VMFoundrym=~

(Rev 1.2)

Mark Medovich - CTO
‘Websprocket

Design Automation of Supranet
Systems: Benefits for Hardware
Design and Bringup

VMFoundry™ automates the process of
building an embedded system from
libraries that characterize a variety of
low level boot, diagnostic, bringup,
driver, system, process, and platform
behaviors. The libraries are written
entirely in Java and may be extended or
customized by the designer per the needs
of system requirements.

Since Java has many APIs and
abstractions for systems and networks, is
object oriented, has a large developer
base, and is easy to learn, it is an
excellent choice for networked,
embedded system design automation.

Java Applications Converted to
Synthesized Image vs. Java Applications
Running on a Java Virtual Machine and
oS

Java Applications running on a JVM/OS

Java applications are usually compiled to
bytecode. The Java bytecode runs on a
statically compiled JVM which has been
ported to a target (statically compiled)
OS. The software layers of JVM and OS
penalize Java application performance
because of excessive calls between
static, monolithic, procedural software
and dynamic, interpreted, object oriented
software layers. The amount of software
required to run the smallest Java

applications tends to be very large
because the OS and JVM must be
present. There is a much greater
problem. Java assumes a garbage
collected managed memory
environment. The contract and policy
from a JVM's GC and an operating
system's memory management policy
cannot be standardized. Java has
therefore performed very poorly in
embedded system applications that
attempt to use the full breadth of the
Java programming environment. For
example, server applications tend toward
large amounts of garbage creation. This
action over time will fragment memory.
Keeping a separate swap space is
mandatory for memory de-fragmentation
and compacting algorithms. These
problems are addressed via synthesis.

A Synthesized Application

From a programmer’s application
development perspective, there is little
or no difference between writing Java
code for which runs on a JVM/OS or for
VMFoundry™ synthesized runtimes.
Java applications are compiled using a
standard off the shelf Java compiler (e.g.
javac) in either case. For example, if
you write a socket based service on
Java’s .net API, it runs on any platform
that has a JVM. The same Java code can
be synthesized and run directly on
hardware using VMFoundry™. The
synthesized runtime features an object
oriented real-time, and deterministic
garbage collected memory management
system. This solves Java's performance
problems for embedded systems with no
virtual memory. It does so by exhibiting
superior memory management
characteristics.

The synthesized application also exhibits
superior memory footprint
characteristics.

Shortcomings of Java APIs for
Hardware Devices and Real-time

The Java platform lacks APIs for system
components, devices, device drivers,
boot, target debug, processes, and MP.
These APIs are essential for any
embedded system.

Java is flexible enough to be used to
describe APIs for the aforementioned
missing system components.
Websprocket has developed APIs for
device drivers, messages, interrupts,
boot, target debugging and so on, and
logically organized them in a design
hierarchy which is user friendly to an
embedded system designer. Ifa
designer needs to add a component to
the design hierarchy, the WebSprocket
packages are general purpose enough to
accommodate most any need. Once a
physical system design has been
sufficiently described in a platform
design tree, the programmer can build
software for said system completely
from a top down view, that is, from a
Java application itself. Step by step
rapid prototyping examples are given in
later sections of this document.

An embedded system designer can
customize all components necessary to
run the desired application, including
debug, boot, bringup, devices and device
drivers, processes, and user threads. A
target platform is selected by the user,
from the VMFoundry™ platform
libraries.

VMFoundry’s™ platform libraries are
hardware abstractions which
characterize target processor hardware

features, and platforms (e.g.,
development boards, motherboards, etc.)
which integrate said processors on a
PCB with external peripherals, memory,
and bus expansion.

Users may customize platforms with
Websprocket’s architecture specific
porting kits. For example, a custom
design using the ARM CPU core will
have numerous custom features
integrated on an application specific
processor. The APIs of an architecture
specific porting kit allows the user to
define Java classes which characterize
the custom features implemented by the
designer. Once done, VMFoundry’s
synthesizer can synthesize for the
custom target. VMFoundry™ together
with WDKLite™ assume a design
hierarchy organized by package name.
The main components of a design library
are the src folder and the J2ME,
J2ME/J2SE Community Source
Derivatives, or JemINI folders. The
J2ME, J2ME/J2SE Community Source
Derivatives, or JemINI folders contain
the source or class files for Java
foundation libraries used in the design
phase. These can be customized as
needed by the designer. The src folder
contains the WebSprocket packages,
supported motherboard or hardware
development system boards platform
libraries, and code management
administrative utilities. For illustrative
purposes we will explore some folders in
the src folder.

VMFoundry’s Platform package for the
Inte]™ EBSA-285 StrongARM™
development system is illustrated as
follows:

BN Exploting - Platform [_[D]x]

Fls Edb View Do Farcie: * n
., 2, L X

Back Forwand Up Cut
Addess [) COMPachSAZES Flafom 7|
|t Drrver:]
3] FIOHackr
A Fa

) Peietloce

21 chisciis|

Websprocket Platform Library for Intel SA-285

The above files are used to define
hardware abstractions for the
components and features on a
motherboard and it's microprocessor.

In the case above, the SA285\Platform
folder contains classes relevant
specifically to the Intel EBSA-285 board
configuration. As an example, the above
contains a physical abstraction for
defining memory partitions in a physical
system, namely, MemoryPartition.java
in the Kernel package. The Intel EBSA-
285 defines an address range within the
overall system for devices. The range is
denoted as the "CSR" partition. A
designer wishing to support physical
accessors into this partition would define
a unique class which has fields reflecting
the physical system. The SpaceCSR
class above, extends MemoryPartition to
define the "CSR" address partition of the
SA110 peripheral I/O address space in
physical memory. More detail on
physical system abstraction is provided
later in this document.

The Kernel folder contains numerous
synthesizable modules for building boot
behavior definitions, and dynamic
operating system behaviors:

BN Exploting - Kesnel M=l E3
Eb Edt Mew Go Faw* n
L N [
Back Forwerd Up
Aoctess |;| OV e W eh S peasd ~"‘Lj

A sppbcaton hiead) [3] MemopMean.
4| Black k
{3 Beat
] ClacLoace 5
A ClassleacRaqanst (9] Hassa

or 3] CbectMenxy
(3] Page
|9 Fegel bk

9] Secary
A Devcelofiesr. 9] Sind
|3 FieBicck
A Fiebey
A FieMeanscer

|3 Cobector |3 SyaTimes
A IvsrasCorhcler [9] Tagelloade
) e andler [9) eask M aster

1] 10505 A UaMessage
T [9) M

(3] teen et {3 webSprock

A rdemontep

CI— ua
43 cbysctis|

For example, the Boot class in the above
is defines the lowest level of bring up
such as processor state and interrupt
vector table initialization.

As another example, the DeviceManager
object in the above view allows a
designer to create a DeviceManager
instance which acts as a device
repository for a system which needs to
support pluggable devices and drivers.
VMFoundry™ uses these kernel classes
to build a custom object oriented system
for an application, based on the
application needs and requirements.
Websprocket has introduced the idea of
Kernel inheritance wherein a Thread
inherits it's operating system (patent
pending). Naturally, as an entirely OO
design, extensibility is a programmer
and system requirement option.

The WebSprocket net folder is an object
oriented networking library that contains
necessary modules to create custom
network stacks. A visual representation

of the WebSprocket.net’s stack classes

d

Ee Ed Yy Go Fawonles * “
T N (> B
Back Fomvesd Up o

Addiesz I_ CAWMPLe W e precketoes j

| 1% '_.‘.'] MedMesage
ﬁ] HelSemephore
3| Metvnd Stack
8| Pack

A ParstTimer
4| Rap

:..‘] RapPackal
2] Rebraram AT mer

41 obeclfz)

The above libraries accommodate
Java.net's interfaces to a network stack
normally part of an operating system.
Inspection of Jemini's java.net indicates
java.net's native methods call methods of
the above classes.

VMFoundry™ supports designs
compiled with J2ME, J2ME/J2SE
Community Soyirce Derivatives
(Www.sun.com), pr JemINI™

(www.jemini.org). Sun Community
Source licensed libraries and other Open
Source libraries are allow end users and
industry experts to create custom
platforms which are rich enough to
accommodate the target application, yet
perhaps lighter weight than a large
distribution. Customizing libraries
(.lang, .10, .util, .net) may be beneficial
to achieve an increase in performance
and reduce memory footprint for a
particular industry’s needs.

Dynamic and Distributed Threads

Since Java includes Thread in it's
language, the synthesizer uses thread
behavioral models to accommodate the
Java Thread. VMFoundry™ generates
the threads in such a way to
accommodate virtual behaviors as well
as local implementations. Threads in a
given body of code resident on the target
may be dispersed, and actually reside on
a server. This feature allows the
software design of many new possible
implementations such as transparent and
instant services.

Threaded Interrupts, Devices and
other Real-time Considerations

Any embedded system and real time
system naturally must include device
driver support and interrupts.
VMFoundry™ supports Websprocket’s
Device API which allows a programmer
to write device drivers entirely in Java.
The Websprocket device API supports
the notion that device drivers can be
“threaded”. Threads which respond to
real-time messages sent from a device
interrupt service are pre-emptive, hence
determinism is achieved using Java
threads. Interrupt priority schemes can
be user defined. Real-time behavior for
Java via Websprocket’s paradigm is
based on a very simple message
architecture. Any real-time system
requirement can be user defined by
interrupts and threaded device drivers,
service threads and real time messages,
thread priority, dynamic thread
bandwidth allocation, and supervisor
threads. The user defined real-time
messages can pre-empt the currently
running thread and in a few timer ticks,
worst case. Timer granularity is

programmable. 2uS pre-emption has

been measure on a 228Mhz StrongARM.

It is possible to achieve a finer
granularity.

In addition to pre-emption , synthetic
threads allow a supervisor thread to
dynamically assign a thread’s bandwidth
requirements. Dynamic thread time
slicing was designed into the logOS.java
Kernel class using well-known digital
signal processing techniques. Thus, this
feature makes the WebSprocket.Kernel
well suited to media applications. Many
other interesting scenarios are possible
including synthesizing dynamic, non-
monolithic, complete operating systems.

Synthesizing a System

Systems of all types can be synthesized
with VMFoundry™ and platform
libraries. All systems need to be
initialized at boot time so we start with
an example an explanation of the boot
architecture.

1. Boot Levels

The WebSprocket.Kernel and Platform
packages include classes which define a
system boot rational and design
methodology. There are three bringup
or “init levels” defined by the same
number of classes. They are:

* Boot.java
e “ProcessorBoot”.java
e “PlatformBoot” java

Each boot level 1s defined as a thread.
Boot.java’s run method creates for the
synthesized runtime, an object reference
for a system’s memory map and the
memory map’s object memory
partitions. Then, Boot initializes very

low-level system behavioral models for
traps, exceptions, and a provides an
object reference processor entity itself.
The processor entity exists as an object
for the runtime to ensure a
multiprocessing extensibility. Vector
table, trap handler, system resources, and
supervisor threads must be defined in the
first boot level. CPU, ASIC, and
embedded systems designers can tailor
various classes in WebSprocket.Kernel
for the specific needs of the system.
Those who wish to synthesize an
operating system may also customize
Boot and add primal supervisor threads.
The WebSprocket.Kernel package
snapshot illustrates the hardware and
software models for system bringup
requirements. A variety of classes are
provided for debugging, supervisor
threads, signals and so forth. The kernel
Java class files are expressed purely in
the Java language and add no extensions
to the Java language. As such, they are
highly customizable. InterruptController
of the SA28S5 (Platform) directory is
used to characterize the low-level
interrupt handling operation of a
processor. It is possible for the designer
to extend these libraries to incorporate
hardware definition primitives. Said
primitives would inherently be
programmable from the synthesized
system.

The “ProcessorBoot” bring up level is a
class which extends the Boot thread. A

ProcessorBoot class is used to initialize
processor hardware which is not part of
the core CPU architecture. For example,

SPARC, ARM, MIPs etc. specity a core
instruction set architecture definition.
Various implementations of a processor
which utilizes a core often include a
reference MMU, caches, and on chip
debug and test features. These

hardware components are 1nitialized by
the ProcessorBoot. The ProcessorBoot
thread serves as the second initialization
level of booting a system. This 2nd level
of init is typically reserved for virtual
memory layout (e.g. MMU init), and
memory protection definition. The
“ProcessorBoot.java” always reflects the
bringup and configuration specific to the
processor implemented on the target
platform. Therefore, it’s actual name
will reflect the microprocessor it’s
booting. In the case of the SA-285, the
on board processor is the Intel SA-110
StrongARM processor, hence there
exists a StrongARM.java file in the
SA285 directory. StrongARM . java
extends Boot.java of the
WebSprocket.Kernel package.
WebSprocket.Platform.SA285 includes a
PlatformBoot file as well, specifically,
SA285Boot.java. This file can be
considered the blueprint for bringup and
configuration of a “motherboard”.

The PlatformBoot Java source is the 3rd
and final boot initialization level (init
level) and creates logical partitions
(MemoryPartition.java) of the system,
add devices to a device manager
repository, assigns device and system
interrupt handlers, starts device driver
threads, and kicks off system application
threads. Hence, an embedded system
designed with the VMFoundry™
synthesizer requires that the designer
add application threads, device drivers
and devices to the system’s
“PlatformBoot” main() method.
Embedded system designers can easily
modify a PlatformBoot of a given
hardware platform and incorporate
decoded ASICs, peripherals, and other
physical changes to the original target
platform to accommodate custom
designs.

The boot levels are in some ways
analogous to a conventional operating
system init levels. If a designer’s desires
to build a specialized operating system,
the OS’s bring up and boot can be easily
defined with the boot classes to
accommodate supervisors and processes.
Since Java incorporates operating system
attributes in the Java language itself,
most designers will not have a need to
design an OS. Most embedded
designers need the rapid prototyping
feature of customizing a
PlatformBoot.java, then compile,
synthesize, test, and deploy.

Summary

Fig. 3,. is a depiction of the system bring
up. Synthesis of systems allows the
designer to customize boot levels per the
needs of hardware and system
requirements via the WebSprocket
Kernel, and Platform classes. In
addition, hardware abstractions for CPU,
CPU control, Interrupt controller, bus,
devices, device drivers, device
management, system resource
management, security policy, protection
and so on, are defined in Java classes in
the Kernel and Platform. These classes
are used by VMFoundry™ at synthesis
time to create the bare metal extensible
machine.

Fig. 3.
s Boot:
Initialize Vector table
Trap handlers. system
resources. and
supervisor threads.

Processor Boot:
Initialize Cache control,
Caches, MMU,
protections, and
Security.

Platform Boot
Initialize System
Resources, Logical
Partitions, system

clock and console
drivers, device drivers
and kick off application
threads.

Examples

Some code examples will help complete
the mental picture of building an
embedded system with Java, J2ME,
J2ME/J2SE Community Source
Derivatives, or JemINI™ source
distribution, the WebSprocket.Packages,
and VMFoundry™.

As mentioned , the 3 levels of boot are
Boot, ProcessorBoot, and PlatformBoot,
each representing an “init” level for the
system during bring up.

Let’s examine the 1st boot level of an
embedded system based on the SA285
board, by reading the comments of the
source code example, Boot.java:

/* A Boot is part of a WebSprocket.Kernel
package. */

package WebSprocket.Kernel;
import WebSprocket. VM. *;

public class Boot extends Thread {

/* Boot’s run() method performs low level
system initialization. It creates object
references for physical system components
which are needed at runtime*/

public static void run() {

/* 1st we define a MemoryMap for the System

and make it a SystemResource */
mp = new MemoryMap();
SystemResource.setMemoryMap(mp);

/* Define an InterruptController object for

the System and make it a SystemResource */
intrController = new InterruptController();
SystemResource.setIntrController(intrCo
ntroller);

/* Define which processing entity will be the
master for this system and make it known as
a SystemResource - a processor is an object +*
*/
tm = new taskMaster();
SystemResource.setTaskMaster(tm);

/* Create a Boot object reference for the

system and initialize the runtime*/
Boot boot = new Boot();
boot.initialize();

/* Kick off a thread which fulfills Java’s
expectation that a VM actually exists on the
client (e.g., class internals support) */

VM.start();
}
/* Boot's initialize method */
private void initialize(){
/* Create InterruptHandlers for the system.
All interrupt handlers will be of type
InterruptHandler and "registered" in this

array */
handlers = new
InterruptHandler[32];

/* Layout the interrupt vector table for the
system*/

initVectorTable();

/* Define stack area for interrupts®/

initInterruptStacks();

/* Create a DeviceManager for adding devices

to the system and make it a SystemResource*/
devManager = new DeviceManager();
SystemResource.setDeviceManager(dev
Manager);

/* Initialize streams */

System.initlOStreams();

/* Kick off a base level supervisor. You can
define this if you like */
suprThrd = new Supervisor(tm);
suprThrd.start();

b

As can be seen, Boot.java describes the
control flow of the startup of a system.
Memory layout is not done in Boot
because Boot is logically associated with
a processor "core" which may not have
an MMU. The Ist init level of boot is
complete.

The 2nd level of boot is intended to
initialize caches, memory topology and
protection, and start higher order system
threads. The 2nd init is an extension of
Boot. A designer implements the
methods which will be called to perform
the initialization. These methods should
be called from the PlatformBoot’s
main() method.

Therefore, ProcessorBoot serves mostly
as a place holder to accommodate fast
and flexible portability from one
processor to another. For example
StrongARM .java extends Boot.java and
implements methods used to access
coprocessor registers, MMU, and Cache,
registers internal to StrongARM. Other
ARM variations may implement
memory protection and caching
uniquely.

Below is a snippet of code from
StrongARM.java:

/* This method will be called from the
SA285Boot.java (PlatformBoot) to set up the
MMU. Supervisor threads could be started
from method calls on StrongARM.java. */

public void StrongArmMMUInit(){

int accDomainControl = 1;
int temp;

int pageTblBase;

int count;

/* An MMU qualifies as a device. It needs a
region of memory which will not be GC’ed.
MemoryObj of WebSprocket.Kernel is what
is used for physical memory resources. */

MemoryObj pageTblObj;
MemoryMap mp;
/* Disable MMU */
temp = 0;
writeCPControlReg(temp);
/* A MemoryMap object must exist, ..
therefore, go get it */
mp =
SystemResource.getMemoryMap();

/* A page table base has to have been defined

in a MemoryPartition*/

pageTblBase =
SpaceSDRAM.getpageTableBase();

/* Get a non-GC-able MemoryObj for the

page table*/

pageTblObj =
mp.allocateMemODbj("SDRAM",pageTbl
Base,50000,0);

/* Init Page tables, etc.*/
int base = 0;
int pageEntry Value;
pageEntryValue = 0x000COE;
writeTTBase(pageTblBase);
writeDomainAccessBits(accDomainCon
trol);

for(int i=0;i < 16;i++){
pageTblObj.write32(base,pageEntry Valu
©);

base+=4;

pageEntryValue=
pageEntryValue + SZ 1M;

After, the MMU initialization and
protected memory definitions are
established, supervisor(s) threads can be
started as "operating system" processes.
It may be desirable for the system
designer to have secure threads defined
in an inherited ProcessorBoot class for
security purposes. For example, an
embedded system manufacturers may
add supervisors in the 1st or 2nd layer of
boot and only expose the PlatformBoot
source. This would enable 3rd party
developers to add threads only to init
level 3 (PlatformBoot) and not expose
the security or memory protection
model.

Top Down Design

Once a designer or vendor creates a
PlatformBoot.java for a target platform
or motherboard, an end customer,
developer, or user can create custom,
networked applications or embedded
systems from the “top down”.
SA285Boot.java is a
“PlatformBoot.java” program created for
the Intel SA285 StrongARM based
development board. The PlatformBoot
extends a ProcessorBoot and inherits it’s
methods. That is, in this case,
SA285Boot.java extends

StrongARM .java.

If a supplier has already done the work
of building a system and defining a
Boot.java and a StrongARM.java, a 3wd
party developer starts from the top down
by adding threads, devices and drivers to
SA285Boot.java’s main().

Let’s now look at the SA285Boot.java
layer (the 3rd level of system bring up)
and explain with the blue comments:

SA285Boot.java

/* A PlatformBoot is part of a
WebSprocket.Platform package. Platform
packages are a hierarchical means for
organization. For example, the Intel “brutus
board” which is also a StrongARM based
system could appear in the Platform tree in a
Platform.Brutus package. In the case below
it’s the package for the SA285 Platform®*/
package WebSprocket.Platform.SA285;
import WebSprocket.net.*;

import WebSprocket.Kernel.*;
import WebSprocket.Application.*;

/* A PlatformBoot extends a Processor Boot
The SA285 development board uses a
StrongARM processor, hence we are
extending “StrongArm*/

public class SA285Boot extends
StrongArm {

/* We define an SA285Boot and an
InterruptController for the runtime */

public static SA285Boot sa285Boot;
public InterruptController intrCtrl;

/* This is the veritable Java main program.
Those designing applications and systems
based on the SA-28S start here. The first
thing main must do is create an SA285Boot
reference and Kkick off it’s initialization
method. This must be done to define the
runtime topology for the system. For
example, busses, devices, memory partitions,
must be defined per the requirements of the
end design. In this example, we will build a
simple network appliance which starts a
socket based TCP service on a listener port.
*/

public static void main(String[Jargv){

/* Instantiate an SA285Boot and start it’s
initialization */
sa285Boot = new SA285Boot();
sa285Boot.SA285Init();

/* We are inside the main. A top down
designer can add application threads here. If

so desired, they can also kick off application
threads in the SA285Init() method itself. This
example shows the latter.*/

}

/* The init method we just called from
main().*/
public void SA285Init() {

/* My embedded appliance will use a serial
console, a pci peripheral (an ethernet
controller), a couple of interrupt driven
devices, drivers, etc. Therefore, we need an
object for each.*/

SerialConsole console;

Pci pci;

DeviceManager devMgr;

FIQHandler figHandler;

TimerDriver timer;

WatchDogTimer watchDog;
/* now we add the MemoryPartions to the
system. For example, SA-285 has physical
devices mapped to different logical partitions.
PCI, CSR, SDRAM, etc. must each be a
MemoryPartition object in the system */

addSA285MemPartitions();

/* Once we have the MemoryPartition(s)

added to the system, we can call the
StrongARM’s mmu initialization method.

(This method was inherited from
StrongArm.java */

StrongArmMMUInit();

/* We can also set a debug level for the

system. This will be used as the “init” level
which catches debug specific traps (e.g.
breakpoints). */
Debug.setDebuglLevel(Debug. LEVEL 2
)i
/* We are going to want to used
System.out.print a lot so we need a console. It
needs to be a SystemResource*/

console = new SerialConsole();
SystemResource.setConsole(console);

/* Our embedded system would like to have a
repository for device management (like plug

an play)*/

devMgr =
SystemResource.getDeviceManager();

/* We want to register our FIQHandler as the
default handler for ARM based FIQ
interrupts. */

intrCtrl =
SystemResource.getIntrController();
figHandler = new FIQHandler();
intrCtrl.registerHandler(figHandler,0x1c

)i

/* Our appliance is going to have a threaded
device driver. When an interrupt occurs for
the specified device, it will send a real time
message to a listener thread. Priority
permitting, it will pre-empt the currently
running thread and service the interrupt.*/
UsrApplication applThread = new
UsrApplication();
applThread.start();
/* PCl is treated like a device and is a
SystemResource */

pci =new SA285 Pci();

devMgr.addDevice(pci);

SystemResource.setPci(pci);

/* A threaded device driver is instatiated by
passing a listener thread to it’s constructor.
‘We just created the listener thread, so now we
create a device, and pass a listener. When this
device’s interrupt fires, it will send a message
to the listening thread. */

watchDog = new
WatchDogTimer(applThread);

devMgr.addDevice(watchDog);

/* Since there may be numerous interrupts in

the system, we have implemented an
FIQHandler interface which invokes the
servicelnterrupt() of a registered handler*/

figHandler.addHandler(watchDog,14);

/* When all devices are added to the
DeviceManager, it’s init() method */

devMgr.init();

/* We want to build a network appliance so
let’s initialize one. */
related classes
try {
NetworkStack.initialize();
} catch(NetException e) {
Debug.println(Debug. LEVEL 1,
"Boot: NetworkStack init failed");

}

b

/* This is the addSA285MemPartitions()
object we called a little earlier to lay out the
logical partitions in the MemoryMap We
assume every system has memory map in
which a number of MemoryPartions exist.*/

private void addSA285MemPartitions() {

MemoryMap mp =
SystemResource.getMemoryMap();
/* Each the classes named with the Space
header are extensions of the MemoryPartition
class. Instances of MemoryPartitions take a
MemoryMap object in the constructor.*/
sdram = new SpaceSDRAM(mp);

csr = new SpaceCSR(mp);

pciTypeO = new SpacePciTypeO(mp);
pciTypel = new SpacePciTypel(mp);
pciAck = new SpacePciACK(mp);
pciMemory = new
SpacePciMemory(mp);

pcilO = new SpacePcilO(mp);

/* Once all the memory partitions are defined
they are added to the memory map */
mp.addGroupPartition(sdram);
mp.addGroupPartition(csr);
mp.addGroupPartition(pciType0);
mp.addGroupPartition(pciTypel);
mp.addGroupPartition(pciAck);
mp.addGroupPartition(pciMemory);
mp.addGroupPartition(pcilO);

}

private SpaceSDRAM sdram,;
private SpaceCSR csr;

private SpacePciType0 pciTypeO;
private SpacePciTypel pciTypel;
private SpacePciACK pciAck;

private SpacePciMemory pciMemory;

private SpacePcilO pcilO;
}

Summary of Synthesized System

Hardware components are
characterized by Java class files

Runtime components which utilize
hardware are characterized by Java
class files

System bring up consists of three
“levels” described as boot threads:

4 Boot : Vector Table, Trap
Handler, System Resource, and
Supervisor thread.

4 ProcessorBoot: Cache, Cache
Ctrl, MMU, Security class which
extends Boot.

4 PlatformBoot: used to add
SystemResources, create Logical
Partitions, instantiate
fundamental system drivers,
device drivers, and kick off
application threads. Extends
ProcessorBoot.

Boot, ProcessorBoot, and
PlatformBoot relate to core CPU
definition and system initialization,
microprocessor definition and
system initialization, and
motherboard definition and system
initialization, respectively.

Threads may be kicked off in the
boot levels to run supervisor and user
applications.

Embedded systems may be designed
top down from by adding threads and
devices into a PlatformBoot.java
main()

Designs built on the Websprocket
packages, compiled a with standard
Java compiler using the J2ME,

J2ME/J2SE Community Source
Derivatives, or

* J2ME, J2ME/J2SE Community
source and JemINI™ Java based
designs are synthesizable by
VMFoundry™, and require no JVM
or operating system. The designer
however may design a custom
networked operating system in Java
which can be synthesized.

o Synthesized systems work with
VMServer™, the proxy Java Virtual
Machine server, and can classes,
threads, and methods from a remote
server.

Java Software Abstraction of Physical
Systems

package WebSprocket.Kernel

The WebSprocket.Kernel package
includes several class definitions
required for writing a Java threaded
device driver for a synthesized system.
Several classes which we will discuss
are:

MemoryMap.java
MemoryPartition.java
MemoryObj.java
Device.java
DeviceManager.java
InterruptHandler.java
UsrMessage.java
logOS.java
taskMaster.java

MemoryMap, MemoryPartition

The basis for a programmers model of a
programmable platform begins with a
definition of physical decodes of
hardware of a system. Said decodes
definition is commonly referred to as a

“memory map”. The memory map is
needed even for subtle hardware
registers on the microprocessor which
are not commonly used by the system
programmer. The WebSprocket.Kernel
package includes a MemoryMap class
which defines a programmer’s model
for accessing a “memory map” at boot or
during runtime. An architectural
design rule for the Websprocket
paradigm is that systems must have a
memory map, and hence a MemoryMap
object. For a given MemoryMap
instance there must exist a collection of
physical partitions where hardware can
be logically decoded, or “mapped”. The
“mapped” partitions are defined as user

defined instances of
MemoryPartition.java which associate a
group name with the address range of
the physical decodes for said group.
Hence, a system’s memory map consists
of a collection of physical partitions.
Since a memory map and it’s partitions
are so fundamental to programming an
the operation of a system, these objects
must be instantiated during the boot
sequence. By doing so, a system’s
logical partitions are available as
SystemResource(s) (object references)
for the program applications, such as
device drivers, which need to access
low level features of an embedded
device. MemoryMap includes methods
which are used to define logical decoded
partitions, and other methods which
return MemoryObij(s) for device driver
memory requirements. An example of a
MemoryPartition is as follows:

public class SpaceCSR extends
MemoryPartition {

/* Every logical partition in a synthesized
system must extend a MemoryPartition. The
constructor of a partition should program the
following inherited fields*/

public SpaceCSR(MemoryMap mp){
/* Every logical partition must be assigned a
name. This also allows the construction of a
device tree */

groupName = "CSR";

/* This is the actual range of address space
assigned to “CSR” that is physically
decoded/assigned in the system */

startAddress = 0x42000000;
endAddress = 0x420FFFFF;
size = 0x00100000;

/* this assign MUST be there */
parent = mp;
nextFreeAddress = startAddress;

}
}

The MemoryMap instance should have
been created in the initial boot level as
was seen previously in Boot.java.

The physical constants of SpaceCSR are
defined by the hardware. In this case,
"CSR" is an address range decoded by
the SA110 microprocessor and is
reserved for system hardware peripherals
and logic. See:

Details regarding the SA285
development board memory map are
available from the above.

MemoryObj.java

Device drivers require or implement two
types of memory which should not be
garbage collected. Certain devices
require that a device’s on chip memory
be physically mapped into the system.
Low level accessors are needed to
program a device’s on chip registers
with values. These on chip registers
must be assigned a MemoryObj
reference, that is, they must be accessed
with a MemoryObj low level accessor,
such as read8(). Additionally, certain

devices have on chip memory, but also
need system memory for buffer space.
In this case, a MemoryObj must be
allocated and a reference given to the
driver which needs the buffer area.

As an example, an ethernet controller
has on chip registers which are used for
controller setup, operating mode, etc.
These registers are physically decoded
via a bus. Additionally, an ethernet
controller driver needs system memory
for buffer area to transfer data from an
on chip FIFO to system memory. The
system memory buffer must be allocated
and not be garbage collected. A device
driver architect may implement by
declaring MemoryObj(s) in the Device.
Below is a snipet of code from
WinBondEthernetDriver.java available
from Websprocket’s website.

/* registers is a MemoryObj defining the on
chip registers of the Winbond ethernet
controller */

private MemoryObj registers;

int phyAddress; // PHY address

/* these are memory objects used for transmit
and receive descriptors */
// memory for tx/rx descriptors
private MemoryObj txDescriptorMemory;
private MemoryObj rxDescriptorMemory;

/* these are memory objects used for transmit
and receive buffer area */
// memory for tx/rx data buffers
private MemoryObj txDataBufferMemory;
private MemoryObj rxDataBufferMemory;

Therefore, device drivers implement
MemoryObj for a device’s on chip
resources (registers), and a device’s
device driver buffer memory
requirements. MemoryObj(s) will be
discussed in further detail in the context
of this reference.

http://developer.intel.com/design/strong/quicklist/eval-plat/sa-110.htm
http://developer.intel.com/design/strong/quicklist/eval-plat/sa-110.htm
http://developer.intel.com/design/strong/quicklist/eval-plat/sa-110.htm
http://developer.intel.com/design/strong/quicklist/eval-plat/sa-110.htm

Device.java, DeviceManager.java

Devices may be implemented using the
device class. Device is an abstract class
which contains fields for hierarchical
device organization and device
initialization. Every device driver which
extends Device is required to implement
Device’s init() method. The init()
method is called to initialize the states of
hardware control of the device. A
device’s init() method is “automatically”
called by DeviceManager’s init(). A
DeviceManager instance is used in a
system as a convenient device
repository. This class can be used for
plug and play device management for
example. A device can be added to a
DeviceManager by invoking
DeviceManager’s addDevice(Device)
and passing the device object. [Ifa
DeviceManager instance exists in the
system, it must have been assigned by
one of the system’s boot levels and set as
a system resource with
SystemResource.setDeviceManager(Dev
iceManager dm).] This is usually done
in a PlatformBoot’s main() because
embedded system programmers may be
adding devices to a development board
which is shipped by a manufacturer.

We will come back to DeviceManager in
the context of a source code example for
building a network appliance. Let’s
examine a simple interrupt driven,
threaded device driver example via blue
comments.

WatchDogTimer.java

/* This device is part of a Platform package.
That is because it is a device implemented on
the SA28S “motherboard” a.k.a. Platform.
We will be referring to WebSprocket.Kernel
classes so we import WebSprocket.Kernel*/
package WebSprocket.Platform.SA285;

import WebSprocket.Kernel.*;

/* We are building a simple threaded device
driver. A device extends the
WebSprocket.Kernel Device class. Interrupt
driven devices are required to implement the
InterruptHandler interface. */

public class WatchDogTimer extends Device
implements InterruptHandler {

/* We will first define the physical constants
for the system. The int values below are for
the most part the relative addresses for timer
registers, or for timer interrupt enable and
disable. The addresses are relative to */

int FIQEnable = 0x288;

int IRQEnable = 0x188;

int TIMER2LOAD = 0x320;

int TIMER2VALUE = 0x324;

int TIMER2CONTROL = 0x328;

int TIMER2CLEAR = 0x32c;

// load for ~1ms 195 ticks
int SYS _TIMER_PERIOD = 0x{4240; //
earlier Ox1c3

// enable timer, periodic, fclk in/256 prescale
int TIMER2_CONTROL_MASK = 0xCS8;

/* This timer device has on chip registers
which must be physically accessed. We
declare a MemoryObj. */

MemoryObj timerRegs;
/* This timer device will send a real time
message to a listening thread. When the
thread is signaled it will pre-empt the running
thread. */

Thread listnerThread;
/* This device will generate a unique message
which can only be received by a listening
thread. The message is used as a signal into a
waiting thread Q and tells the schedular to
promote the waiting thread to running.*/

UsrMessage msg;

/* Threaded device driver’s constructors
accept a thread which will be used by the
driver as the thread which will handle the
work required of the driver. */
WatchDogTimer(Thread listner){

super();

listnerThread = listner;

}

/* Here’s the device’s init method. This
will be called directly or by the

DeviceManager’s init() per the user’s system
definition. */
public boolean init(){

/* The device gets a reference to this
particular system’s MemoryMap */
MemoryMap memoryMap =
SystemResource.getMemoryMap();

/* Now get a MemoryODbj reference for the
timer registers that are physically mapped in
a given range. This range is usually fixed by
the embedded system designer*/

timerRegs =
memoryMap.allocateMemODbj("CSR",0x320,0x3
6C,0);

/* Now that we have an instance of a
MemoryObj for timer registers, we can use
the write32 low level accessor to program
timer registers */
timerRegs.write32(TIMER2LOAD,SYS TIME
R_PERIOD);

// set prescalers, timer modes, and enables

timerRegs.write32(TIMER2CONTROL, TIMER
2_CONTROL_MASK);

// enable the interrupt bit in the Enable register
timerRegs.write32(FIQEnable,0x20);

/* When we create a unique message, we can
define an integer code (255) which is used to
identify the message. Websprocket LLC has
reserved 0x1000 — 0x3fff and recommends
that the user not use values in this range. A
message should also be instantiated with the
thread that will use the message*/

msg = new UsrMessage(255, listnerThread);

System.out.println("created a message");

/* Messages can be made real time based on
the policy of the processing entity or a
supervisor thread. When this device driver’s
interrupt occurs, we want it’s listener thread
to pre-empt the running thread. */
SystemResource.getTaskMaster().makeRTMessa
ge(msg);

System.out.println("made it RT");

return true;

}

/* Any interrupt driven device must
implement a getMask() method which returns
the mask value for masking and unmasking
it’s interrupt in the system interrupt
controller. */

public int getMask() {
return 0x20;

}

/* Our simple threaded handler. When the
interrupt occurs, servicelnterrupt() gets
invoked. It simply sends a message to the
listening thread and clears out the interrupt.
The listener wakes and does most of the work.

*/
public void servicelnterrupt(){
listnerThread.deliverMessage(msg);
timerRegs.write32(TIMER2CLEAR,0);
}

} /* End of WatchDogTimer */

The summary of the structure of a
device written on the
WebSprocket.Kernel device AP is as
follows:

* Devices extend Device.java and
inherit an init() method which is
called to initialize the device mode
and physical registers.

« Interrupt driven devices must
implement the InterruptHandler
interface and override the
servicelnterrupt() method with the
code that will be executed when a
physical interrupt occurs.

. A getMask() method must be

implemented which returns a field

which used to identify the interrupt
source or to enable/disable this
device’s interrupt (bit) in the
interrupt controller register.

Physical constants of the device are

defined as byte, integers, etc. These

constants define an “offset address”

from a base value associated with a

MemoryPartition, or a value with

which a register will be programmed.

One or more MemoryObj(s) are

e declared for the purpose of providing
a device with an object reference
which can be used to access physical

registers or memory required by the
device.

e A threaded device must be
instantiated with a constructor which
accepts the listener thread.

« Devices which are threaded should

instantiate a relevant UsrMessage

which will be used to signal a

listener thread.

If the device is threaded, it's

servicelnterrupt() should invoke

deliverMessage(UsrMessage um) on
the listener thread and pass the
relevant message.
e A Device is instantiated in the body
of a PlatformBoot’s main() method.
e A Device’s servicelnterrupt()
handler is registered by passing the

device as a reference to the system’s
InterruptController. The system’s
interrupt controller can be used to
implement a user policy for handling
hardware interrupts using a single
interrupt signal. In the case of ARM
and StrongARM devices may share
an interrupt signal (e.g. FIQ) and
report which device asserted the FIQ
via a flag (state) in an interrupt
controller register.

InterruptController;
InterruptHandler.java

Microprocessors usually have external
interrupt signals which are used to
interrupt processor program control
flow. In the case of the Intel SA-285, all
external interrupts assert the processors
FIQ signal. External signals which
transfer program control usually force
the microprocessor to branch to a fixed
location in physical memory. The fixed
location usually contains an instruction
or branch address to code which handles
the exception. Most processors define a
“vector table” which hard codes a branch

address for an external interrupt. The
FIQ signal, when asserted on a
StrongARM, automatically “vectors” the
processor to the instruction located at
0x1C. An InterruptController object
provides a means to assign which
physical signals cause the processor
branch to which “vector” address. The
ARM processor defines it’s vector table
as follows:

Reset 0x00000000
Undefined Instructions 0x00000004
Software Interrupt (SWI) 0x00000008

Prefetch Abort 0x0000000c¢
Data Abort 0x00000010
IRQ 0x00000018
FIQ 0x0000001¢

InterruptController.java provides a
mechanism for registering an interrupt
service routine with a hardcoded vector.
This is done by invoking
InterruptController’s registerHandler()
method and passing an InterruptHandler
and the vector for which it will be used.
For example:

/* figHandler’s servicelnterrupt() will be
called when an FIQ interrupt occurs. (it is
presumed that an intrCtrl reference exists as
a SystemResource */

figHandler = new FIQHandler();
intrCtrl.registerHandler(figHandler,0x 1¢

);

When the FIQ interrupt occurs, the trap
handler must read an interrupt controller
register to determine which external
physical component was responsible for
the assertion. FIQHandler above
implements the InterruptHandler
interface which provides a
servicelnterrupt() method that can be
invoked when a hardware event occurs.
In the case of the SA-285, an ASIC is
used to OR external device interrupt

request signals. The OR’ed signal is
then used to assert the microprocessor
FIQ. It is the FIQ handler’s job to read
the ASIC registers and determine which
interrupt is requesting service. A system
designer may decide to utilize a varying
service schemes and priorities
assignments. Therefore, a designer may
implement an interrupt handling policy
and prioritization on a class which
implements InterruptHandler and
overrides it’s servicelnterrupt() method,
then binding said class to an actual
physical interrupt source. Let’s look at
an example implementation for an FIQ
handler for the SA-285 board.

FIQHandler.java

package WebSprocket.Platform.SA285;
import WebSprocket.Kernel.*;

/* FIQHandler implements the
InterruptHandler interface and inherits it’s
servicelnterrupt() method */

public class FIQHandler implements
InterruptHandler {

/* Since there will be multiple sources for
interrupts a range of “priorities” is defined. */

private static int MAX PRIORITY = 15;
private static int MIN_PRIORITY = 0;

/* FIQSTATUS is the physical offset address
of the interrupt controller status register. */

private static final int FIQSTATUS =
0x280;

/* There is one signal for FIQ interrupts but
there are multiple sources which assert FIQ.
Each source is a unique device with a which
will have a unique driver. Each driver will
implement the InterruptHandler interface to
implement a servicelnterrupt() method for an
interrupt. An array of InterruptHandlers will
be used to register an Device’s interrupt
handler */

InterruptHandler figHandlers[];

/* An ASIC’s interrupt controller registers
are physical and decoded in the system. As
such, they cannot be GC’ed . There must be
accessors which can read and write/mask the
interrupt controller register. We must define
non GC’ed physical resources of a system as a
MemoryObj for the Websprocket paradigm.
*/

private MemoryObj intrRegs;

/* In this example, we want to support up to
16 different handlers */
FIQHandler(){
figHandlers = new InterruptHandler[16];
for(int i=0;i<figHandlers.length;i++) {
figHandlers[i] = null;

/* The interrupt controller’s physical registers
are mapped in the range of offsets of 0x220 to
0x280 on an SA-285 board. */
MemoryMap mp =
SystemResource.getMemoryMap();
intrRegs =
mp.allocateMemObj("CSR",0x220,0x28
0,0)};
/* Interrupt driven Devices can add
themselves to an FIQHandler instance by
invoking addHandler and passing their
reference and an index*/
public void addHandler(InterruptHandler
ih, int priority){
figHandlers[priority] = ih;
}

/* This method may be modified to enforce an
interrupt handling policy. In the example
below, when FIQ is asserted, FIQHandler’s
servicelnterrupt() parses an array for a
handler. If the handler exists, it’s getMask()
is invoked which returns a bitwise mask used
to determine if it is the source for the current
FIQ assertion. */

public void servicelnterrupt() {

/* When the FIQ comes, read the status */
int intStatus =
intrRegs.read32(FIQSTATUS);

/* Scan for a handler */

for(int =MAX PRIORITY;i>=

MIN PRIORITY:i--){
if(figHandlers[i]==null)continue;

/* Check to see if this is the handler for the

current interrupt source */

if((figHandlers[1].getMask() &
intStatus)!=0){
/* If it is, invoke the appropriate service */
figHandlers[1].servicelnterrupt();
break;

}
j
b

/* Don’t need a mask for FIQHandler itself */
public int getMask(){
return 0; }

b

UsrMessage.java; logOS.java

UsrMessage(s) are used in the
Websprocket paradigm to provide an
exact wait and notification, thread pre-
emption scheme for Java. logOS.java is
an object oriented “cell” which
characterizes various system behaviors
in the form of a Java library. Java’s
wait() and notify() provide a general
purpose mechanism for waiting a thread,
and notifying waiting threads, however,
an invoke of notify() on an object has no
deterministic guarantee of notification.
Additionally, a programmer has no way
of knowing exactly which thread of an
object’s wait queue is notified. A
UsrMessage object when created can be
used to directly signal a thread which is
in a “waitingForMessage Q” in the
runtime. A Thread is placed in a
“waitingForMessage Q” by invoking
waitForMessage(UsrMessage uM) on
the thread. The previous threaded
device driver example of
“WatchDogTimer.java” was instantiated
with a “listener thread” which could be
signaled via passing a UsrMessage to

said listener thread. It was presumed in
the example that the listener thread
“exists” in the runtime. ~ We recall in
PlatformBoot.java the design example:

/* Our appliance is going to have a threaded
device driver. When an interrupt occurs for
the specified device, it will send a real time
message to a listener thread. Priority
permitting, it will pre-empt the currently
running thread and service the interrupt.*/
UsrApplication applThread = new
UsrApplication();

applThread.start();

The above code, in the body of a
PlatformBoot.java was used to create a
live reference of a thread which would
be a listener for a subsequently
instantiated threaded device and driver.

/* Here is a listener thread example. It places
the thread into a waiting for message Queue
by invoking the waitForMessage and passing
a simple message with a programmed integer
code field. */
public class UsrApplication extends
Thread {
/* Hope there is a lot of Mike’s out there.*/
String outstring = "Mike is great";
public void run(){
UsrMessage msg = new
UsrMessage(255);
while(true){
try{
sleep(10);

}catch(InterruptedException e){}
/* Thread goes dormant and will only get a
come alive if a deliverMessage is invoked on
this thread AND the message matches the msg
*/

waitForMessage(msg);

System.out.println(outstring);

}
}

}
[waitForMessage(UsrMessage uM) and

deliverMessage(UsrMessage uM)
methods are provided by extending

Java’s Thread with logOS.] A message
which is passed to waitForMessage is
"stylized" by instantiating the message
with constructor parameters that
program the message's fields. Let’s look
back to the WatchDogTimer.java device
driver example. The driver accepts a
listening thread which will be signaled
when an interrupt occurs. The listening
thread, when started, must invoke a
waitForMessage and pass a message
which has been created with a code
identical to the code of a signaling
message. In this case, the driver creates a
UsrMessage with an integer code, and
programs it's messenger field with the
thread reference that it intends to be
signaled via this message. A message
can be transformed into a real time
message which can pre-empt other
running threads. There are two methods
in the Websprocket API which allow the
creation of the real time message.

taskMaster.java

In the “WatchDogTimer” example, we
have invoked the processing entity’s
makeRTMessage(UsrMessage uM) and
passed the UsrMessage we want to make
real-time. A processing entity is defined
in by an binding an instance of
taskMaster.java to a microprocessor.

The existence of a microprocessor
runtime object enables synthesized
machines to be single processor or multi-
processor and support concurrency.
taskMaster’s makeRTMessage can be be
invoked only during a boot level as a
default implementation but other policies
may be implemented. In general, real
time embedded systems would not want
to allow any third party application to
change the real time policy and behavior
of said system. In the event that a new
or interesting need arise, there is a logOS

method which can be used instead of
makeRTMessage.

Rapid Prototyping and Design

Much of the information contained
herein is primarily for research and the
technically curious. A network device
hardware supplier normally “inherited”
boot libraries from a Platform library
which has already been created. In this
case, an embedded network appliance
can be built very quickly. Let’s revisit
the SA285 development board from
Intel. The Websprocket Platform
libraries for the SA285 appear in the
WebSprocket.Platform.SA285 directory
of a design hierarchy for the SA285
board. In the SA285 directory there
exists an SA285Boot.java which
contains the main(). Application threads
can be added to main() which define the
behavior of the embedded system.

Conclusion

Java programmers having access to the
Websprocket tool chain may add threads
and devices to an existing Platform. The
Platform (motherboard) is described by
Java source files in a design hierarchy.
Bring up, boot, system initialization and
definition are Java object instances.
Hardware manufacturers may modify
various levels of Boot, ProcessorBoot,
and PlatformBoot providing a default
system configuration for a
“motherboard”. In general, end
application developers do not have to
modify a Platform library. To build a
network appliance, the application
developer simply adds the devices and
drivers which are relevant to the desired
network device and add the threads of
control which will exhibit the behavior
of the appliance. You do this entirely in

Java from a single homogeneous design
environment, adding application threads
to the “PlatformBoot” main method.

The result appliance is a “Java object”
which seamlessly interoperates with
enterprise applications including the
VMServer, a proxy Java Virtual
Machine which can attend to 1000's of
connected JVM-less clients . The design
can be centrally revised, maintained,
controlled, and upgraded because it is
dynamic.

Performance

VMFoundry™ implements aggressive
optimization policies which are a
combination of traditional optimizations,
and new optimizations made possible via
synthesis. Synthesized code is very
compact and efficient, and is particularly
efficient for object oriented designs.

Optimizations
Memory

A VMFoundry™ provides a classdicer
which automatically removes unused
methods and classes from the target
image, thus minimizing memory.
Classdicing is particularly useful for
network appliance or e-appliance
designers. 50% code size reduction or
more is possible. A Java webserver with
serve-let support, Java file system
support, user shell, line editor, and
supervisor is compiled with the
JemINI™ distribution (over 300
classes) and automatically reduced to
~600K bytes total code and data, and
include TCP/IP, ethernet device driver.
Considering J2ME's 67 basic libraries,
much smaller footprints are achievable
with J2ME.

The above example application runs
directly on hardware, is fully threaded,
classloadable from a proxy server and
no additional software is required.

Custom subsets of the APIs can achieve
a synthesized network appliance design
in ~100K bytes.

Development

VMFoundry™ supports J2ME,
J2ME/J2SE Community Source
Derivatives, or JemINI™ Java libraries.
Websprocket provides an IDE
(WDKLite) for project definition,
project management, compilation,
synthesis, test, and target debug.
WdkLite provides a variety of features
useful for embedded system debug, such
as breakpoint, single step, disassemble in
addition to automatic network
submission to VMFoundry for synthesis.

See the WdkLite data sheet for
information.

Supported Platforms

VMFoundry™ is supported on a variety
of popular platforms. Architecture
targets currently supported are EBSA-
285 StrongARM board, the Q80310
xScale Development board, and the
EVB80200 xscale board . Other ARM7,
ARM9 and ARM10 are available upon
request. However, since the Platform
sources for the above mentioned are
open source, it is a relative simple matter
of creating libraries to support ARM
family boards.

Network Appliance source example:

SA285Boot.java

/* A PlatformBoot is part of a
WebSprocket.Platform package. Platform
packages are a hierarchical means for
organization. For example, the Intel “brutus
board” which is also a StrongARM based
system could appear in the Platform tree in a
Platform.Brutus package. In the case below
it’s the package for the SA285 Platform*/
package WebSprocket.Platform.SA285;
import WebSprocket.net.*;

import WebSprocket.Kernel.*;
import WebSprocket. Application.*;

/* A PlatformBoot extends a Processor Boot
The SA285 development board uses a
StrongARM processor, hence we are
extending “StrongArm®*/

public class SA285Boot extends
StrongArm {

/* We define an SA285Boot and an

InterruptController for the runtime This
bit of code was supplied. You will need an
InterruptController object instance if you
intend to implement any interrupt driven
device drivers.*/

public static SA285Boot sa285Boot;
public InterruptController intrCtrl;

/* This is the veritable Java main program.
Those designing applications and systems
based on the SA-285 start here. The first
thing main must do is create an SA285Boot
reference and Kick off it’s initialization
method. This must be done to define the
runtime topology for the system. For
example, busses, devices, memory partitions,
must be defined per the requirements of the
end design. In this example, we will build a
simple network appliance which starts a
socket based TCP service on a listener port.
Also we’ll build a threaded device driver, add
it to a DeviceManager.

*/

public static void main(String[Jargv){

/* Instantiate an SA285Boot and start it’s
initialization */

sa285Boot = new SA285Boot();

sa285Boot.SA2851nit();

/* We are inside the main. A top down
designer can add application threads here. If
so desired, they can also kick off application
threads in the SA285Init() method itself. This
example shows the latter. The SA285Init()
method is pre-written canned code. If it suits
your needs you don’t have to change it.
Again, we’ll add code to SA285Init() below so
main consists of just 2 lines of code.*/

}

/* The init method we just called from
main().*/
public void SA285Init(){

/* My embedded appliance will use a serial
console, a pci peripheral (an ethernet
controller), a couple of interrupt driven
devices, drivers, etc. Therefore, we need an
object for each. We want to use
System.out.println so we need a console
instance. A pure network appliance may not
want one.*/

SerialConsole console;

Pci pci;

DeviceManager devMgr;

FIQHandler figHandler;

TimerDriver timer;

WatchDogTimer watchDog;
/* now we add the MemoryPartions to the
system. For example, SA-285 has physical
devices mapped to different logical partitions.
PCI, CSR, SDRAM, etc. must each be a
MemoryPartition object in the system . A “top
down” developer won’t have to change this
method. */

addSA285MemPartitions();

/* Once we have the MemoryPartition(s)
added to the system, we can call the
StrongARM’s mmu initialization method.
(This method was inherited from
StrongArm.java . Top down designer doesn't
need to do anything here either because the
default memory management scheme was OK
for our network appliance*/

StrongArmMMUInit();

/* We can also set a debug level for the

system. This will be used as the “init” level

which catches debug specific traps (e.g.
breakpoints). */
Debug.setDebugLevel(Debug. LEVEL 2

);

/* We are going to want to use

System.out.print a lot so we need a console. It
needs to be a SystemResource. SA285Boot
supplied in the Platform directory already

had this code .. we wanted it so we are leaving
it in*/

console = new SerialConsole();
SystemResource.setConsole(console);

/* Our embedded system would like to have a
repository for device management (like plug

an play). We want it .. it was here .. we don’t
have to do anything*/

devMgr =
SystemResource.getDeviceManager();

/* We want to register our FIQHandler as the
default handler for ARM based FIQ
interrupts. Ditto .. we want interrupt driven
devices so we need an mechanism for
handling interrupts. Don’t change a thing*/
intrCtrl =
SystemResource.getIntrController();
figHandler = new FIQHandler();

intrCtrl.registerHandler(figHandler,0x 1¢
);

/* Our appliance is going to have a threaded
device driver. When an interrupt occurs for
the specified device, it will send a real time
message to a listener thread. Priority
permitting, it will pre-empt the currently
running thread and service the interrupt.
Here is the thread instance and start of the
thread we just described above. So we
actually had to write this code*/
UsrApplication applThread = new
UsrApplication();
applThread.start();
/* PCl is treated like a device and is a
SystemResource . The SA285 board is a PCI
board that plugs into a PCI bus .. we don’t
change a thing here*/

pci =new SA285 Pci();

devMgr.addDevice(pci);

SystemResource.setPci(pci);

/* A threaded device driver is instatiated by
passing a listener thread to it’s constructor.
We just created the listener thread, so now we
create a device, and pass a listener. When this
device’s interrupt fires, it will send a message

to the listening thread. This is the device
driver that we wrote and reviewed above in
the WatchDogTimer example. So we had to
write WatchDogTimer.java and insert a few
lines of code here to add the driver*/

watchDog = new
WatchDogTimer(applThread);
devMgr.addDevice(watchDog);

/* Since there may be numerous interrupts in
the system, we have implemented an
FIQHandler interface which invokes the
servicelnterrupt() of a registered handler.
WatchDogTimer is interrupt driven so we use
the addHandler of FIQHandler and pass the
device instance*/

figHandler.addHandler(watchDog,14);

/* When all devices are added to the
DeviceManager, it’s init() method . Don’t
have to do a thing here*/

devMgr.init();

/* We want to build a network appliance so
let’s initialize one. OK .. we want a network
stack! We call NetworkStack’s initialize()
method to create one.*/
System.out.println("Initializing the
Network Stack");

try {

/* Ethernet Driver should be newed before
initializing network */

NetworkDriver nd = new
RTL8139EthernetDriver();

SystemResource.setLocalHostIntrfc(nd);
Router.addInterface(nd, "10.0.0.70");
Router.addDefaultRouter("10.0.0.1", 1);
NetworkStack.initialize(defaultlpAddres
s);
} catch (Exception e) {
System.out.println("exception:
"+ e.getMessage());
e.printStackTrace();
}

//START YOU APPLICATIONS HERE

Websprocket LLC

www.websprocket.com |
408-530-0631
VMFoundry-info@websprocket.com

Websprocket™, VMFoundry™ (patent pending)
VMServer™ (patent pending) are tradenames of
Websprocket LLC; All Rights Reserved
Copyright 1999 Java is a trademark of Sun
Microsystems, Inc.

http://www.websprocket.com/
http://www.websprocket.com/

