Answer the questions and find the surface area. Draw or visualize the net to help you.

- 8. Give the base and height of both triangular faces. base _____ height _____
- 9. Find the area of each triangular face. _____

10. What are the dimensions of one of the congruent rectangular faces?

11. Find the area of each congruent rectangular face. _ 12. What are the dimensions of the remaining rectangular face?

- **13.** Find the area of the remaining rectangular face. _____
- **14.** Find the total surface area of the prism. __