NutraHacker

Complete Gene Mutation Report for Customer: 028a23b7-9f46-4616-8b5a-39aa49a6e692

Instructions:

NutraHacker reports mutations (single nucleotide polymorphisms) in this uploaded genome. Genes not reported in this report are either normal, not actionable, or not currently detected by NutraHacker. The expected allele is the one seen in a normally functioning gene. The high risk alleles reported are the ones measured from the uploaded genome. NutraHacker reports the effects of these mutations as discovered by published empirical data and suggests nutritional supplements that can mitigate potential issues caused by these mutations.

This report is meant to serve as a guide for nutritional supplementation for the owner of the genome and is not applicable to any other individual. Supplement quantities and dosages are not included as they are indicated on the purchased product. Multiple recommendations for the same supplement does not mean that the dosage should be multiplied. In the case of a conflict (such as a particular vitamin being both encouraged and discouraged), the owner of the genome should assess his/her own personal biology to decide whether to include or discard that particular supplement.

NOTICE:

State law allows any person to provide nutritional advice or give advice concerning proper nutrition--which is the giving of advice as to the role of food and food ingredients, including dietary supplements. This state law does NOT confer authority to practice medicine or to undertake the diagnosis, prevention, treatment, or cure of any disease, pain, deformity, injury, or physical or mental condition and specifically does not authorize any person other than one who is a licensed health practitioner to state that any product might cure any disease, disorder, or condition.

NutraHacker reports are for scientific, educational and nutritional information only and are not intended to diagnose, cure, treat or prevent any disease, disorder or condition.

Thank you for using NutraHacker. To your health!

Gender of customer: Male

A total of 47 mutations were detected at this time for your genome out of the 195 polymorphisms assessed.

There were 15 homozygous mutations.

There were 2 sex-linked mutations.

There were 30 heterozygous mutations.

Please continue to the next page to begin your discovery process.

Category	RSID	Gene	Expected	Genotype: Risk	Genotype Freq	Gene Function	Consequences	Encourage	Avoid
Detoxification	rs2606345	CYP1A1	С	AA: 2/2	11.1603%	Phase I xenobiotic metabolism,	Reduced function of enzyme,	Diindolylmethane	
						PAH's, metabolize E2 to	effects vary with race		
						2-hydroxyestradiol			
Detoxification	rs72547513	CYP1A2	С	AA: 2/2	N/A	Hydroxylation or dealkylation of	CYP1A2*11 allele with	Induce with broccoli,	Curcumin, Cumin,
						xenobiotics, Phase I, metabolize	approximately 5% activity of that	Cabbage,	Grapefruit
						E2 to 2-hydroxyestradiol	of the CYP1A2 wild type	Diindolylmethane,	
								Glucarate, NAC,	
								Cardamom,	
								Sulforaphane	
Detoxification	rs762551	CYP1A2	А	AC: 1/2	46.8902%	Hydroxylation or dealkylation of	Slow to metabolize caffeine, Main	Induce with broccoli,	Curcumin, Cumin,
						xenobiotics, Phase I, metabolize	liver pathway	Cabbage,	Grapefruit
						E2 to 2-hydroxyestradiol		Diindolylmethane,	
								Glucarate, NAC,	
								Cardamom,	
								Sulforaphane	
Detoxification	rs1050450	GPX1	С	AG: 1/2	39.2615%	Glutathione peroxidase functions	Deficiency in glutathione	Selenium, lodine	
						in the detoxificationof hydrogen	peroxidase		
						peroxide, and is one of the most			
						important antioxidant enzymes in			
						humans.			
Detoxification	rs1800668	GPX1	С	AG: 1/2	22.4286%	Glutathione peroxidase functions	Decreased activity of glutathione	Selenium	
						in the detoxificationof hydrogen	peroxidase		
						peroxide, and is one of the most			
						important antioxidant enzymes in			
						humans.			
Detoxification	rs1695	GSTP1	G	AA: 2/2	48.1693%	Conjugation toxins to glutathione	Persons having the alleles AA or	NAC, Whey	Vitamin E
							AG had an increase in		
							inflammatory interleukin-6 (IL-6)		
							upon supplementing		
							alpha-tocopherol (the most		
							common form of Vitamin E in a		
							North American diet) while those		
							with GG saw a decrease.		

Category	RSID	Gene	Expected	Genotype: Risk	Genotype Freq	Gene Function	Consequences	Encourage	Avoid
Detoxification	rs182420	SULT2A1	Α	CT: 1/2	25.5034%	Catalyze the sulfate conjugation	Decreased enzyme function	NAC, MSM, Taurine	
						of many hormones,			
						neurotransmitters, drugs, and			
						xenobiotic compounds			
Neurotransmitter	rs578776	CHRNA5	Т	GG: 2/2	17.0102%	Neuronal acetylcholine receptor	Increased nicotine intake		Nicotine
Levels						subunit alpha-5			
Neurotransmitter	rs4646312	COMT	G	TT: 2/2	50.2164%	Degrades catecholamines, Phase	Decreased COMT activity	Hydroxy B12	Methyl B12, Methyl
Levels						II, inactivates hydroxy-estrogens		(hydroxycobalamin)	donors
Neurotransmitter	rs5993882	COMT	Т	GG: 2/2	6.55660%	Degrades catecholamines, Phase	Decreased COMT activity	Hydroxy B12	Methyl B12, Methyl
Levels						II, inactivates hydroxy-estrogens		(hydroxycobalamin)	donors
Neurotransmitter	rs165722	COMT	А	CT: 1/2	48.9738%	Degrades catecholamines, Phase	Decreased COMT activity	Hydroxy B12	Methyl B12, Methyl
Levels						II, inactivates hydroxy-estrogens		(hydroxycobalamin)	donors
Neurotransmitter	rs4633	COMT	С	CT: 1/2	48.7173%	Degrades catecholamines, Phase	Same amino acid sequence,	Hydroxy B12	Methyl B12, Methyl
Levels						II, inactivates hydroxy-estrogens	lower expression of gene, less	(hydroxycobalamin)	donors
							breakdown of catecholamines		
Neurotransmitter	rs4680	COMT	G	AG: 1/2	48.2074%	Degrades catecholamines, Phase	Slower breakdown dopamine,	Hydroxy B12	Methyl B12, Methyl
Levels						II, inactivates hydroxy-estrogens	oestrogen, worrier, prone to	(hydroxycobalamin)	donors, Cannabis
							anxiety, more sensitive to green		
							tea		
Neurotransmitter	rs2241165	GAD1	А	CC: 2/2	18.8071%	Catalyzes production of GABA	High glutamate, low GABA	Taurine, Theanine,	MSG
Levels						from glutamate		NAC, Glycine	
Neurotransmitter	rs3791850	GAD1	С	AA: 2/2	1.86520%	Catalyzes production of GABA	High glutamate, low GABA	Taurine, Theanine,	MSG
Levels						from glutamate		NAC,Glycine	
Neurotransmitter	rs2072743	MAO-A	Т	C: 1/1	N/A	Oxidizes serotonin, dopamine,	Increased expression MAO-A	Curcumin	
Levels						epinephrine, norepinephrine			
Neurotransmitter	rs6323	MAO-A	G	T: 1/1	N/A	Oxidizes serotonin, dopamine,	Lower expression of MAO A	Progesterone	Curcumin, Estrogens,
Levels						epinephrine, norepinephrine			Androgens
Neurotransmitter	rs2769605	NTRK2	С	CT: 1/2	43.9018%	Neurotrophic tyrosine kinase	Decreased BDNF	Theanine, Curcumin,	
Levels						receptor type 2		Beta-alanine, Lithium	
								orotate,	
								Phosphatidylserine	

Category	RSID	Gene	Expected	Genotype: Risk	Genotype Freq	Gene Function	Consequences	Encourage	Avoid
Folate One-Carbon	rs651852	ВНМТ08	Т	CT: 1/2	48.0752%	Methylates homocysteine to	Downregulation	Phosphatidylcholine,	
Metabolism /						methionine		TMG,	
Methylation (FOCM)								Phosphatidylserine,	
								Zinc	
Folate One-Carbon	rs1801181	CBS	G	AG: 1/2	38.8293%	Adds I-serine to homocysteine to	Upregulation, high taurine, high	Ornithine/Arginine,	Methyl donors,
Metabolism /						produce I-cystathionine	ammonia, high sulfates, decrease	Manganese,	Vitamin B6 (P-5-P
Methylation (FOCM)							in glutatione synthesis	Molybdenum, Zinc,	form ok), Taurine,
								SAMe inhibits, CoQ10	Sulfates, BCAA
Folate One-Carbon	rs1643649	DHFR	Т	CT: 1/2	27.2580%	Reduces dihydrofolate to	Decreased function of enzyme	Reduced forms of	Green tea, EGCG
Metabolism /						tetrahydrofolate		folate, Glycine	
Methylation (FOCM)									
Folate One-Carbon	rs2236225	MTHFD1	G	AA: 2/2	13.0933%	Three distinct enzymatic activities	Increased requirement for choline	Choline	
Metabolism /						related to folate			
Methylation (FOCM)									
Folate One-Carbon	rs1801131	MTHFR	А	GT: 1/2	0.06720%	Converts folic acid to	Low BH4, excess ammonia, low	L-methylfolate,	Folinic acid, Folate
Metabolism /						5-methyltetrahydrofolate	nitric oxide, does NOT lead to	Vitamin B3,	
Methylation (FOCM)							high homocysteine, however high	Potassium, Ornithine,	
							superoxide	Vitamin B6, Vitamin	
							·	B12, Vitamin C,	
								Rooibos, Manganese	
Folate One-Carbon	rs1801133	MTHFR	С	AG: 1/2	39.5976%	Converts folic acid to	When homozygous it's functioning	L-methylfolate,	Folinic acid, Folate
Metabolism /						5-methyltetrahydrofolate	at about 30% of normal, leads to	Vitamin B12,	
Methylation (FOCM)							high homocysteine, folate	Riboflavin for high	
							concentrations lower.	blood pressure,	
								Ribo-5-phosphate	
Folate One-Carbon	rs2066470	MTHFR	С	AG: 1/2	16.4288%	Converts folic acid to	Possible decreased expression,	L-methylfolate,	Folinic acid, Folate
Metabolism /						5-methyltetrahydrofolate	high homocysteine, low	Vitamin B12,	
Methylation (FOCM)							concentrations folate.	Riboflavin for high	
								blood pressure,	
								Ribo-5-phosphate	
Folate One-Carbon	rs1805087	MTR	Α	GG: 2/2	4.79560%	Converts homocysteine into	Upregulation that can deplete	Methyl B12,	
Metabolism /						methionine	methyl-b12.	L-methylfolate,	
Methylation (FOCM)								Lithium orotate,	
mountain (i com)								Grapeseed extract	
	1							Crapeseed extract	

Category	RSID	Gene	Expected	Genotype: Risk	Genotype Freq	Gene Function	Consequences	Encourage	Avoid
Folate One-Carbon	rs1801394	MTRR	А	AG: 1/2	49.3785%	Methylates, recycles vitamin b12	Poor methylation of Vitamin B12	Methyl B12,	
Metabolism /							leading to higher homocysteine	L-methylfolate	
Methylation (FOCM)							levels.		
Folate One-Carbon	rs7946	PEMT	С	CT: 1/2	48.4137%	Converts	Fatty liver due to low choline	Phosphatidylcholine	
Metabolism /						phosphatidylethanolamine to			
Methylation (FOCM)						phosphatidylcholine			
HPA axis / Endocrine	rs2234693	ESR1	Т	CT: 1/2	49.5149%	Estrogen receptor alpha	Female health affected	Diindolylmethane	
HPA axis / Endocrine	rs9340799	ESR1	А	AG: 1/2	39.4495%	Estrogen receptor alpha	Female health affected	Diindolylmethane	
HPA axis / Endocrine	rs1256030	ESR2	С	AG: 1/2	47.4890%	Estrogen receptor beta	Female health affected	Diindolylmethane	
HPA axis / Endocrine	rs1256065	ESR2	А	GT: 1/2	39.8300%	Estrogen receptor beta	Female health affected	Diindolylmethane	
HPA axis / Endocrine	rs1866388	NR3C1	G	AA: 2/2	60.1431%	Glucocorticoid receptor	Mutation associated with	Phosphatidylserine,	
							generalized glucocorticoid	Possibly ketogenic	
							resistance, high cortisol, CFS	diet	
HPA axis / Endocrine	rs852977	NR3C1	G	AA: 2/2	56.1304%	Glucocorticoid receptor	Mutation associated with	Phosphatidylserine,	
							generalized glucocorticoid	Possibly ketogenic	
							resistance, high cortisol, CFS	diet	
HPA axis / Endocrine	rs1544410	VDR	G	TT: 2/2	9.58600%	Vitamin D Receptor	Downregulated Vitamin D	Vitamin D3, Sage,	Methyl donors
							receptor	Rosemary	
HPA axis / Endocrine	rs731236	VDR	А	AG: 1/2	43.3464%	Vitamin D Receptor	Downregulated Vitamin D	Vitamin D3, Sage,	Methyl donors
							receptor, can affect dopamine	Rosemary	
							levels		
Cardiovascular	rs4654748	ALPL	С	CT: 1/2	45.9348%	alkaline phosphatase	Lower concentration b6	Vitamin B6	
Cardiovascular	rs5882	CETP	G	AA: 2/2	33.5376%	Cholesterol ester transfer protein	Cholesterol levels affected	Low fat diet	
Cardiovascular	rs662	PON1	А	CT: 1/2	49.3911%	Major antiatherosclerotic	Glutamine high activity, arginine	Omega-3 fatty acids	High fat diet
						component of HDL	low activity, position 192, Low	like fish oil, Fat	
							serum PON1 activity in NIDDM	soluble antioxidants,	
							may be related to an increased	Vitamin K	
							tendency to lipid peroxidation and		
							may also increase susceptibility to		
							toxicity from organophosphate		
							exposure.		
Cardiovascular	rs2073658	USF1	G	CT: 1/2	29.5620%	Upstream Stimulatory Factor 1	Association higher cholesterol,	Fiber	High fat diet
							metabolic syndrome		
Cardiovascular	rs2516839	USF1	G	CT: 1/2	49.8381%	Upstream Stimulatory Factor 1	Cholesterol levels affected	Fiber	High fat diet

Category	RSID	Gene	Expected	Genotype: Risk	Genotype Freq	Gene Function	Consequences	Encourage	Avoid
Digestion / Elimination	rs11645428	BCMO1	G	AG: 1/2	24.3749%	Key enzyme in beta-carotene	reduced catalytic activity by 51%	Vitamin A	
						metabolism to vitamin A.			
Digestion / Elimination	rs6420424	BCMO1	А	AG: 1/2	49.4600%	Key enzyme in beta-carotene	reduced catalytic activity by 59%	Vitamin A	
						metabolism to vitamin A.			
Digestion / Elimination	rs6564851	BCMO1	G	GT: 1/2	49.5664%	Key enzyme in beta-carotene	reduced catalytic activity by 48%	Vitamin A	
						metabolism to vitamin A.			
Digestion / Elimination	rs7501331	BCMO1	С	CT: 1/2	27.3055%	Key enzyme in beta-carotene	poor converter	Vitamin A	
						metabolism to vitamin A.			
Energy / Oxidation	rs10370	SOD2	G	TT: 2/2	N/A	Mitochondrial Superoxide	Decreased gene function. Noise	Manganese, Vitamin	Alcohol, Noise
						Dismutase 2	induced hearing loss, rs10370	E in tocotrienol form	(greater chance for
							'TT', rs4880 'GG' diplo-genotype		hearing loss)
							(diplotype) was associated with		
							more gray matter shrinkage in 76		
							individuals who report chronic		
							high levels of alcohol		
							consumption.		
Energy / Oxidation	rs4880	SOD2	А	AG: 1/2	48.9123%	Mitochondrial Superoxide	Decreased gene function. Noise	Manganese, Vitamin	Alcohol, Noise
						Dismutase 2	induced hearing loss, rs10370	E in tocotrienol form	(greater chance for
							'TT', rs4880 'GG' diplo-genotype		hearing loss)
							(diplotype) was associated with		
							more gray matter shrinkage in 76		
							individuals who report chronic		
							high levels of alcohol		
							consumption.		