MATHEMATICS 1004 CONGRUENT TRIANGLES AND QUADRILATERALS

CONTENTS

1.	IRIANGLES	2
	Defining Congruent Triangles	2
	Proving Triangles Congruent	8
	Proving Right Triangles Congruent	17
II.	CORRESPONDING PARTS	24
	Independent Triangles	24
	Overlapping Triangles	32
	Isosceles Triangles	40
Ш.	INEQUALITIES	52
	Inequalities in One Triangle	52
	Inequalities in Two Triangles	63
IV.	QUADRILATERALS	71
	Parallelograms	71
	Tranezoids	89

2019 Printing

The material in this book is the product of the Lord's blessing and many individuals working together on the teams, both at Alpha Omega Publications and Christian Light Publications.

Original material copyright ©1978 by Alpha Omega Publications All rights reserved. Revised by permission.

CLP Revision copyright ©1980

Christian Light Publications, Inc.

Harrisonburg, Virginia 22802 Tel. 1-540-434-0768

CONGRUENT TRIANGLES AND QUADRILATERALS

You have learned in previous LIGHTUNIT's about geometry as a system. You have studied points and lines, induction and deduction, and angle relationships. The next step in your study of geometry is to learn about congruent triangles and some quadrilaterals related to congruent

triangles. Theorems and properties relating to these figures will be presented in this **LIGHTUNIT**. Completion of this **LIGHTUNIT** should prepare you for studying more complex and interesting geometric concepts.

OBJECTIVES

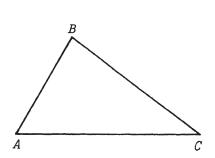
Read these objectives. The objectives tell you what you will be able to do when you have successfully completed this **LIGHTUNIT**.

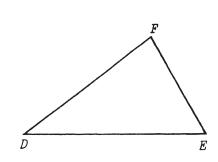
When you have finished this LIGHTUNIT, you should be able:

- 1. To state the definition of congruent triangles.
- 2. To prove triangles congruent by using SSS, SAS, ASA, and AAS statements.
- 3. To prove right triangles congruent by using HL, LL, HA, and LA statements.
- 4. To prove corresponding parts equal when triangles are in normal position.
- 5. To prove corresponding parts equal when triangles are overlapping.
- 6. To prove properties of isosceles triangles.
- 7. To prove inequalities in one triangle.
- 8. To prove inequalities in two triangles.
- 9. To identify the properties of parallelograms, rectangles, squares, rhombuses, and trapezoids.

Survey	the	LIGHTUNIT	. Ask	yourse	If some	e ques	tions a	about	this st	udy. W	/rite yo	ur qu	estions	here

SECTION OBJECTIVES


Read these objectives. When you have completed this section, you should be able:


I. TRIANGLES

- 1. To state the definition of congruent triangles.
- 2. To prove triangles congruent by using SSS, SAS, ASA, and AAS statements.
- 3. To prove right triangles congruent by using HL, LL, HA, and LA statements.

Most of the material goods we use today are mass produced. Every product is produced by the thousands, and all are exactly alike. They are the same size and the same shape. When your car needs a new part, the mechanic can replace the old part with a new one that is exactly the same as the old one. Figures, whether plane or solid, that have the same size and the same shape are called *congruent* figures.

DEFINING CONGRUENT TRIANGLES

All three triangles shown are congruent. One way of describing the situation is to say any one of these triangles can be moved onto any other one in such a way that it fits exactly. To show this fit we can match the vertices of the triangles. This matching can take place in several ways, but only one way will make one triangle fit exactly over the other.

When the vertices are matched as in Model 1, then $\triangle ABC$ will fit over $\triangle EFD$.

When the vertices are matched as in Model 2, then $\triangle ABC$ will fit over $\triangle GHI$.

A matching of vertices in this way is called a one-to-one correspondence between the vertices of the two triangles. The angles at the vertices that are matched are called corresponding angles. Three corresponding sides also match.

Model 3:
$$\overline{AB} \leftrightarrow \overline{GH} \leftrightarrow \overline{FE}$$

 $\overline{BC} \leftrightarrow \overline{HI} \leftrightarrow \overline{FD}$
 $\overline{CA} \leftrightarrow \overline{IG} \leftrightarrow \overline{ED}$

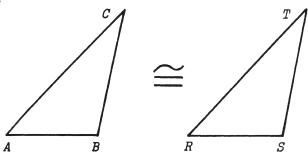
DEFINITIONS

One-to-one correspondence: the situation when each member of a set, such as angles of a triangle, can be paired with one and only one member of another set.

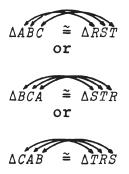
Corresponding angles: angles paired with one another in a one-to-one correspondence.

Corresponding sides: sides paired with one another in a one-to-one correspondence.

For each part (angle or side) of one triangle a corresponding part of the other triangle exists. Therefore, we have a one-to-one correspondence between all six parts of one triangle with all six parts of another triangle.

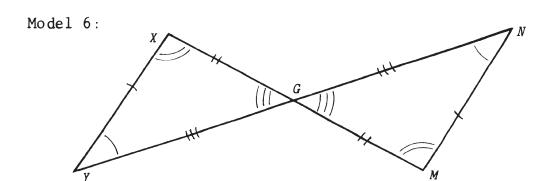

If the one-to-one correspondence of all six parts leads to one triangle fitting over the other exactly, then the triangles are congruent. The symbol for congruent is \cong .

DEFINITION


Congruent triangles: If a one-to-one correspondence between the parts of two triangles is such that the corresponding parts are equal, then the triangles are congruent.

To show which parts correspond to each other, we name the triangles in a special way.

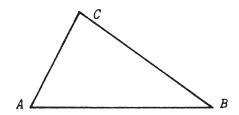
Model 4:


First write the name of one triangle, then write the vertices of the other triangle so that the corresponding vertices are in matching position in the name.

When we draw models of congruent triangles, we often mark pairs of corresponding parts in the same way, to show which parts are equal.

Model 5:

The marks ', ", and " show that YX = MN, YG = GN, and XG = GM.

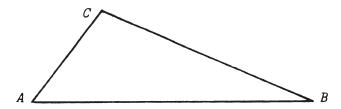


Two more definitions that we will be using are the definitions for included angle and included side.

DEFINITION

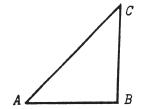
Included angle: the angle formed by two sides of a triangle.

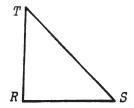
Model:

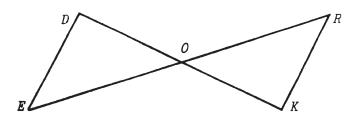


 \overline{AC} is the included angle between sides \overline{AC} and \overline{BC} . $\angle B$ is the included angle between sides \overline{AB} and \overline{BC} . $\angle A$ is the included angle between sides \overline{AB} and \overline{AC} .

DEFINITION

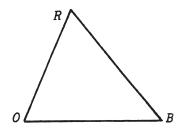

 $Included\ side:$ the side of a triangle that is formed by the common side of two angles.

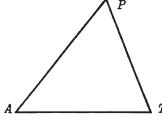

Model:

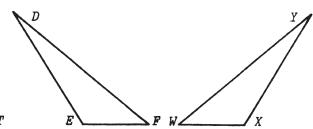


 \overline{AB} is the included side between LA and LB. \overline{BC} is the included side between LB and LC. \overline{AC} is included between LA and LC.

Complete the correspondence so a congruence can be established.


1.4
$$E \leftrightarrow$$


1.2
$$B \leftrightarrow$$


1.5
$$D \leftrightarrow$$

$$1.3 c \leftrightarrow$$

Basing your answer on the appearance of the figures, write true or false.

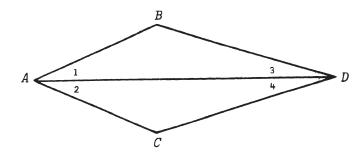
$$\triangle ROB \cong \Delta PTA$$

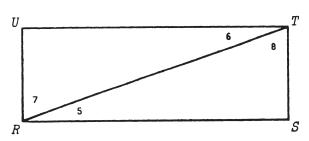
$$\Delta DFE \cong \Delta YWX$$

$$\Delta ROB \cong \Delta PAT$$

$$\Delta FED \cong \Delta WXY$$

$$\Delta RBO \cong \Delta PTA$$


$$\triangle PAT \cong \triangle WXY$$


$$\triangle OBR \cong \triangle APT$$

$$\Delta OBR = \Delta APT$$

$$\triangle ROB \cong \triangle DEF$$

In the following pairs of congruent triangles, complete the pairs of corresponding parts.

- $1.16 \quad \overline{AB} \leftrightarrow$
- 1.22 $\overline{RS} \leftrightarrow$

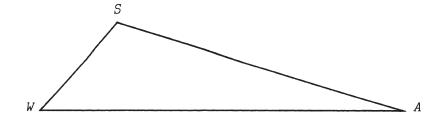
1.17 $\overline{CD} \leftrightarrow$

 $1.23 \qquad \overline{TS} \leftrightarrow$

1.18 $\overline{AD} \leftrightarrow$

1.24 $\overline{RT} \leftrightarrow$

1.19 ∠1 ↔


1.25 ∠5 ↔

1.20 ∠3 ↔

1.26 ∠7 ↔

1.21 ∠ B ↔

- 1.27 *LU* ↔
- Name the included angle or the included side asked for.

- 1.28 Included angle between \overline{WA} and \overline{AS} :
- 1.29 Included angle between \overline{SW} and \overline{WA} :
- 1.30 Included side between LS and LA:
- 1.31 Included side between \(\mathcal{L} \) and \(\mathcal{L} \) \(\widetilde{W} : \)
- 1.32 Included angle between \overline{SW} and \overline{AS} :
- 1.33 Included side between \(\lambda \) and \(\lambda \):