Contents

I.	INTRODUCTION	2
	Genesis Creation Versus Myths	2
	The History of the Origins Issue	3
	The Importance of the Origins Issue	ô
II.	BIOLOGICAL ORIGINS 12	2
	The Origin of Life	2
	The Origin of Life's Major Groups	4
	The Origin of Species	0
	The Origin of Biological Similarities	7
III.	SCIENCE, CHRISTIANITY AND THE BIBLE	3
	The Bible and Science	3
	Another Look at Evidences Concerning Origins	5
	Theistic Evolution—The Great Compromise	3
GLC	OSSARY	3

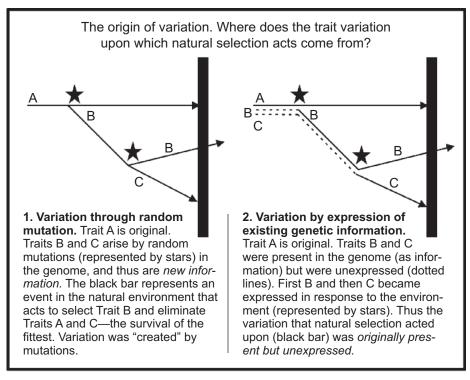


Figure 12: Comparison between Darwinian and Creationist Views

THE ORIGIN OF VARIATION

We must emphasize again that an important part of the definition of evolution is that the variations that occur in each individual are random changes (mutations) that are not influenced by the environment or directed by pre-existing genes. We have seen examples of variations that seemingly support Darwin's theory of evolution collapse under closer examination. Darwin's concept of survival of the fittest does not tell us how certain individuals became more fit.

While survival of the fittest does indeed seem to operate to select the fittest variations, it is doubtful that the variation required for natural selection comes from random mutations. In reality, almost all mutations create inferior or defective genes that harm rather than help a species. It seems instead that the variation needed for natural selection to work comes from information already existing in the genome of the organism. Various genes and gene groups are expressed when they are triggered by the environment (see Figure 12). We do not fully know the details concerning how environments can cause variation at this time,

but some interesting work has been done.

For example, scientists have found that tadpoles of certain species raised in the presence of dragonfly larvae, which are predators on the tadpoles, develop a different body form than those raised without predators in their environment.⁵ Another tadpole study showed that one species of tadpole developed a much larger head and larger, stronger jaws when fairy shrimp, a favorite tadpole prey, were present in the environment.⁶ Another example, the buttercup Ranunculus flamulla, develops two kinds of leaf forms, depending on where the plant develops. If the plant develops underwater, the leaves are long and narrow. The leaves are wider and shorter if the plant develops above water. Plants growing around lakes with fluctuating water levels have both leaf forms.⁷ Evidently the genome contains the information necessary to produce both phenotypes.

It is quite possible that these variations between such different phenotypes could serve as the source of variation for speciation. As scientists studied populations of the above buttercups, they found that although plants transplanted from one environment to another could still develop the opposite leaf shape, the

plants usually did not survive long (see Figure 13). So it seems that the plants in the constant environments were in the process of specializing into a distinct species. They appeared to be losing their ability to produce both phenotypes and were becoming a species. This is an example of an organism changing its physical appearance through information already present in its genome and not through a random mutation. The information is activated by unique environmental conditions.

It seems that Darwin was right on one count: natural selection works on the variation found in nature to produce new varieties and even new species. However, evolutionary insistence on random, unguided mutations producing variation seems unfounded. Rather, evidence indicates that variations occur because of genetic information already present in an organism.

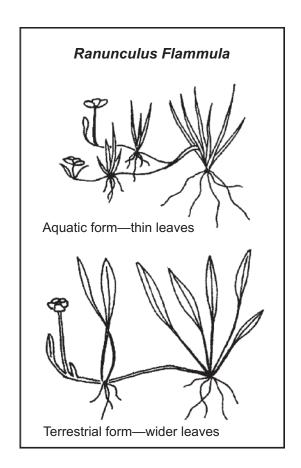


Figure 13

	Complete the following exercises.
2.29	According to the evolutionary theory, the variation seen among organisms occurs only as a result of mutations.
2.30	The evidence for speciation has established the credibility of the idea of, but not credibility of the evolutionary theory as a whole.
2.31	What does the evidence indicate about how variations between organisms occur?
2.32	In what does Darwin seem to be right?

THE BIBLICAL EXPLANATION: SPECIATION AND THE FLOOD

The Bible teaches that the major kinds of life were independently created (see Genesis 1:11-27). Scientific evidence also points toward the independent creation of the major kinds because the structural and informational gaps

Speciation Within the Major Groups

Original cat ancestor (or ancestors)

Figure 14

between major groups appear to be unbridgeable by any known process. However, scientific evidence does seem to indicate that biological change can occur in certain circumstances, such as the development of new species. New species may develop as genetic information already present in an organism is expressed when the organism encounters a new environment. In examining the facts concerning the origin of both groups and species, we find that speciation seems to occur within the bounds of the originally created major kinds. For example, in the created kind that we call cats, different species have given rise to each other in the time since the Flood. Yet no species of cat will ever undergo biological change to the point that it becomes a chimpanzee (see Figure 14). Each created kind originally contained all the information necessary to produce each and every species that has descended from it. Yet no created

kind contains the genetic information needed to produce any other kind.

The original created kind is called a **baramin** by many creationists. **Baramin-ology** is the field of study in which creationist scientists seek to identify which groups correspond to the original created pairs. For example, a baraminologist may ask such questions as

"Did all living turtles descend from one original pair (one baramin)? Or did the two main groups of living turtles, the side-necked and the hiddennecked, descend from two or more originally created pairs (see Figure 15)?"

There seems to be nothing un-Scriptural about biological change within a major kind. Evolutionists, however, claim that the processes that bring about speciation also extend to the evolution of life's major groups from one original cell. This proposal is un-Scriptural and is not supported by scientific evidence.

It appears that Darwin might actually have been describing the process God

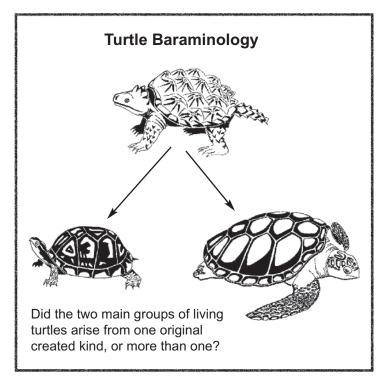


Figure 15

used to repopulate the post-Flood earth with organisms. The Flood disrupted the entire surface of the earth. When the ark landed and the animals began to migrate across the recovering earth, the animals moved into new areas and into the countless new ecological niches available there. Speciation probably occurred with amazing speed. As organisms reproduced, the number of representatives of

each major kind grew. At the same time, these species spread farther across the face of the earth, colonizing new and very different areas. In each new area, the genetic information already present in the genomes of the organisms activated was response to the new environment, eventually producing many different species from the original genome of each created kind (see Figure 16).

This understanding of natural selection is different from Darwin's in that he claimed that natural selection works with random and accidental mutations to create new life forms. The evidence supports biological change when organisms encounter new environ-

mental conditions and new traits appear from existing genes in response to the new environment. When biological change such as what happens in speciation occurs, it involves no more than the expression of existing genetic material. Even though a trait may be new, it was already present in potential form in the genome of the organism. Biological change is not actually creative.

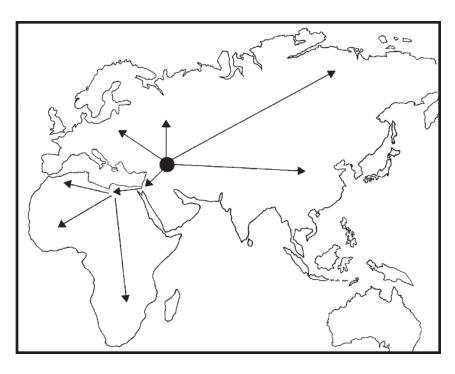


Figure 16: Migration After the Flood

	Match the following items (some answers may be used more than once).			
2.33	Scientific evidence points to the independent creation of these.	a. natural		
2.34	This seems to be the result of the expression of existing (rather than new) genes.	selection b. speciation		
2.35	This occurs within the boundaries of the major kinds.	c. baramin		
2.36	This term describes the original created kind.	d. major		
2.37	This process can also be called nonrandom biological change.	groups		
2.38	This must have occurred very rapidly after the Flood.			
2.39	Darwin claimed this works with random and accidental muta-			