MATHEMATICS 1207 INVERSE TRIGONOMETRIC FUNCTIONS AND POLAR COORDINATES

CONTENTS

I.	THE INVERSE SIN FUNCTION	2
II.	THE INVERSE COS FUNCTION	6
III.	THE INVERSE TAN FUNCTION	10
IV.	THE OTHER INVERSE FUNCTIONS	13
V.	GRAPHS OF INVERSE FUNCTIONS	16
VI.	GRAPHING POLAR COORDINATES	20
VII.	CONVERTING COORDINATES	25
/III.	CONVERTING CARTESIAN EQUATIONS	
	TO POLAR EQUATIONS	30
IX.	CONVERTING POLAR EQUATIONS TO	
	CARTESIAN EQUATIONS	34
Χ.	GRAPHING POLAR EQUATIONS	38

2018 Printing

The material in this book is the product of the Lord's blessing and many individuals working together on the teams, both at Alpha Omega Publications and Christian Light Publications.

Original material copyright ©1978 by Alpha Omega Publications All rights reserved. Revised by permission.

CLP Revision copyright ©1980

Christian Light Publications, Inc.

Harrisonburg, Virginia 22802 Tel. 1-540-434-0768 Printed in USA

INVERSE TRIGONOMETRIC FUNCTIONS AND POLAR COORDINATES

The inverse of a function has been defined as the function resulting from the interchanging of the range and domain sets. The trigonometric functions also have inverses. These functions will be defined and graphed in this LightUnit, and a few applications will be observed.

A set of points (x, y) in the coordinate plane is called a set of Cartesian or rectangular coordinates. Each point and each set of points

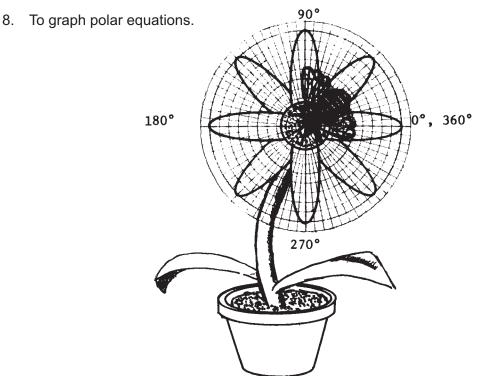
may have many other equivalent expressions. One such expression is the "polar" form or polar coordinate system. Polar coordinates consist of the length and direction of the ray that connects the Cartesian coordinate with the origin. This LightUnit will discuss the relationships that exist between the Cartesian coordinate system and its polar form.

OBJECTIVES

Read these objectives. The objectives tell you what you will be able to do when you have successfully completed this LightUnit.

When you have finished this LightUnit, you should be able:

- 1. To define the inverse trigonometric functions.
- 2. To graph the inverse functions.
- 3. To apply the inverse functions to problem situations.
- 4. To convert Cartesian coordinates to polar coordinates.
- 5. To convert polar coordinates to Cartesian coordinates.
- 6. To graph polar coordinates.
- 7. To convert equations from Cartesian form to polar form and conversely.



I. THE INVERSE SIN FUNCTION

Consider a few first- and second-quadrant solutions to $y = \sin x$.

x rad	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π
$\sin x$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	1/2	0

To form the inverse of a function, interchange the range and domain sets. The result is the following table.

x	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	1/2	0
	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π

First, rename "inverse sin" as "arcsin." Then we have the notation: if $F(x) = \sin x$, then $F^{-1}(x) = \arcsin x$; or if $y = \sin x$, then the inverse is $y = \arcsin x$. This should be read, "y is the angle whose sin is x."

Next, observe from the preceding table of values of the arcsin, that when $x=\frac{1}{2}$, we have two values for arcsin, namely $\frac{\pi}{6}$ and $\frac{5\pi}{6}$. Therefore, arcsin cannot be called a function unless the domain x is redefined so that the arcsin, the function value, is not double-valued. The range will accordingly be restricted to $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$, which will be shown later by the graph.

Now, observe that the domain also has a restriction in that x must be between negative one and positive one: $-1 \le x \le 1$. This domain was the range of the sin function before the range and domain were interchanged.

If $y = \arcsin x$ and $x = \frac{1}{2}$, then $y = \arcsin \frac{1}{2}$; and $y = \frac{\pi}{6}$, $\frac{5\pi}{6}$, $\frac{13\pi}{6}$, ... The solution set is infinite and is called a "general solution." The solution may be written as $y = \frac{\pi}{6} \pm 2\pi K$ or $\frac{5\pi}{6} \pm 2\pi K$, $K = 0, 1, 2, 3, \ldots$

Note: When we refer to π , 2π , $\frac{\pi}{6}$ or any other quantity involving π , radians is implied, even though we seldom say so. For a review on radians, study Section IX of LightUnit 1203, pages 33-37.

STUDY THIS EXAMPLE:

If $y = \arcsin x$ and $x = \frac{\sqrt{2}}{2}$, then $y = \arcsin \frac{\sqrt{2}}{2}$; and $y = \frac{\pi}{4} \pm 2\pi K$ or $\frac{3\pi}{4} \pm 2\pi K$, K = 0, 1, 2, 3...

Note: The use of K in the general solution denotes the set of whole numbers.

COMPLETE THESE ACTIVITIES. Note: You may use the symbol \emptyset for a null or empty set or simply write, "No solution."

1.1 Write the general solution to $y = \arcsin 1$.

1.2 Write the general solution to $y = \arcsin \frac{1}{2}$.

1.3 Write the general solution to $y = \arcsin 0$.

1.4 Write the general solution to $y = \arcsin(0.6428)$.

- 1.5 Write the general solution to $y = \arcsin(0.9659)$.
- 1.6 Write the general solution to $y = \arcsin 1.2$.

GIVEN $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$, FIND THE FOLLOWING SOLUTIONS.

- 1.7 $y = \arcsin \frac{1}{2}$.
- 1.8 $y = \arcsin \frac{\sqrt{3}}{2}$.
- 1.9 $y = \arcsin(0.6947)$.
- 1.10 $y = \arcsin(0.7071)$.

COMPLETE THESE ACTIVITIES.

1.11	Simplify arcsin (sin 40°).
1.12	Simplify arcsin (sin 60°).
1.13	Simplify arcsin (sin).
	$rac{\pi}{2}$
1.14	Simplify $\arcsin (\sin 6\pi)$.
1.15	Simplify arcsin (sin –).
	$rac{3\pi}{2}$

Review the material in this section in preparation for the Self Test. This Self Test will check your mastery of this particular section. The items missed on this Self Test will indicate specific areas where restudy is needed for mastery.

