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Abstract

This thesis describes the development of an independent, on-board visual servoing
system which allows a computationally impoverished aerial vehicle to autonomously
identify and track a dynamic surface target. Image segmentation and target tracking
algorithms are developed for the specific task of monitoring whales at sea. The
computer vision algorithms’ estimates prove to be accurate enough for quadrotor
stabilization while being computationally fast enough to be processed on-board the
platform. This differs from current techniques which require off-board processing of
images for vehicle localization and control. The vision algorithm is evaluated on video
footage to validate its performance and robustness.

The quadrotor is then modeled to motivate and guide the development of Linear
Quadratic Regulator (LQR) controllers for maneuvering the quadrotor. The con-
trollers are tuned using a motion capture system which provides ground truth state
measurements. The vision system is integrated into the control scheme to allow the
quadrotor to track an iCreate. Additionally, an Extended Kalman Filter (EKF) fuses
the vision system position estimates with attitude and acceleration measurements
from an on-board Inertial Measurement Unit (IMU) to allow the quadrotor to track
a moving target without external localization.
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Chapter 1

Introduction

We wish to develop an autonomous control system for a Micro Aerial Vehicle (MAV)
which uses visual position estimates to identify and track surface targets without rely-
ing on external processing. MAVs are characterized by their small size and payload.
Due to the payload constraints, on-board sensing and processing is limited. Such
platforms could be used as “remote eyes” to collect data quietly and accurately from
a distance. Applications include recording ecosystems without interfering with the
behavior of animals, collecting data for situational awareness, or performing targeted
surveillance.
Current UAVs and Their Applications

Research and development in the field of Unmanned Aerial Vehicles (UAVs) has
been progressing at an astonishing pace. The availability to own and operate such sys-
tems has increased while the price has been dropping dramatically. The wide-spread
availability of Global Positioning Satellite (GPS) systems has enabled the develop-
ment of advanced control systems, allowing novice pilots to simply provide high-level
waypoint commands to the vehicles. Low materials and sensor costs in addition to the
development of open source software has given amateur developers access to sophis-
ticated tools which have dramatically increased the breadth and depth of research in

the field as well as opened the platforms for a wide array of applications. While the
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Figure 1-1: Quadrotor Tracking a Dynamic Surface Target

most well known applications of UAVs are for military operations such as Intelligence,
Surveillance and Reconnaissance (ISR), UAVs have been used to measure atmospheric
conditions and pollution, facilitate disaster relief and emergency management, serve
as a communications relay, and assist in search and rescue operations.

Currently, fixed-wing UAVs are used for the majority of these missions since the
UAVs typically fly in open airspace void of any real obstacles. These vehicles are usu-
ally large, can carry substantial payloads allowing them to perform all computation
on-board, and rely on GPS for position estimation. The MQ-1 Predator UAV shown
in Figure 1-2(a) is a well-known fixed-wing platform used in military operations. How-
ever, their size and reliance on GPS make fixed-wing UAVs unsuitable for applica-
tions in an urban environment. The dynamics of fixed-wing platforms require forward
movement for continuous flight making navigation in an urban environment difficult.
Additionally, their reliance on GPS for position information becomes a hazard in ur-
ban areas where large buildings may cause severe GPS dropouts. Autonomous indoor

navigation would be extremely difficult due to the size and maneuverability of current
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(a) MQ-1 Predator Fixed-Wing UAV [9] (b) Fire Scout UAV [23]

Figure 1-2: Various Forms of Currently Used Unmanned Aerial Vehicles

fixed-wing UAVs as well as the lack of GPS reception.

Rotary-wing UAVs seem uniquely suited to operate in this cluttered urban envi-
ronment. Rotary-wing UAVs have several advantages over their fixed-wing counter-
parts. Primarily, a rotary-wing vehicle is not required to maintain a forward velocity
to sustain flight. The ability to hover permits the vehicle to make heading changes
in cluttered environments which would not be possible with the turning radius of a
fixed-wing vehicle. Additionally, the ability to hover allows the platform to maintain
a sensor’s field of view on a single target for extended periods of time. The ability to
vertically takeoff and land (VTOL) reduces the launch and recover footprint of the
vehicle, thus making it easier to deploy and retrieve. VTOL capability also elimi-
nates the need for landing strips or other launch assisting devices such as catapults.
The MQ-8A Fire Scout shown in Figure 1-2(b) is a typical UAV of the traditional
helicopter design.

Traditional helicopters are mechanically complex systems. A large main rotor is
used to provide lift as well as translational motion. A swash plate assembly on the
main rotor hub allows the pilot to adjust the angle of the main rotor blades during
flight. In order to prevent the body of the vehicle from spinning due to the counter
torque of the main rotor, an additional tail rotor is need. To drive the the tail rotor,
a long drive shaft runs from the main rotor’s transmission to a smaller transmission

in the tail rotor through the tail boom. Furthermore, the tail rotor extends beyond
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the footprint of the main rotor which increases the area required to maneuver the
helicopter safely.

The fundamental quadrotor design has remained relatively simple and eliminates
some of the mechanical complexities characteristic of the traditional helicopter design.
Four rotors are mounted in a symmetrical pattern equidistant from the vehicle’s
center. The motors directly drive the rotors which eliminates the need for a gear
box. Since combustion engines typically have a slow response, electric motors are
used to adjust the rotor speed at the high frequency needed for stable control. While
multiple motors increase the payload capacity of the platform, they also increase
the vehicle’s weight and energy consumption. With four inputs but six degrees of
freedom, the quadrotor is a classic under-actuated system. It is impossible to move
in a translational direction without changing the attitude of the vehicle. These fast
and under-actuated dynamics make it an ideal platform for controls research. The
Ascending Technologies Hummingbird quadrotor is a research level platform which

can be seen in Figure 1-3.

Figure 1-3: The Ascending Technologies Hummingbird Quadrotor in Flight
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Motivation

This thesis describes the development of a small, quiet, and computationally lean
robotic flying camera system that can be used to automate data collection in sup-
port of environmental studies. Our key application domain is surveillance at sea—
observing objects such as whales and boats where the target stands out against a
relatively uniform background. This problem has two aspects we address using com-

puter vision:
1. Using the vehicle’s vision system to detect and track objects at sea.
2. Autonomously controlling the robot using visual position estimates.

Observing whales is important for many marine biology tasks including taking
census, determining family lineage, and general behavioral observations. Currently,
whales are observed manually using binoculars and cameras from the shore or boats.
Notes of their behavior are typically made using pencil and paper. The process is
error prone, non-quantitative and very labor intensive. Human-operated planes and
helicopters are also used, but the data gathered this way is limited. Planes fly at high
altitude, can not hover, and the data collected is limited in duration and precision.
Traditional helicopters can hover and fly closer to the sea surface, but they are noisy
and drive the whales away.

In our first field experiments we used a small hovering UAV to automate the
data collection of whales. Figure 1-4 shows a typical frame from this video data
set. We found that the robot is quiet enough to fly close above the water surface
and not disturb the whales. The robot can hover and adjust its velocity to track
the whales and capture their natural behavior with images of unprecedented detail.
These field experiments were done between August 20-25 2009 when a joint MIT
and Argentinean Whale Conservation team deployed a remote control Ascending
Technologies Falcon 8 robot over the sea at Peninsula Valdez, Argentina to collect

data on Southern Right whales. The team completed several successful missions of
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approximately fifteen minutes each, during which the robot was manually piloted over
groups of whales and video was recorded. Using this data, the goal in this thesis is to
create a computationally impoverished flying robot system that relies on vision-based
position estimates and only on-board processing to navigate, detect whales, and track
whales in order to automate these types of field experiments. This is different than

existing systems that use additional sensors such as GPS or laser scanners for position

estimates or perform off-board processing of the video stream.

Figure 1-4: Sample Frame From Video Footage Recorded in Argentina

Method of Approach

The whale tracking algorithm performs object recognition using a pixel-level clas-
sifier and domain knowledge. Image hue and saturation values are suitable invariants
to segment whales from other elements in the scene. A two-dimensional mathematical
model is created to describe the target. In subsequent frames, individual pixels are
evaluated and assigned a probability of being a target pixel based on their hue and
saturation values as compared to the target model. Groups of high probability pixels

are identified as objects and presented to the user.
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The algorithm was evaluated and extensive results obtained over 13,000 frames
representing Southern Right whales, Blue whales, Grey whales, and Humpback whales.
The data was collected from a variety of angles under varying lighting conditions. The
results of these tests showed 98.99% recall for 3,537 frames of Southern Right whale
footage collected in Argentina. To show adaptability to varying target types, over
5,823 frames of video footage containing boats was evaluated as well. This footage
also displayed the ability of the vision system to track multiple targets with varying
characteristics simultaneously.

The visual servoing control system is built upon the object identification and
tracking algorithms. This ability to position the quadrotor above a moving target
is demonstrated through several indoor experiments. The vision system serves as a
high level path planner, creating a desired trajectory to position the quadrotor over
the target. A traditional quadrotor model is adapted to include the dynamics of an
on-bard attitude controller and the model parameters are learned through a system
identification process. This model is used to formulate Linear Quadratic Regulator
(LQR) position controllers in order to maneuver the quadrotor to a desired state. The
additional payload of the on-board computer and camera makes control difficult. The
weight is essentially a non-aligned constant disturbance which has to be accounted for
with constant offsets and integrator control. Velocity state control is also necessary
for precise position control. This requires accurate velocity signals from either motion
capture data or an Extended Kalman Filter (EKF). The camera is operated at sixty
frames per second, but due to the on-board computational limitations, the vision
system is run only at ten to twenty frames per second. The control commands are
computed at forty hertz.

Our methodology for designing these algorithms begins with developing a base-
level controller using a motion capture system that provides highly accurate vehicle
state feedback at a high frequency. The vision system is used to track a designated

target. The target for the hardware experiments is the iCreate robot as shown in
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Figure 1-1. For proof of concept of outdoor tracking, the whale footage was projected
onto the floor and the quadrotor identified the simulated whales in the image. A
sample image from this experiment is shown in Figure 1-5. Additionally, we remove
the external localization system and replace it with visual position estimates for
controlling the robot. The vision system position estimates are fused with on-board
Inertial Measurement Unit (IMU) data in an EKF to estimate the state of the vehicle.
The robot was able to reliably track the moving surface target independent of any
external localization source. This ability would be useful for urban environments or

indoor settings when external localization such as GPS temporarily drops out or is

completely unavailable.

Figure 1-5: Tracking of Projected Whale Video Footage

Technical Challenges

A key challenge in this thesis is to avoid the reliance on an external processing
source in order to develop a system robust to communication dropouts. A communi-
cation link is often used to transfer images and control commands between the robot

and a ground station. Wireless bandwidth may be limited in areas and not provide
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the means to transmit images at a servoable frequency when processed off-board.
While image compression techniques could increase transmission rate, it could also
create artifacts which may negatively impact the performance of computer vision al-
gorithms. Any delays in the system could result in unstable flight trajectories due to
the fast and under-actuated dynamics of the quadrotor. The system resulting from
this research is therefore capable of operating at longer ranges and is generally safer
than one relying on external processing.

Computational efficiency is a key issue in this work and considerable time was
taken to develop a vision algorithm that was not only accurate but also computa-
tionally fast. Initially, image gradient-based feature tracking was used to track the
intended target, however this was abandoned for the proposed method using hue
and saturation values. The proposed method is highly user intuitive and produces
accurate results for varying video footage quality.

The fast dynamics of the quadrotor require a fast controller for stabilization. A
classical PID controller was implemented initially but was replaced by a set of LQR
controllers derived from a validated system model. The quadrotor’s fast dynamics
also amplify any delays in the system and creates instability. The system architecture
was modified to utilize a global system timestamp to more accurately process sensor
measurements which improved the state output of the filter. Hardware pieces were
designed and redesigned to reduce weight as much as possible. In the end, these
challenges were overcome to produce an autonomous visual servoing system utilizing

only on-board computation.

1.1 Contributions

The ability for MAVs to autonomously navigate in an outdoor environment in-
dependent of external processing and localization is currently a highly desirable yet
elusive capability. Current independent outdoor navigation systems rely on a com-
bination of GPS and Inertial Navigation System (INS) measurements processed on-

board a microcontroller. Alternatively, systems using cameras or laser scanners for
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localization and control rely on off-board processing. There is a need for systems
that are able to navigate in unknown and/or GPS denied environments. In turn,
autonomous reliable navigation will enable solutions to higher-level tasks such as
exploration and multi-vehicle trajectory planning. While large UAV systems have
utilized on-board computation for image processing and localization, this capability
is currently unavailable for smaller MAV systems. An autonomous MAV is essential
for indoor operation or environments where agile movement is critical.

Towards these goals, our contributions include:

e Fuast Object Representation and Identification Algorithms for Computationally
Impoverished Platforms - An image segmentation algorithm is presented which
proved to be of high accuracy while being computationally efficient enough to
run in real time. This algorithm was tested on varying object types, can be used
to track multiple objects of differing characteristics, and is capable of creating

a trajectory to servo a vehicle.

e Model Adaptation, Simulation, and Controller Synthesis - The classical quadro-
tor model is adapted to take advantage of the on-board attitude stabilization
system. The model is developed in MATLAB’s Simulink toolbox with parame-
ters learned from real test flight data. This infrastructure can be easily adapted
for other quadrotor types and be used to simulate and validate various types
of position controllers. Based on the validated model, LQR position controllers

are designed and implemented.

e On-board IMU and Monocular Vision Based Control for a Computationally Im-
poverished Platform - A control scheme is developed for completely on-board
visual servoing. Both the control and image processing algorithms are executed
on-board the quadrotor platform. The visual position estimates are used to
create a desired trajectory along with motion capture state feedback. Further,

the visual position estimates and on-board IMU data are used as inputs to an
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EKF to provide accurate state estimation with minimal delay.

e FExperimental Verification of the Visual Servo Control Schemes - In physical
hardware experiments, the performance of the vision and control systems were
evaluated. The iCreate target was programmed to move in a varied trajectory
at a constant speed. Utilizing the motion capture system for state feedback, the
quadrotor tracked a surface target using position estimates from the vision sys-
tem. Estimated state feedback computed on-board was then used to maneuver

the quadrotor as it reliably tracked the iCreate.

1.2 Thesis Overview

This thesis is divided into six chapters. Chapter 2 presents related work in the
areas of quadrotor vehicles, image segmentation and identification, and visual servo-
ing. Chapter 3 describes the experimental set-up to motivate the development of the
object identification algorithms as well as the visual servoing control systems. The
camera modeling and calibration process is discussed as well as the quadrotor mod-
eling and system identification process. This chapter also explains the development
of the EKF used for state estimation. Chapter 4 discusses the development of the
image segmentation algorithm as well as the target tracking algorithm. Chapter 5
describes the derivation of the low level controller for stable quadrotor flight. Chap-
ter 6 presents an evaluation of the proposed vision algorithms utilizing whale video
footage. The results of several experiments utilizing the vision algorithms to track a
moving surface target are also presented. Chapter 7 concludes the thesis and presents

lessons learned as well as several areas of future research.
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Chapter 2

Related Work

This thesis builds upon a large body of work in:
e Developing MAV systems.
e Developing algorithms for object recognition and tracking.

e Developing visual servoing control systems.

2.1 General Background

The quadrotor is not the most well known form of a rotary-wing vehicle, yet its
unique design dates back to August 24, 1907 when the Breguet-Richet Gyroplane No.
1 lifted a few feet off the ground in France [58]. This model used a single engine to
drive all the rotors and was therefore underpowered and lacked a proper means of
control. It was not until 1956 that D. H. Kaplan demonstrated the ability to control
the aircraft attitude using differential thrust [33], but this design modification has
stayed consistent through current production and research models.

Popular hobby models today include the MiKroKopter [68] and the Dragan-
flyer [46]. Recent advances in on-board microprocessors, micro-electro-mechanical-
systems (MEMS) inertial sensors, high density power storage, and integrated minia-

ture actuators have enabled these quadrotor vehicles to be outfitted with on-board
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attitude stability. This drastically increases the ease of use of the platform and has
made the quadrotor more accessible to amateur pilots and researchers. The Parrot
AR Drone has two on-board cameras and is able to be flown via an iPhone ap-
plication [26]. The microdrone md4-200 is also a commercially available quadrotor
platform equipped with an on-board camera [63].

On-board cameras are becoming one of the most common sensors on-board both
commercial and research quadrotor platforms. Typically the cameras are used for
surveillance and inspection operations. Computer vision techniques are currently
being applied to identify and track marine animals to aid marine biologists [53,54,79]
and even to help mitigate damage to whales during US Navy sonar operations [83].
Currently, research is being done in the area of visual odometry which allows the
quadrotor to stabilize based on feedback from the vision system [2]. When Global
Positioning Satellite (GPS) reception is available, outdoor systems can utilize target
tracking algorithms to follow a target by creating a series of desired GPS waypoints

[52].

2.2 Quadrotor Development and Applications

Current research in the control of quadrotors has its origins in research by Hauser
et al. who used a minimum phase approximation with input-output linearization on a
Harrier jump jet aircraft model [36]. This method was later improved beyond slightly
nonminimum phase systems to strongly nonminimum phase systems by Martin et al.
[61]. Shim et al. evaluated the effectiveness of linear multi-variable control, fuzzy logic
control, and nonlinear tracking control on a traditional helicopter model [84]. Using
a similar traditional helicopter model, Frazolli et al. presented a tracking controller
which avoided the artificial singularities introduced from attitude parameterization
[31]. Young et al. developed a quadrotor tail-sitter vehicle which combined a flying-
wing design with quadrotor propulsion. This unique design resulted in a vehicle with
both hover capability as well as high-speed aerodynamic efficiency [92].

Extensive modeling of the quadrotor platform in the early 2000’s as well as the
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development of advanced control techniques for attitude stabilization marked the
beginning of considerable research interest in this platform. Hamel et al. developed
a generic quadrotor model which included aerodynamic and gyroscopic effects in
addition to the airframe and motor dynamics [35]. A joint collaboration between
Commonwealth Scientific and Industrial Research Organization (CSIRO) and the
Australian National University lead to the development of the “X-4 Flyer” quadrotor
platform [75]. The second generation was presented in 2004 [78] which improved
the mechanical design based on simulation results and extensive modeling of roll
and pitch rotor damping as well as blade flapping [22]. The authors were able to
achieve stable attitude control in the roll and pitch axis in tethered flight [22] and
even outdoor autonomous flight [77]. Early work using vision feedback as a primary
sensor was done by Altug et al. [5]. A ground camera was used to estimate the pose
of the helicopter and a feedback linearizing controller as well as a backstepping-like
controller were presented.

With over a decade of research into the modeling and control of the quadro-
tor platform, the vehicle has become popular in aerial vehicle research around the
world. cole Polytechnique Fdrale de Lausanne (EPFL) has developed the “OS4”
quadrotor [11,12], the French Alternative Energies and Atomic Energy Commission’s
(CEA) unique quadrotor used four blades per motor [70], and Cornell’s Autonomous
Flying Vehicle was built using commercially available parts [72]. Stanford developed
a quadrotor known as STARMAC which is used to implement decentralized control
algorithms [40]. Utilizing the STARMAC platform, controllers have been designed
which compensate for blade flapping and thrust variation while performing a com-
plicated stall turn maneuver [41,45]. MIT’s Aerospace Controls Laboratory (ACL)
developed the Real-time indoor Autonomous Vehicle test Environment (RAVEN)
system to evaluate algorithms for multi-agent missions as well as low-level controller
performance [42].

Research has now progressed beyond design, construction, and basic attitude sta-
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bilization of the quadrotor platform and into investigations of control strategies for
advanced trajectory following. The Ascending Technologies quadrotors have enabled
researchers to focus on position control by providing platforms with robust on-board
attitude controllers [34]. MIT’s ACL developed simple LQR. controllers based on lin-
earized quadrotor dynamics which allow multiple aerial vehicles to follow unique tra-
jectories simultaneously [89]. Salazar-Cruz et al. utilized nonlinear control laws with
nested saturations to stabilize the quadrotor around simple planar trajectories [81].
Lupashin et al. used a learning strategy to perform high-speed simultaneous flips with
the quadrotor [60]. At the University of Pennsylvania, Mellinger et al. developed ag-
gressive trajectories which allowed quadrotors to maneuver through small windows

and perch on nearly vertical surfaces [66].

2.3 Object Recognition

The field of computer vision has an extremely large literature in image segmen-
tation, object representation, and object tracking. Several novel image processing
methods have been introduced and improved. This thesis uses image thresholding
techniques based on the Hue-Saturation-Value (HSV) color space. It was shown that
object identification has distinct advantages when using the HSV color space com-
pared to the classical RGB color space in [87].

Traditional segmenting methods rely on image thresholding by assigning pixels
to a user defined number of classes. Otsu’s method is an “optimal” thresholding
algorithm which minimizes the variances between pixels in a class while maximizing
the variance between classes [74]. Similarly, the Niblack algorithm [71] uses infor-
mation about neighborhoods of pixels but requires extra tuning parameters which
would make the resulting system vulnerable to lighting or environmental changes in
the image. Techniques such as graph cuts and Maximally Stable External Region
(MSER) work well on real world scenes but are computationally expensive. In graph
cuts, each pixel is a vertex and edges are computed as the absolute value of the dif-

ference in color between pixels on the edge. After each iteration, edge weights below
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a certain threshold are removed and the adjoining pixels are classified as a single
vertex [15,29,80]. MSER considers the set of all possible thresholding values of an in-
tensity image and groups pixels into regions whose size remains relatively unchanged
across varying threshold levels [62].

The methods described are unique in that they attempt to automatically segment
the image into different regions. An alternative approach is to describe the intended
target by isolating certain characteristics of the target such as color or texture. This
results in creating histograms which describe the entire image in terms of a specific
characteristic. Hopefully, the intended target can be identified by a distinct peak in
the histogram. Algorithms such as k-means clustering attempt to optimally isolate
the strongest peaks in the data [18,49,51]. The Meanshift algorithm [32] differs from
k-means by removing assumptions about the number and shape of the clusters. This
algorithm performs gradient ascent on the histogram to find relative maxima in the
data. All bins associated with the same peak are clustered together and can be used
to identify and track a target [21]. The Camshift algorithm is an extension of the
Meanshift algorithm which adapts the peak searching window size and has been used
to segment moving targets [4]. Integral histograms developed by Porikli claim to be
more accurate and computationally efficient than the Meanshift algorithm [76].

Additional methods are based on a known model of the intended target. If the
cameras are fixed and the background is constant, foreground extraction techniques
can be used as well as motion detection to identify targets moving in the image
[16,18,91]. If labeled information is available, classifiers can be trained on sample
data to learn a model of the object in a technique known as template matching
[47,57]. Also, particle filter based tracking algorithms have been applied to the
tracking problem resulting in the Condensation algorithm [56,90].

Instead of analyzing the relationship between the camera’s position and a target
in the image frame, visual odometry attempts to extrapolate the camera’s position

and orientation using features in the image. Popular feature detectors today include
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SURF [8] and SIFT [59] which use the RANSAC algorithm [30] for outlier detection.
By detecting the movement of these features through several frames, the motion of the
camera can be estimated [73]. Monocular SLAM techniques have also been developed

to localize the camera system based purely on visual information [24].

2.4 Visual Control of Aerial Vehicles

A good review of vision based control of aerial vehicles is found in [55]. The goal of
this thesis was to create a completely on-board, independent navigation and tracking
system. Typically aerial navigation systems involve the use of a GPS sensor [6,50,52]
to provide accurate target tracking capabilities.

Cameras are quickly becoming an important sensor for autonomous navigation
because they are small, passive, and consume low amounts of power. Other quadro-
tor systems use additional sensors such as laser scanners to provide accurate pose
estimation but these can be heavy and a power burden [2,38]. Laser scanners often
utilize SLAM techniques to estimate position which is not only highly computation-
ally expensive, but also may require prior knowledge of the environment. Soundararaj
et al. and Ahrens et al. performed visual SLAM to navigate a quadrotor in an indoor
environment relying on off-board computation [3,86]. Stereo cameras are also popular
but this technique loses accuracy as the distance from the target increases [43].

There has been a specific interest in using visual position estimates for autonomous
landings, but these systems often use special landing pads that allow accurate position
and attitude estimation [48,67,82]. The reliance on a predefined target is not practical
when the system needs to track targets of varying and unknown characteristics.

Many vision-only systems require off-board computation since the platform is too
small to carry a computer capable of executing the necessary algorithms at a fast
enough frequency [19,20,27,88]. Additionally, many of these vision-only systems
have no means of estimating altitude [19,69]. Instead, an additional sensor is used or
the altitude is controlled manually.

Finally, the vision system developed in this thesis is based on the estimated cen-
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troid of the intended target. Many vision systems use feature finding techniques such
as optical flow [19,39,65,86]. Soatto et al. [85] developed forms of the implicit Ex-
tended Kalman Filter (EKF) which incorporated vision based measurements into the
EKF by making use of the epipolar constraint. Roy et al. utilized a machine learning
classifier to distinguish targets from the background and perform geo-location of the
identified target [37]. The estimated target position was then combined with a GPS
position to autonomously track a moving vehicle.

At the time of this thesis, current work at Eidgenssische Technische Hochschule
Zrich (ETH) is progressing towards the development of systems using visual feedback
fused with IMU data processed on-board a quadrotor platform. Pollefeys et al. [64]
developed the PIXHAWK platform which utilizes four cameras for localization, pat-
tern recognition, and obstacle avoidance. Computation occurs on-board two separate
dual core processors and an artificial marker localization scheme is used. Siegwart et
al. [10] use visual SLAM techniques to control the position of a tethered quadrotor
vehicle. In untethered experiments, a specific circular landmark was used to extract

the vehicle state from image information [28].

2.5 Context for This Research

This research builds upon the previous literature in several distinct areas. The
basic nonlinear model of the quadrotor was taken from the literature and modified by
altering the control inputs as well as estimating the dynamics of the on-board attitude
controller. Many models use desired motor speeds as control inputs. However, the
quadrotor used in this thesis had an on-board attitude controller to compute the
motor speeds. Since we did not need to perform any aggressive maneuvers with the
vehicle, aerodynamic effects such as blade flapping were ignored.

In the discipline of computer vision, this research diverges from the computation-
ally expensive image segmentation methods such as graph cuts or k-means clustering.
Otsu’s method, for example, only works for two distinct pixel classes and would be

unsuitable for this application where the target and background could have similar
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characteristics. Instead, we use the HSV color space as suggested by previous work
to create a simple yet accurate two-dimensional model of the target. This method is
computationally fast, easily portable, and open to user interaction.

The control schemes we present in this research build upon previous work combin-
ing computer vision-based feedback and control. Feature based localization is useful
for navigating static indoor environments but can provide noisy and inaccurate ve-
locity estimates when applied to a static and slightly uniform background such as
the ocean. Some vision-based localization methods rely on off-board camera systems
which are not practical for our proposed scenario. Reliance on off-board computation
requires images and control commands to be transmitted wirelessly, leaving room for
interference with the signals. By performing the computation on-board, this system
avoids these complications as well as potential time delays. The method of altitude
estimation in this research is accurate at low altitudes which is advantageous when
compared to pressure sensors which have significant drift errors. The combination of
feedback from a vision system and IMU measurements has been successfully imple-
mented in the previous work of others. We take this feedback strategy and implement
the state estimation and image segmentation completely on-board the vehicle. The
result is a visual servoing system which utilizes vision-based position estimates and
IMU measurements for control without relying on external localization or process-
ing. This makes our system capable of operating without GPS updates for extended

periods of time.
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Chapter 3

Experimental Set-up

We address the problem of tracking objects at sea by using an autonomous quadrotor
robot equipped with a downward-pointing camera and an on-board computer. In this
section we detail the hardware and software architecture of this system and highlight
the intrinsic constraints that have motivated our solution to visual object recognition
and visual servoing. We also describe the specifics of the experiments used to validate
the proposed control strategy in hardware. The quadrotor was tasked with identifying

and tracking a programmable surface target.

3.1 Laboratory System Architecture

We utilize an Ascending Technologies Hummingbird [34] quadrotor extended with
a CompulLab fit-PC2 computer and a Point Grey Firefly MV2 camera. The quadrotor
is controlled using the vision-based control strategy we describe in Chapter 5 with
position estimates from the object identification and tracking algorithms we present
in Chapter 4. A Vicon motion capture system is used to measure the ground truth
pose of the quadrotor and the target.

The network topology for the hardware experiments is summarized graphically in
Figure 3-3. The solid lines represent wired Ethernet connections and the dashed lines

represent wireless connections. This figure includes the computers necessary to use
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\

Figure 3-1: Quadrotor Outfitted With fit-PC2 and Firefly MV2

the Vicon motion capture system. This system outputs the position and attitude of
the quadrotor and target at 120 Hz with sub-millimeter accuracy and minimal delay.
The motion capture data is forwarded to the fit-PC2 via an 802.11 UDP connection.
A laptop is used to remotely run the commands on the fit-PC2 via a wireless SSH

connection but no computation is performed on the laptop during the experiments.

(a) Target Used for Experiments (b) Vision System Output of Target

Figure 3-2: Views of the iCreate Target Used for Hardware Experiments
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The target for the robot tracking experiments was a 21.5 x 28.0 cm blue clipboard
mounted onto an iRobot iCreate as shown in Figure 3-2(a). The iCreate was pro-
grammed to follow a specific trajectory at a constant speed and direction. For these
experiments, the iCreate moved at a desired speed of 2.5 cm/s. Figure 3-2(b) shows

a sample output frame of the vision system tracking the iCreate.
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Figure 3-3: Experimental Network Topology

3.1.1 Experimental Hardware

The vision system is used to provide high-level position control of an Ascending
Technologies Hummingbird quadrotor vehicle. The Hummingbird is 40 x 40 x 10 mm
in size weighing 550 g out of the box. The maximum recommended payload is 200 g
for a flight time of twelve minutes running off a single 11.1 V Lithium Polymer (LiPo)
battery. On-board, the Hummingbird is equipped with a Global Positioning Satellite
(GPS) receiver, compass, and a Micro Electro-Mechanical Systems (MEMS) gyro.
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Autonomous position control is executed by sending low-level attitude commands to
the on-board attitude stabilization control via a serial interface. It is possible to
modify the on-board pre-programmed attitude control system, but this is typically
only done when the quadrotor needs to execute harsh maneuvers. For this research,
the quadrotor was intended to hover stably and the on-board attitude controller was
sufficient.

The standard Hummingbird quadrotor is outfitted with at fit-PC2 computer and
Firefly MV2 camera system. A bracket was 3-D printed to mount the camera and fit-
PC2 to the bottom of the quadrotor. A USB to serial cable was used to interface with
the quadrotor AutoPilot board and a power cable split the on-board battery power
between the quadrotor and fit-PC2. A significant experimental issue was powering
the equipment. The full system combines for a total payload of 535 g, well above the
recommended maximum payload of 200 g for this platform. The additional weight
combined with the added power requirements of the computer and camera results
in a flight time of about six minutes, roughly half the normal flight time. The final
experimental configuration of the quadrotor is shown in Figure 3-1.

All computation is executed on-board a CompuLab fit-PC2. This computer is
only 101 x 115 x 27 mm in size and weighs 300 g. It operates off the same 11.1 V
battery as the quadrotor and consumed 8 W at full CPU load. The fit-PC2 contains
an Intel Atom 7550 2 GHz processor with 2 Gb of RAM. It is equipped with 6 USB
2.0 ports, an 802.11n WLAN card, and is booted from a 16 Gb SD card. The solid
state drive is more robust to crashes than the common disk drive and is also very
lightweight.

Currently, popular on-board computation systems such as the Gumstix rely on the
ARM processor. However, the Atom processor has several unique advantages when
compared to other processors. Primarily, since it uses the x86 architecture, it enables
the user to install standard operating systems. This processor also allows for the use

of standard drivers for devices such as the wireless network card and Firefly camera.
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This results in a system that can be easily reproduced and upgraded. Additionally,
the Intel Performance Primitives (IPP) are available for the Atom processor. This
performance library can be integrated with the open source computer vision libraries
(OpenCV) [17] to boost performance of common image processing and computer
vision functions.

Images are transferred over a USB 2.0 connection from the Firefly MV2 to the
fit-PC2. The images are downsampled to 320 x 240 pixels. For the visual servoing
experiments, the intended target is relatively large in the image. Therefore, down-
sampling does not result in a loss of a large amount of information about the target.
This improves computational efficiency without a large sacrifice in accuracy. The
camera is capable of 640 x 480 pixels at sixty frames per second but in practice the
on-board computation limitations results in a frame rate around twenty frames per
second. Off-board processing of the image would require wireless transmission of
image data. This additional processing and potential for interference would further

reduce the frame rate.

3.1.2 Software Architecture

The software architecture is described in Figure 3-4. Several modules are run
simultaneously on the fit-PC2. Message routing between modules as well as data
logging is handled by the Lightweight Communications and Marshaling (LCM) library
[44]. Developed by the MIT DARPA Urban Challenge Team, LCM was designed
for tightly-coupled systems connected via a local-area network. These libraries are
targeted at real-time systems where high-bandwidth and low latency are desired.

The vision system module uses the algorithms described in Chapter 4 to identify
the target in the image frame. Additionally, Equations 3.19, 3.20, and 3.21 are used
to compensate for the vehicle’s attitude, convert the vision system position estimates
from image plane coordinates in pixels to a body coordinate frame in millimeters,
and estimate the vehicles altitude. This module runs at ten Hz due to the additional

processing of the vision algorithms.

39



IMU Measurements

v

I Estimated Pose

IContro Comman

Control Commands
—
IMU Measurements

ds
S
>

Re-threshold

S
>

__Position Error Vector

| |

\ 4

Pixel Classification

| Grab Initial Frame |
J
| Threshon Image |

v

| Create 2-D Histogram |

Object Identification/Tracking

| Calculate Back Projection I"

| Identify Target Contours |
¥

Draw Bounding Box and

Center of Mass Marker

12

Compute Error Vector

Estimated Attitude

Figure 3-4: Experimental Software Architecture

40



The control module utilizes four independent LQR controllers described in Chap-
ter 5 to compute the roll, pitch, yaw and thrust commands. It receives the full state
pose of the robot either from the motion capture module or from the EKF module
depending on the experiment being run. The on-board AutoPilot software computes
the individual motor commands. The position control commands were calculated at
forty Hz.

The quadrotor communication module is used to interface with the quadrotor
AutoPilot board. This module receives Inertial Measurement Unit (IMU) measure-
ments and transmits control commands via a USB to serial connection. This module
operates at thirty Hz.

The EKF module, which is discussed in more detail in Section 3.4, receives the
vision system position estimate and IMU measurements. The estimated pose of the
quadrotor is extracted from the EKF which is used to calculate control commands.
The estimated pose from the filter is computed at 110 Hz.

Not depicted in the figure is the motion capture module which receives the ground
truth pose of the quadrotor and target from the motion capture system. Depending
on the specific experiment, this information is used to control the robot as well as log
the ground truth positions of the quadrotor and target. This system operates at 120
Hz.

3.2 Camera Model and Calibration

The first step to computing accurate computer vision algorithms is to model the
camera and lens system that will create the images necessary for the vision algorithms.
Cameras of different qualities produce different images of the same scene. While
more expensive cameras are designed to minimize these errors, the small, portable,
and inexpensive cameras desired for this research are not constructed to such high
specifications. The primary errors in camera images are caused by radial and tan-
gential distortion. In order to calibrate the camera, it is necessary to compute both

the intrinsic and extrinsic properties of the camera. Fortunately, there are methods
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to classify the camera and lens parameters to rectify the images of these errors which
we discuss in Section 3.2.4.

The vision algorithms we developed rely on accurate color space image segmenta-
tion. The more varied the color characteristics of the target when compared to the
background, the better the algorithms perform. To improve the color capture and rep-
resentation it is necessary to properly calibrate the camera. Once the target has been
successfully identified we need to accurately know the target’s location. The output
of the vision system is the estimated target centroid position in meters. For this esti-
mate to be accurate, all camera distortions need to be taken into account. The control
strategy for positioning the quadrotor relies heavily on an accurate transformation of
the target centroid from pixel coordinates to robot coordinates. Removing the effects
of these distortions has a direct impact on the accuracy of the visual servoing control

system.

3.2.1 Camera and Lens Selection

We chose the Point Grey Firefly MV2 which has a 1/3” progressive scan Comple-
mentary MetalOxideSemiconductor (CMOS )(Aptina MT9V022) image sensor. The
camera weighs only 30 g and has a maximum resolution of 752 x 480 pixels at sixty
frames per second. This camera is commonly used in robotics due to its lightweight
and compact form, strong API, and high resolution at fast frame rates. Images are
pulled from the camera via a USB 2.0 High-Speed interface. While the camera is
similar in size to a webcam, it produces images of machine vision grade quality. Since
the camera uses a global shutter, it avoids the edge artifacts caused by the rolling
shutter in typical CMOS cameras.

A Tamron 1/3” lens is chosen as well. With a 2.2 mm focal length, the field of
view is approximately 119° x 90°. This wide angle provides a larger view of the world
and therefore the target. The lens weighs 41.3 g and a ring lock prevents accidental
adjustment after the lens has been focused. The lens also contains IR elements which

improve the brightness of the images regardless of lighting conditions. The wide
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angle lens causes significant image distortion which is accounted for in the camera

calibration process.

3.2.2 Pinhole Camera Model

The simplest model of the camera is known as the pinhole camera model which

is depicted in Figure 3-5. The focal length relates the size of the image on the image

-
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Figure 3-5: Pinhole Camera Model

plane to the size of the image in real life. In the idealized pinhole model, the focal
length, f, is the fixed distance from the center of projection to the image plane. The

pinhole model is characterized by Equation 3.1.

X
U= Fx(?) + ¢y

v (3.1)
v= Fy(?) t¢y
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Equation 3.1 maps a point Pg in the physical world with coordinates (X,Y,Z) to
the point P; on the image plane with coordinates (u,v) and is known as a projective
transform. The values F, and F, represent the physical focal length in distance
units such as millimeters. The principal point (¢, ¢,) is the estimated center of the
image plane. Since the image sensor cannot be perfectly placed, the principal point
represents a translation from the optic axis to the center of the image coordinate
frame.

In order to compute the values of the point (u,v) in pixels, it is necessary to

calculate the focal lengths in pixel units. This is done with Equation 3.2.

fx:Fx*Sx

fy = F, * s,

(3.2)

Here f, and f, are the focal lengths of the lens in pixel units. This value is computed
by taking the product of the physical focal length in millimeters (F, F},) and the size
of the imager elements (s, s,). This model assumes rectangular pixels which causes
s, and s, to be distinct values with units of pixels per millimeter. While neither the
focal lengths (F, and F))) or the scaling factors (s, and s,) can be measured directly
without taking apart the camera, their products ( f, and f,) can be estimated through

a camera calibration process.

3.2.3 Lens Distortions

Due to difficulties in manufacturing a perfect lens as well as exactly aligning the
optical axis of the lens with the imager center, image distortions occur. The two main
types of distortion are known as radial distortion and tangential distortion.

Radial distortion is evident when the lens distorts the pixels near the edge of the
image. This type of distortion is commonly known as the “fish-eye” effect. Radial
distortion occurs when the light rays enter the lens on the outer edges and are refracted
more strongly than if they had entered at the center of the lens. While expensive

lens systems and high-end cameras can take measures to reduce this distortion, radial
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distortion is pronounced on lower end camera systems such as the one used for this

research.

Radial Component of the Distortion Model
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Focal Length = (378.046, 378.081) +/- [1.137, 1.131]
Principal Point ='(331.084, 244.693) +/- [1.473, 1.397]
Skew = +/- 0
Radial coefficients = (-0.2733, 0.08425, 0) +/- [0.003101, 0.003818, 0]
Tangential coefficients = (-0.0004827, —0.0003119) +/-10.0004395, 0.00037261

Figure 3-6: Effects of Radial Distortion

Radial distortion is estimated with a polynomial function which is a Taylor series
expansion around r = 0. Here r = v/u2 4+ v2 which implies that r = 0 is the center of
the image plane. The value of r is symmetrical which removes the even coefficients in
the expansion. Additionally, since f(r) = 0 at r = 0, the first term in the expansion
is also removed. The remaining structure is f(r) = kyr? + kor* 4+ ksr® 4 - - - . However
only the first two terms are generally needed in the calibration process. Equation 3.3

summarizes the equations used to estimate the radial distortion in an image.

e = u(l + kyr? + kor?)
(3.3)
Ve = U(l + k'17“2 + k2T4)

In this equation, (u,v) is the original location of the distorted point, (u.,v.) is the

corrected location, and k; are the estimated radial distortion coefficients. Figure 3-6
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shows the effects of radial distortion on the Point Grey Firefly MV2.
Tangential distortion is caused by the misalignment of the imager surface and
the lens. In cheaper cameras, these are not always exactly positioned. Tangential

distortion is estimated with two additional parameters p; and py as shown in Equation

3.4.

Ue = u + [2p12y + pa(r? + 227)]
(3.4)

Ve = v+ ([2pay + pr (r? + 24)
Figure 3-7 depicts the effects of tangential distortion on the Point Grey Firefly MV2.
Depending on the magnitude of the radial distortion, an additional k3 parameter
can be used. In practice, the four distortion coefficients ki, ko, p1, p2 are sufficient.
The camera model used in this research is a combination of the pinhole camera
model with the additional equations to account for radial and tangential distortion.
The corrected pixel location is computed as a linear combination of the effects of

radial and tangential distortion.

Tangential Component of the Distortion Model

)
S
|

7%
A7

S
/

50

Vi
Ve

&

150

L7/
/

~
>
S
T
-Q

s &

S <

T T
/-/////7,'0///%/

w

o

)
T

IS

S

S
T

-

I}

=]
T

oz////////\///

Pixel error = [0.2008, 0.2185]

Focal Length = (378.046, 378.081) +/- [1.137, 1.131]

Principal Point = (331.084, 244.693) +/- [1.473, 1.397]
z +

skew =0 -0
Radial coefficients = (-0.2733, 0.08425, 0) +/- [0.003101, 0.003818, 0]
Tangential coefficients = (-0.0004827, -0.0003119) +/-10.0004395, 0.00037261

Figure 3-7: Effects of Tangential Distortion
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3.2.4 Camera Calibration

The goal of the camera calibration process is to calculate the intrinsic camera
values as well as the distortion coefficients. By using a known structure, specifically a
chessboard, it is possible to estimate these values. This is done effectively by viewing
a known structure from multiple locations and orientations.

The points P; and P are represented as homogenous coordinates which results in
P} = (u,v,1) and P, = (X,Y, Z,1). Equation 3.1 is represented as the 3 x 3 matrix
A known as the intrinsic camera matrix and is shown below. Once estimated, the
values in matrix A can be reused without recalibrating the camera. These values only
depend on the camera and lens used at the time of calibration and are independent

of the scene viewed.

fz 0 ¢
A=10 fy ¢y
0O 0 1

In order to estimate the pose of the calibration object, the matrix [R|T] is used.
The matrix [R|T] is known as the extrinsic camera matrix. This matrix is comprised
of a rotation matrix (R) appended with a translation vector (7). Given the point
P, this matrix is used to compute the corresponding point P; in the imager coordi-
nate frame. This physical transformation relates the plane in the real world to the
imager plane. In computer vision literature, the projective mapping from one plane

to another is defined as planar homography:.

ri1 iz Tz by
[RIT] = |ry 79 723 t

r31 T3 T3z i3
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The primary equation utilized for calibrating the camera is Equation 3.5.

Pl = A[R|T|P, (3.5)

The matrix A[R|T] is a 3x4 matrix that can be simplified to the matrix C' = [¢y, ¢z, ¢3]’
where ¢; is a 1 X 4 row matrix. There are twelve unknowns which must be estimated.
For each image taken, two equations are computed as shown in Equation 3.6. This
results in only six images being needed to solve for the unknown parameters. In
practice, more than six images are taken which leads to an over determined set of

equations solved using least squares.

u(ez3Z) —an X =0
(3.6)
v(esZ) — Y =0

3.2.5 Calibration Results

Extensive research has been done on methods to estimate the intrinsic as well
as extrinsic camera properties along with the distortion coefficients. Specifically,
the MATLAB camera calibration toolbox [14] and OpenCV libraries provide simple
functions to analyze images and compute the desired variables.

A small chessboard pattern was the target used to create input images for the
calibration process. These images can be seen in Figure 3-8. In total, nineteen
images were used for the calibration process. Both the MATLAB camera calibration
toolbox and OpenCV libraries were used to estimate the camera model parameters
for comparison purposes as well as accuracy. Both methods identify the corners of
the interior squares of the chessboard. They then utilize optimization techniques to
minimize the reprojection errors. Sub-pixel accuracy is possible in both methods and
in this calibration, the reprojection error is centered around zero with all errors less

than one pixel.
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Calibration images

Figure 3-8: Chekerboard Images Used for Calibration

As mentioned previously, it is possible to calculate the rotation and translation
matrix ([R|T]) relating the object plane to the image plane. Figure 3-9 visualizes
these estimates by reprojecting the location of the target relative to the fixed camera.

Table 3.1 displays the outputs of both calibration methods. The intrinsic param-
eters match very closely while the distortion parameters have a slight variation. For
this research, the OpenCV values were used due to the ease of integrating the calibra-

tion functions into the existing codebase. It is also possible to validate some of the

Table 3.1: Comparison of Camera Calibration Methods
Parameter | MATLAB Toolbox | OpenCV Library

(For I (378.05,378.08) (378.16,378.09)

(Ca» Cy) (331.08,244.70) (320.47,245.12)

[t ko] [-0.273, 0.084] [-0.260,0.063]
]

[p1, Po -4.827¢74,-3.112¢74] | [-3.332¢74,9.67¢ ]

assumptions made during the development of the model. First, it was assumed that
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Extrinsic parameters (camera—centered)

Distance (mm)

Distance (mm)

Distnace (mm)

Figure 3-9: Camera Centered View of Estimated Checkerboard Locations
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the pixel axes were orthogonal. If a skew parameter is estimated, the resulting angle
between the image axes is 90.01°. Additionally, if an extra term in the Taylor series
expansion for radial distortion is estimated, the value (k3) is only -4.5¢~%. These
parameters are ignored during the calibration process and assumed to be zero.
Figure 3-10(a) is a sample image of the checkerboard calibration pattern. The
radial distortion is clear near the image edges while the tangential distortion is less
apparent. These distortions can be removed through the calibration process which
produces the image in Figure 3-10(b). The checkerboard pattern here contains or-
thogonal lines which are no longer curved due to distortions. This results in a more

accurate mapping from pixel coordinate frame to world coordinate frame.

(a) Raw Camera Image (b) Corrected Camera Image

Figure 3-10: Raw Image Before and After Distortion Correction

3.2.6 Camera Settings Configuration

Modeling the physical properties of the camera helps account for the distortions
caused by the physical parameters of the camera and lens. However, there are ad-
ditional software adjustments that can improve the quality of image that is used for
processing. Objects appear differently under daylight compared to a room with halo-
gen lighting. White balancing is the process of manipulating the gains of the color

channel through the diagonal matrix J to account for these changes.
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R Jr 0 O R
G'| = 0 JG 0 G
B 0 0 Jp| |B

Some cameras come with preset modes to adjust the J matrix. Others automati-
cally adjust the J matrix by focusing the camera on a white object. The goal of white
balancing is to adjust the J matrix so that tristimulus values are equal (R’ = G' = B’)
when looking at a white object. The Firefly MV2 allows the user to adjust the Blue
and Red gains each time the camera is initialized. The default values produce the

histogram shown in Figure 3-11(a) and the image shown in Figure 3-11(b).

’/ \ |
) 32 64 3 128 160

192 224 256

(a) Default Tristimulus Histogram

(b) Default Camera Image

Figure 3-11: Effects of Default White Balance Values

To compensate for the lighting indoors, the Jr value was increased and the Jg

value was decreased producing the histogram in Figure 3-12(a) and the image in
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Figure 3-12(b). These histogram figures represent the tristimulus values looking at a
blank sheet of white paper. After the change in white balance values, the peaks of

the tristimulus histograms are of similar magnitudes and the resulting image has the

128 160 192 224 256

(a) Corrected Tristimulus Histogram

desired white chromaticity.

[} 32 64 96

e ‘T"'ﬁ

!."
o

TR

(b) Corrected Camera Image

Figure 3-12: Effects of Corrected White Balance Values

Monitors produce luminance values as a nonlinear function of the control voltage

where L is the luminance, V' is the control voltage and v ~ 2.2.

L=Vv"7

To correct for this, cameras use the inverse nonlinear operation known as gamma
encoding. This produces a linear system from image capture to display. Fortunately,
the Point Grey camera has the ability to enable or disable the gamma encoding.
In order to get the best results possible, gamma encoding is disabled such that the
tristimulus values in the image are the raw unmodified values. Finally, the camera

supports 640 x 480 resolution at sixty frames per second. This frame rate is set each
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time the camera is initialized to ensure the most recent image is being processed.

3.3 Quadrotor Dynamic Model

The quadrotor vehicle operates on the concept of variable torques and thrusts.
The motors are arranged in pairs along the horizontal (°y) and vertical (°x) axes
with the forward pair rotating clockwise and the horizontal pair rotating counter-
clockwise. This design results in the reaction torques from the pairs of motors being
exactly opposed by each other. The elimination of the rotating moment allows the
vehicle to maintain a constant heading while hovering. Yaw is controlled by varying
the speeds of the pairs of motors to create a non-zero net counter torque. Altitude
is controlled by varying the thrust from each motor by equal amounts to provide
a net thrust vector and no rotational moment. To move in the lateral ®z and °y
directions, the relative speeds of each motor in the pair are varied to create a desired
lateral thrust offset. The simple design results in small platforms which are battery
operated, able to perform a stable hover, and safe to use in indoor environments.

The basic quadrotor structure used for the model development is shown in Figure
3-13 depicting the Euler angles of roll (¢), pitch (), and yaw (1), a body coordinate
frame [’x,%,%z], and the global coordinate frame [Yx,9y,9z]. This model relies on
several assumptions [13]. First, the quadrotor structure is rigid and symmetrical
with a center of mass aligned with the center of the body frame of the vehicle. It is
also assumed that the force of each motor is proportional to the square of the motor
velocity. Additionally, the propellers are considered to be rigid. An estimated model
is compared with ground truth accelerations in Section 3.3.1 to validate the model as
well as the assumptions.

First, the coordinate system is divided into a global reference frame (G) and a

body reference frame (B) as shown in Figure 3-13.
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Figure 3-13: Quadrotor Structural Diagram

mIX = F; + F, + F,
. (3.7)
JOA=T:+T,

Here, m is the mass of the quadrotor and 9X is the position of the vehicle’s center of
mass in relation to the body reference frame. Additionally J is a constant, symmetric,
and positive definite rotational inertia matrix with respect to the body frame of the
quadrotor defined by Equation 3.8 and €2 is the angular acceleration of the quadrotor

in the body fixed frame.

0 0
J=10 1, 0 (3.8)
0



The rotational transformation matrix between the global reference frame and the
body reference frame is defined by matrix R where C' and S represent the cosine
and sine trigonometric functions and the angles are defined in the body coordinate

frame.

CoCy  CypSeSs — CpSy  CySeCy 4 SySy
RB = CQS¢ S¢5¢95¢ — C¢C¢ C¢S@S¢ — C¢S¢
— Sy CoSy CoCy
F¢ is the resultant force generated by the four motors in the global coordinate

frame defined below.

0
F; = RS 0
i B
The force of each motor, F}, is defined in equation 3.9 as the product of the lift
coefficient K, and the square of the motor’s angular velocity w. This depicts the
relationship between motor speed and resultant force, which is the basis for stable

control of the vehicle.

F, = pr2 (3.9)

Additionally, F; is the resultant global drag force along each translational axis

defined below where Ky, K¢y, and Ky, are drag coefficients.

—Kpe 0 0
Ft = 0 _Kfty 0 gjj
0 0 —Kp.

F, is the gravity force vector.
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T
F,= [O 0 —mg}

I'; is the moment developed by the quadrotor in the body frame expressed below.
The distance from the vehicle’s center of mass to the motor is defined by [ and K, is

a rotational drag coefficient.

I(F5 — Fy)
I'y = Z(F4 — FQ)
Ka(w} — wi +wi — wi)
Finally, I, is the resultant torques of aerodynamic friction where Kjq,., K4y and

Ky, are rotational drag coefficients.

~Kjw 0 0
I',= 0 _Kfay 0 (9.
0 0 —Kja

The inputs to the traditional model derived above are the angular velocities of

the four motors as shown in Equation 3.10.

W] [k, K K K ][]
up| _|=K, 0 K, 0 w3 (3.10)
u3 0 -K, 0 K,| |ws
Uy K, —-K; K; —K; wZ
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This results in the following equations of motion described in Equation 3.11.

(C¢SQO¢ + S¢S¢)u1 - Kfmgj}

gi‘ —
m
0ji = (CpSCyp — SpCy)ur — Ky
m
oz _ (CoCo)ur — Kpiu%% g
m .
g'ZS B ZUQ — Kfaa:¢ (311)
_ 7
9‘ _ lu;g — Kfaxe
Iy
v Ug — Kfazzb
Y= T

3.3.1 Model Adaption

Utilizing the Ascending Technologies platform has several distinct advantages.
Primarily, we can rely on the on-board AutoPilot system to control the attitude of
the quadrotor. The AutoPilot system computes the desired motor angular velocities
([, ug, us, us])™) as defined in Equation 3.10. Motor voltages are computed by the
on-board motor controllers. This allows the user to focus on position control. The
AutoPilot inputs are a desired roll and pitch angle, desired yaw rate, and a generalized
thrust command. In order to create an effective position controller, it is necessary
to modify the mathematical model of the quadrotor to reflect the true nature of our
system. This model is developed using MATLAB’s Simulink toolbox.

The rotational dynamics are modeled first. The roll and pitch dynamics are
modeled as a first order system to take into account the effects of the on-board

attitude controller. The equations of motion are shown in Equation 3.12.

. K¢ 1
=2y, — 2440
¢ ag $d a¢¢+ ¢
Ky

: 1
0==LU, — —0+Cy
Qg Qo

(3.12)
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For these dynamics, the roll and pitch angles (¢ and ) are functions of the con-
troller inputs (U, and Uy, ), drag coefficients (K4 and Kj), and linear offsets (Cy and
Cy). When flown manually, the roll and pitch inputs come from an RC receiver and
can range from 4 2047. These values must be converted to a desired roll and pitch
angle for the on-board attitude controller. In Equation 3.12, this transformation is
calculated using the values f—j and f—; By taking this transformation into account,
our controller computes inputs in the native form of the on-board attitude controller.

The on-board attitude controller takes a desired yaw rate as an input. The yaw

dynamics are modeled by Equation 3.13. Again, K is a gain and C;, a linear offset.

¥ =K;Uy, +Cy (3.13)

The Simulink block diagram representation of the rotational dynamics model is shown
in Figure 3-14. The angles were saturated at forty-five degrees.

The translational dynamics are shown in Equation 3.14.

i = K0 — K;"% + C,

i = K,.¢ — K, + C, (3.14)
1
b

P= (KU, - K4 C.)—yg
m

The inputs for *z and by translational motion are the roll and pitch angles computed
by the rotational dynamics. For the °z axis, the input is from the RC receiver or
position controller. These equations all contain a gain on the input, drag coefficient,
and offset. The mass of the vehicle is equal to one kg and represented by the variable
m. The variable g is the acceleration due to gravity. The block diagram representation

of the quadrotor’s translational dynamics are shown in Figure 3-15.
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Figure 3-14: Rotational Dynamics Block Diagram
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3.3.2

Using the model developed above in Simulink, it was possible to utilize experimen-

i
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Figure 3-15: Translational Dynamics Block Diagram
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Parameter Estimation and Model Verification

tal data to estimate the model gains, drag coefficients, and linear offsets. Simulink
provides a Parameter Estimation toolbox which uses least squares optimization to
approximate user defined parameters. Additionally, the System Identification tool-
box was used to calculate the transfer functions which estimated the on-board roll
and pitch controllers. The quadrotor was flown manually and the ground truth po-

sition and attitude was recorded by a Vicon motion capture system. Additionally,
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Figure 3-16: Comparison of Simulated Rotational Dynamics and Ground Truth

the RC inputs were recorded. Using RC data as inputs and the motion capture data
as ground truth output, the model parameters are estimated. A comparison of the
modeled roll and pitch angles as well as the yaw velocity is shown in Figure 3-16
as well as the translational accelerations in Figure 3-17. In practice, this model was
sufficient for controller design, tuning, and testing despite these assumptions.
Several factors affected the performance of the model estimation process. The
quadrotor could only be flown inside the footprint of the motion capture system which
limited the maneuvers of the quadrotor. The yaw angle was manually controlled to
be near zero degrees in order to make the quadrotor easier to fly. It was also kept at
a fairly stable height for safety purposes. Combined, this resulted in the possibility
that the test run did not excite the full range of dynamics of the system. With a
larger footprint and better pilot, a more rigorous path could be recorded to improve

the model.
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Figure 3-17:

Comparision of Estimated X Acceleration vs Groundtruth (RMSE, = 0.205 mis?)
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Comparison of Simulated Translational Dynamics and Ground Truth
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Additionally, the assumptions made in the model derivation could have a negative
impact on the model’s performance. The quadrotor alone is very symmetrical but
with the additional payload of the camera and computer, this symmetry is adversely
affected. The additional payload also shifts the center of mass which must be approxi-
mated. This assumption is the most likely source of error in the model. Aerodynamic
affects due to blade flapping could be added, but we believe these effects would be
small in comparison when the quadrotor is operated around a stable hover. Finally,

b

any error in the roll or pitch angles are reflected as errors in ®x and y accelerations

since the roll and pitch angles are inputs to these systems.

3.4 Extended Kalman Filter

Whiile it is possible to estimate relative position of the quadrotor through double-
integrating the linear acceleration measurements, the on-board MEMS IMU is of too
poor quality for this method to be effective. The IMU is subject to biases which
result in drifts in velocity and position as the biases are integrated. This is shown in
Figure 3-18 where after ten seconds, the true and estimated velocities have drifted by

0.12 m/s and position estimates would have drifted even more.
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Figure 3-18: Integration Errors Due to IMU Drift

This motivates the necessity for an exteroceptive sensor, specifically a camera for
this thesis, in order to estimate the relative position of the quadrotor accurately. An
Extended Kalman Filter (EKF) is used to correct for errors in integrated position
estimates from the IMU with position estimates from the vision system. Between
vision updates, the filter utilizes the higher frequency IMU readings to provide a
state estimate at a servoable rate. Most importantly, the filter needs to provide an
accurate velocity signal. The under-damped dynamics of the quadrotor implies that
proportional-derivative-like control must be used to hover the quadrotor stably and
prevent oscillations. For the derivative-like term to be effective, a smooth, accurate
and minimally delayed velocity estimate must be computed. Measurement delays
quickly destabilize the fast dynamics of the quadrotor.

The EKF is adapted extensively and directly from [1,7] which was implemented
using the KFilter library [93]. This filter combines position estimates from the vision
system algorithms as well as attitude and acceleration measurements from the IMU.
While the IMU measurements are received at a frequency of thirty Hz, the vision

system outputs position estimates at ten Hz. The filter has to deal with these asyn-
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chronous measurements and the inherent latencies in these measurements. While the
IMU measurements are noisy and include a bias that drifts over time, the slower po-
sition estimates from the vision system are more accurate and without a varying bias.
The covariance matrices are weighted to favor the vision system position estimates
and utilize the IMU measurements to estimate the quadrotor’s position between vi-
sion system updates. This improves the quality of the velocity estimates which are

necessary and sufficient for precise position control of the vehicle.

3.4.1 Process Model

The filter is used to estimate the quadrotor’s positions, velocities, accelerations,

attitude, and the biases in the IMU. The state vector is

X‘ = [gx7 gy7gz7 ¢7 97 w? bi? b?J? bZ‘? 1#‘7 bi’"’? bﬂ? bé? /8x7/8y7/327/3¢7ﬁ9]T (3‘15)

The positions (Yz,%y,9z) are represented in a global coordinate frame with the
origin placed at the center of the target, the positive x axis pointing forward and the
positive y axis pointing left of the target origin. Attitude (¢, 6,) is represented by
the Euler angles, roll, pitch, and yaw respectively. The rest of the state including the
velocities and accelerations are represented in the body frame with the origin located
at the center of mass of the quadrotor. The biases are represented by the variable
with a corresponding subscript.

The dynamic model used in the filter makes several assumptions. Primarily, that
the vehicle will be kept level due to the attitude controller and we can therefore
assume small attitude angles. This allows us to estimate the heading of the vehicle
separate from pitch and roll and also results in the 9z axis becoming independent of

the 9 and 9y axes. The 9z and 9y axes are calculated utilizing the nonlinear functions
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Y0 = 91 + At(Pdy—q cos(tPr—1) — "Y1 sin(y_1)) + w, (3.16)

Iy, = 9y, 1 + At Py sin(y_1) + "—1 cos(ty_1)) + Wy

where At is the filter update period and the terms w, ~ N(0,0,) and w, ~ N(0, oy)
are zero-mean Gaussian noise variables.

The remaining position and velocity variables are updated by discrete integration

where v = [92, ¢, 0,1, b4, %9, °2]T and w, ~ N(0,0,).

v = Vi1 + V1 AL + w, (3.17)

The linear accelerations are also computed as discrete integrations for several rea-
sons. The quadrotor is a highly nonlinear system with fast dynamics and aerodynamic
effects that are hard to characterize. A simple linear model is developed through a
system identification process that relates attitude to translational accelerations. This
model is slightly modified from the model used in Section 3.3.1 for the controller
design. For the simplified EKF model, only the ®z and %y accelerations are modeled.
Also, the roll and pitch angles which serve as inputs to these equations are taken from
the IMU. The model we present in Section 3.3.1 maps the position controller inputs
through the on-board attitude controller to estimate the quadrotor attitude. Remov-
ing this error results in a slightly more accurate model of the quadrotor’s translational
accelerations.

In practice however, the acceleration estimates from the filter were as accurate
as the modeled accelerations. Figure 3-19 shows the ground truth accelerations, as
well as the accelerations from the EKF and from the simplified model. The Root
Mean Square (RMS) errors in each axis are roughly equivalent. In the x axis, the

EKF had a RMS error of 0.114 mm/s? and the model’s RMS error was 0.112 mm//s?.
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In the y axis, the EKF RMS error was 0.113 mm/s? and the model RMS error was
0.121 mm/s?. This validates the accuracy of the simplified model as well as the use
of discrete dynamics in the EKF.

Lastly, the °Z acceleration term as well as the biases are modeled as a random

walk where b = [°%, 5%, 89, 8%, 32, B%]"

by = b1 + wy, (3.18)
Wy ~ N(07 Ub)
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Figure 3-19: Comparison of Acceleration Estimates and Ground Truth Values

3.4.2 Measurement Model

Due to the asynchronous nature of the measurements, each sensor has its own mea-

surement model. The gravity vector is subtracted from the IMU measurements before
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being sent to the filter. The biases are estimated online. The IMU measurement model
includes the attitude angles and linear accelerations plus the biases and zero-mean

Gaussian noise. This is represented as the vector z/MY where vy ~ N(0, o).
t U ) U

[+ 57

it + B

IMU _ let) + Bf

&+ B

0, + ﬂtg
¥,

+ vivu

The vision algorithm estimates the translational position to the target centroid as

the vector z&V where voy ~ N(0,0¢0v).

cv
zg = |9y, | +vev
gzt

Using only a single camera makes altitude estimation especially noisy and inac-
curate without filtering. The height is calculated as a function of the size in pixels of
the target as shown in Equation 3.19. This is calibrated by reading the target area in
pixels at a known height. In the equation below, P is the pixel area at the calibrated

height, p is the current pixel area of the target, and h. is the calibration height.

P
V P

Figure 3-20 shows the vision system altitude estimate in light blue, the EKF
altitude estimate in black, and the ground truth altitude in blue. The EKF output

filters the noisy vision altitude approximations and returns an estimated altitude with
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a RMS error of 0.025 m.

155 Comparision of Estimated Z Position vs Groundtruth (RMSE = 0.025 m)
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Figure 3-20: Comparison of Altitude Estimates and Ground Truth Values

Since the camera is rigidly attached to the quadrotor, changes in attitude cause

the target to move in the image plane. This is compensated by Equation 3.20.

Iy
Te =z — 0 )
FOVy (3.20)
= e — ()
Yo = Ve FOV,

This equation is a function of the uncompensated input position estimate in pixels
(Ze, Ye ), the roll and pitch angles (# and ¢), the dimensions of the input image in pixels
(Iw and Ip), and the horizontal and vertical fields of view of the camera (FOV}, and
FOV,).

The camera is not mounted below the center of mass of the vehicle so a translation
is applied to transform the image coordinate frame origin to the robot coordinate

frame origin.
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Finally, the position estimate is scaled from pixels to meters

tan(£9%)

Ty = Lo - 2
2
3.21
tan(£9%) (8.21)
Ym = Ye Tor Z

2

using the current height estimate Z and the previously defined variables as shown in
Equation 3.21.

Diagonal process and measurement covariance matrices are chosen to limit the
number of tuning parameters. The initial parameters were estimated by recording
sensor measurements in a static environment. Using logged data, experimental runs
were replayed through the filter and the estimated states were compared to the ground
truth values. The covariance parameters were adjusted empirically until acceptable

performance was observed over multiple sets of test data.

71



THIS PAGE INTENTIONALLY LEFT BLANK

72



Chapter 4

Object Identification and Tracking

This chapter presents the primary computer vision algorithms which first characterize
the intended target in the hue (H) and saturation (S) planes and then identifies the
intended target in subsequent frames based on this characterization. The chapter
begins with an explanation of the decision to process the image in the HSV color
space instead of the RGB color space. Next, our binary pixel-level classifier is pre-
sented which assigns each pixel a target or non-target label. The image segmentation
algorithm is then described which identifies groups of target pixels in the image by
computing the contours of the target pixel regions. Finally, the groups of pixels
are described in terms their of size and position to provide high level control of the
quadrotor. Using these algorithms, we produce a vision system that is able to track
multiple images of varying hue (H) and saturation (S) characteristics at a servoable
frame rate on a computationally limited platform. Figure 3-4 graphically depicts the
complete vision system. In order take decrease the development time of the algo-
rithms and to take advantage of the most sophisticated image processing techniques,
the OpenCV libraries are used.

Robustness is key when dealing with image segmentation of real world objects.
The ability to successfully identify the target over time has several underlying as-

sumptions. Primarily, it is assumed that the intended target is homogenous with

73



respect to the characteristic features chosen. This research segments pixels based on
their H and S values. It is assumed that the H and S values that describe the target
remain constant, but in an outdoor environment this is rarely true as shadows and
lighting changes affect the image. Recognizing the fragility of this assumption, ad-
ditional processing steps are performed to remove misclassified pixels. The proposed
algorithms also assume certain size characteristics in order to filter out errors in seg-
mentation. Mainly, it is assumed that the intended target is large in the image frame.
When tracking marine targets, it is possible for them to leave the surface of the water
which would reduce their size in the image and make them difficult to successfully
track.

All computation of these algorithms is executed on-board the quadrotor. However,
unless the algorithms have been pre-configured to identify the target, user interaction
is involved to tune the algorithms for the intended target. Once an image of the target
has been captured, the user must alter the H and S threshold values to segment
the target. The user is also able to modify several heuristic variables to improve
the performance of the vision system. Once the system has been initialized, the

algorithms are processed independent of the user.

4.1 Color Models

The mapping from RGB color space to HSV color space assumes that the RGB
tristimulus values are proportional to scene luminance but in reality this is not often
the case. RGB values are often offset, that is, for zero luminance the camera produces
non-zero RGB values. The gain of the color channels can also be different, and this
can vary continuously due to auto white balancing functions within the camera. Fi-
nally, a non-linear transformation is typically applied, the so-called gamma encoding
described in Section 3.2.6. This is approximately a square root function, but the
details vary from camera to camera. All of these variables contribute to sub-optimal
HSV conversion which typically means that hue and saturation are not independent

of overall luminance. For a particular camera these characteristics can be accounted
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for but for footage taken from the web this is outside our control. The hue of whales is
close to white (grey is dark white) and this results in ambiguity with respect to white
water from shore breaks or the wake of whales. The darkness of whales means that
the resolution of hue and saturation calculations is limited. The camera calibration
process to account for these errors in our specific camera configuration is discussed

in Section 3.2.4.

4.2 Pixel Classification

The primary task for identifying the intended object is to create a mathematical
model of the target that can be applied in subsequent frames of the video file or camera
output. This research requires a solution that is robust but also computationally
efficient enough to run on the computationally impoverished on-board computer at
servo rate. Algorithm 1 shows the process used to identify the object to be tracked.

The mathematical model used to represent whales is a two-dimensional histogram.
First, an initial frame containing the target similar to Figure 4-1(a) is captured and
converted from RGB color space to HSV color space. A two-dimensional histogram is
computed which describes the probability distribution of the hue-saturation pair val-

ues within the image. Currently, the user is required to interactively select minimum

(a) Original Image (b) Hue Segmentation (c) Sat. Segmentation

Figure 4-1: Image Thresholding in the Hue and Saturation Planes
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and maximum threshold values for the H and S plane images using sliding track bars.
These values are denoted as H,in, Hmaz, Smin, and S,,q.. The user can also input
the number of bins in each histogram (Hy;,s and Sy;,s) which determines the values of
each bins’ size (Hyign and Syian)- A sample output of Algorithm 1 is shown for the H
plane in Figure 4-1(b) and S plane in Figure 4-1(c) using the original image shown in

Figure 4-1(a). Both thresholded images exhibit a number of pixel misclassifications.

Algorithm 1 Pixel Classification
Input: Image with target
Output: Thresholded H and S plane image and back-projection image
: Convert Image to HSV
Display original H and S plane images
Calculate M from H and S image
while Target not completely segmented do
Threshold H and S images to get Hoin, Himazs Smin, and Spae
run Algorithm 2
Calculate back-projection using M,
Display back-projection image
Display thresholded H and S plane images
end while

,_.
@

Using the threshold values selected by the user, the two-dimensional histogram
M is modified so that the values of bins outside the threshold values are set to zero.
The resulting histogram, M; represents the target that the user has identified as a
discrete probability distribution. This process is detailed in Algorithm 2.

The user is also presented with the back-projection image where the value of each
pixel is the probability that the pixel belongs to the target. A sample back-projection

image can be seen in Figure 4-2(a).

4.3 Image Segmentation and Object Description
Once the user has defined the threshold values acceptable for isolation of the

target, the model histogram M, is used to calculate back-projection images of future

frames. This process is shown in Algorithm 3. For each consecutive frame, the image

is converted to HSV color space. The H and S value of each pixel is back projected
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Algorithm 2 Two-Dimensional Histogram Thresholding
Input: 2D histogram M
Output: 2D target histogram M,

1: for h =0 to Hy;,, do

2:  for s =0 to Sp,s do

3: if h < Hmin/Hwidth or h > Hma:p/Hwidth or s < Smin/Swidth or s >
Smaa:/Swidth then

4: bZ'TLHﬁ =0

5: end if

6: end for

7: end for

8: return M,

through the histogram to form a whale probability image, for example Figure 4-2(a).

(a) Back Projection (b) Contour Output (¢) Vision System Output

Figure 4-2: Target Recognition Through Contour Identification

Several heuristics are applied in order to improve the classification performance.
Morphological heuristics are applied to reduce the low-level pixel misclassification
while size-based heuristics are used at a high-level to eliminate entire regions of pixels.

First, a greyscale morphological opening operation with a 3 x 3 kernel is applied
to remove small false positive regions which are often noise in the back-projection
image. Next, a greyscale morphological closing operation with a 3-by-3 square kernel

is used to join together positive regions which are close in proximity to fill in small
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gaps.

After the back-projection image is filtered with morphological operations, the
OpenCV function cvFindContours is used to represent contiguous groups of non-
zero value pixels using Freeman chain code. This function is used due to its low
overhead and simple structure which allows the groups of target pixels to be easily
identified and manipulated. The function identifies the outer contours of target pixel
groups.

Several descriptive features of the regions are used to further eliminate any mis-
classification. Not every method is required for successful object identification, but
these tools are available to the user. It is up to the user to determine which of
the following heuristics are likely to improve the results of the vision system. These
heuristics remove contours based on several size features. These features are presented
to the user through sliding track bars. This allows the user to dynamically adjust the
heuristic variables and observe the effect on the vision system’s performance.

First, the perimeter of each contour is calculated and compared to a user defined
minimum perimeter value. It is assumed that the whales are of the same relative size
in the image so that contours with much smaller dimension sizes are considered noise.
If the contour’s perimeter is too small, the contour can be rejected.

It is also assumed that any occlusions are due to whales moving underneath an-
other whale. In this case, the two objects would be combined into a single object.
Therefore, the system can eliminate contours with dimensions smaller than a user
defined percentage of the largest contour identified in the frame. These minimum
dimensions are periodically updated to account for orientation changes of the largest
contour due to camera manipulation or movement of the whale itself. This procedure
is effective for instances when the target object is large in the frame which is one of
our assumptions.

Finally, the user has the option to remove contours based on aspect ratios. Con-

tours with extreme aspect ratios usually occur around the borders of the image and
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appear as noise. Assuming the that whale’s natural shape is rectangular and relatively
regular, it is possible to eliminate long and thin contours as noise.

If a contour passes the various heuristics, the cvApproxPoly function which uses
the Douglas-Peucker algorithm [25] is applied to approximate the contour with a poly-
gon having fewer vertices than the original contour. This operation helps eliminate
noise at the edges of the contour so that the remaining polygon has smooth edges and
a more distinct shape. Processing continues until there are no contours remaining
or until a user defined maximum number of contours has been reached. A sample
output of the completely processed contour image is shown in Figure 4-2(b).

The center of mass and an axis-aligned bounding box around the contour are
plotted to identify the target to the user as shown in Figure 4-2(c). This process
continues on subsequent frames until the user ends the process, creates a new target

histogram, or modifies the thresholds on a previous histogram.

Algorithm 3 Image Segmentation and Object Description
Input: Image, target histogram M,
Output: Image with target(s) identified

1: Convert image to HSV

2: Calculate back-projection image using M,

3: Perform morphological operations on back-projection

4: Identify pixel groups as contours

5: Identify largest contour height and width

6: if Perimeterconionr < Perimeter,;,, then

7:  Remove contour

8: end if

9: if Widtheontonwr < Widthys,, and Heighto,,;.., < Height,,,. then
10:  Remove contour

11: end if

12: Calculate center of mass

13: Plot center and bounding box and display output image

4.4 Tracking Multiple Objects

While this research focuses on developing a computer vision system to identify

whales in an ocean environment, the pixel classification and image segmentation al-
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gorithms can be utilized for other applications. The main underlying assumption
which makes the algorithms successful is the belief that the intended target will be
described by roughly the same H and S values throughout the experiment and these
values are different than the background’s H and S values. There are some situations
where the user may wish to track multiple objects at the same time. If the intended
targets can be described by the same H and S characteristics, the vision system will
identify them both simultaneously. As shown in Figure 4-3(a), the vision system is
able to identify multiple seals using a single target histogram. This image is from
footage recorded in Argentina.

However, by relying on one distinct target histogram, it is not possible to iden-
tify and track targets with significantly different H and S ranges. To overcome this
obstacle, the vision system supports the creation of multiple target histograms. If a
new object comes into view, the user has the ability to capture a frame and create a
separate target histogram for the new object using the process in Algorithm 1. Each
time the user creates a new target histogram, the target histogram and corresponding
threshold values are stored in a vector including the previous target histograms and
their threshold values. Algorithm 3 is then executed for each target histogram sepa-
rately. Each target is identified with a bounding box and center of mass marker. An
example is shown in Figure 4-3(b) where one target histogram was created to track

the blue ship while another was created to track the red ship.

4.5 Position Vector Calculation

Once the appropriate objects have been identified in the image, a vector that
points to the average location of the objects is calculated and optionally displayed.
For images with only one target, the vector points directly to the center of mass of the
target. However, when there are multiple targets in the frame, this vector is computed
in two separate ways. The first method takes each target’s x and y center of mass
coordinates and computes the average center of mass location of all the targets. This

is shown in Equation 4.1 where (z.,y.) is a position vector representing the average
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(a) Tracking Multiple Targets of Similar (b) Tracking Multiple Targets of Different H and S
H and S Properties Properties

Figure 4-3: Simultaneous Tracking of Multiple Targets

location of the identified objects, z; and y; represent the center of mass coordinates

for each object, and n is the total number of objects found in the image.

(T, ye) = (% ixi, % Zn:y@) (4.1)

The second method computes a weighted average location based on the bounding box
area of each target. Objects that appear larger in the frame are emphasized in this
calculation. This calculation is shown in Equation 4.2 where each object’s x and y
center of mass coordinates are multiplied by the pixel area a; of the bounding box

enclosing the object with the constraints » "  a; = 1 and a; > 0.

(Tes Ye) = ( Z:L: ;T Zi: aiyi) (4.2)

In Figure 4-4, the yellow arrow is the unweighted position vector while the black
arrow is the weighted position vector. From this figure it is evident that the large
size of the bottom group of whales has pulled the weighted position vector down
compared to the unweighted position vector. If, for example, the user wanted to stay
over the largest group of whales, the weighted position vector should be used. For the

hardware experiments in this research, there was only one target so an unweighted
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position vector was used.

Figure 4-4: Weighted vs. Unweighted Position Vector

When tracking multiple objects using multiple target histograms, the position
vector is computed slightly differently. When tracking multiple targets, a separate
position vector is returned for each target histogram. For example, in Figure 4-3(b),
an position vector would be calculated to point towards the blue ship’s center of
mass and another position vector would be computed for the red ship’s center of
mass. In order to compute a final position vector, a cumulative, unweighted average
is calculated. This is shown in Equation 4.3 where (z,y¢) is the final position vector,
(e, ye) is the most recent position vector calculated by Algorithm 3 for a new target
histogram M,, and i = 1,2,... N where N is the total number of target histograms

computed.

(fL'f, yf)i _ ((xe;ye)i + (7’ _Zl) ’ (xf7yf)i—1) (43)

The position vector is ultimately used to provide high-level trajectory planning
for the vehicle, so different applications could require different vector calculations.
Enabling the user to calculate this vector in a variety of ways makes the complete
vision system more adaptable to different situations. Nature is very unpredictable

and we can not create algorithms appropriate for every situation, but we hope the
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tools integrated into this vision system make it useful for multiple applications.
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Chapter 5

Controller Design

This chapter describes the development of the Linear Quadratic Regulator (LQR)
controllers developed to control the robot position vector [z, %y, %z, ¢]|T. Figure 3-4
shows the overall control strategy to maneuver the quadrotor to a desired location
determined by visual position estimates. This chapter begins with a derivation of
the LQR gain matrix calculation to motivate the state space representation of the
quadrotor’s dynamics presented in Section 3.3. The LQR gain matrices are computed
and shown to work in simulation. These gains are then implemented in hardware
and the tuning process is explained. The resulting controllers are able to position
the quadrotor with less than two centimeters of error utilizing motion capture state

feedback.

5.1 LQR Derivation

The low-level position controller is developed as a set of LQR controllers. The
LQR controller is a full state feedback controller that is provably optimal. Several
assumptions are required to derive the optimality proof of the LQR controller. Since
the LQR controller requires access to all states, the system must be fully observable.
It must also be fully controllable for the inputs to impact every state. The plant is

represented in the Linear Time Invariant (LTI) state space form
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x = Ax + Bu

and the desired controller is of the form

u=-K(x—xq)

where x, is the vector of desired states.

First, the Hamilton-Jacobi-Bellman (HJB) equation is derived which will be used
as a sufficiency condition for optimality. Given an instantaneous cost function g(x, u)
and a cost-to-go function J = fooo g(x,u), the optimal cost-to-go is the cost of the

optimal trajectory remaining after time ¢. This is written as

J*(x,t) = min/ g(x,u)
uw(t) Jy

Taking the limit as the time between control updates, dt, approaches zero results

n:

J*(x,t) = lim min[g(x,u)dt + J(x(t + dt),t + dt)]

dt—=0 wu
. . . aJ* . 0J*
R~ c}tlinm min {g(x, u)dt + J*(x,t) + o xdt + 5 dt}

Assume that J* has no dependence on ¢ and is a smooth function. The resulting

infinite-horizon form of the HJB is shown in Equation 5.1

*

: o0J
0= min {g(x, u) + o

(Ax + Bu)} (5.1)

If a policy 7(x,t) and a cost-to-go function J"(x,t) are found and the policy 7 mini-
mizes the right hand side of the HJB for all x, then the policy and cost-to-go function

are optimal and denoted by the *x superscript as shown below.
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JT(x,t) = J*(x,t), 7(x,t)=7n"(x,t)

The infinite-horizon LQR cost function is of the unique form g(x,u) = xTQx +
u”Ru where Q is a symmetric positive semi-definite matrix (Q = Q* > 0) and R is
a symmetric positive definite matrix (R = R” > 0). The Q and R matrices allow
the control system designer to penalize state errors and control input magnitudes to
modify the overall system behavior.

Since J* cannot depend on time, we guess the function J*(x) = x’'Sx where S is
a symmetric positive definite matrix (S = S” > 0). Substituting in 9 = 2x”'S, the

resulting HJB equation is reduced to Equation 5.2.

0 = min [x"Qx + u"Ru + 2x" S(Ax + Bu)] (5.2)

To find the minimum u, the gradient is set to zero due to the positive definite

quadratic form of u

9 =0=2u"R + 2x'SB
ou

This reduces to the optimal policy u*
u =71 (x) = -R'B’Sx = —Kx

Substituting the gain matrix K into Equation 5.2 results in
0=x"[Q—-SBR'B’S +2SA|x

This further reduces to the final algebraic Ricatti equation, Equation 5.3.

0=SA+A’S-SBR 'B’S+Q (5.3)
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Equation 5.3 is used to solve for the matrix S which is used to calculate the opti-
mal feedback gain K. This can be done in MATALB using the function [K,S] =
1qr(A,B,Q,R).

In calculating the gain matrix K, the resultant value moves in the direction of
steepest decent of the cost-to-go function represented by the —Sx term. However,
the controller is limited by the control inputs u so the term —BSx is the projection
of the steepest decent onto the feasible control space. The R™! term manipulates the

descent relative to the user defined weightings on the control inputs.

5.2 LQR Implementation

Using the Simulink model verified in Section 3.3.1, the adapted dynamics in Equa-
tions 3.12, 3.13, and 3.14 are used to create a LTI state space model of the system.
The LQR controller requires a linear model to estimate the optimal gains. The lin-
earization process removes the offsets from the system dynamics. These offsets are
later accounted for in the controller design after the gains are calculated. Note that
a rotation matrix is used to rotate the desired state in global frame to a desired state
in body frame which results in a body frame error vector.

For the state space model of the quadrotor system, nine states are used. These
states are [°z, by, x, 6,0, 1,%,%),°4]7. The entire nine state state space model of the
system is uncontrollable. Instead, each element of the position matrix [z, %y, %z, |7 is
broken into a smaller state space model and individual LQR controllers are designed
to control each of these states.

In practice, the LQR controller resulted in steady state error from the desired po-
sition. This was removed using an integral term on the position and heading states.
The LQR gains were then empirically hand tuned in an iterative process. Initially,
the motion capture measurements were used for state feedback. The quadrotor was
commanded to hover around the desired translational position of (0,0,1.5) m and a
zero degree heading. Without integral control or offsets, the LQR gains were modified

to command a behavior which could quickly respond to position errors and distur-
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bances with minimal overshoot. Once this behavior was satisfactory, the offsets were
adjusted to reduce any large steady state error. Finally, the integrator gains were
tuned to remove any additional steady state error without exciting any oscillatory
modes of the system. The final LQR gains were within one percent of the ones com-
puted below. The LQR gains were modified to handle the slightly more noisy and
less accurate measurements outputted from the Extended Kalman Filter (EKF). The
same iterative tuning procedure was done and the resulting gains were of smaller mag-
nitude reflecting the lower accuracy of the estimated state when compared with the
state computed by the motion capture system. The specific values of the individual
K, Q, and R matrices are described below.

The ®z position is modeled using the state space equations below.

U
b o 1 o |l=] [o o ool ™
Uy,
%l =10 —-K; K,| |%|+|0 0 0 0 (5.4)
. U,
0 0 0 —i||6]| |o K o of]| ™
6 0 UZ

The cost matrices for the LQR calculations are

01 0 O 0
350000 0O 0
0 01 0 0

Qx = 0 0 0 Ry = (5.5)

0O 0 01 0
0 0 250000
0 0 0 0.01

These matrices produce the following K, matrix of gains.

0 0 0
1870 1420 370
K, = (5.6)
0 0 0
0 0 0
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The %y position is modeled using the state space equations below.

U¢d
by 0 1 0 by 0 000
U,
il =10 —K; K. ||%|+]0 000 (5.7)
i K U"Z)d
o 0 0 —L]|o 200 0
¢ ae U,
The cost matrices for the LQR calculations are
01 0 O 0
375000 0O 0
0 01 0 0
Q= 0 0 0 R, = (5.8)
0O 0 01 0
0 0 250000
0 0 0 0.01
These matrices produce the following K, matrix of gains.
1940 1490 360
0 0 0
K, = (5.9)
0 0 0
0 0 0
The v heading is modeled using the state space equations below.
U¢d
. U,
-1 b] b o o0
Uy
d
U.
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The cost matrices for the LQR calculations are

0.1 0 0 0
0 01 0 0
Qy = [2500000] R, = (5.11)
0O 0 01 0
0O 0 0 0.01
These matrices produce the following K, matrix of gains.
0
0
K, = (5.12)
5000
0
The z position is modeled using the state space equations below.
U¢>d
b3 0 1 b2 000 O Us,
= (5.13)
b3 0 —K:| |% 000 K.||U
d
U,
The cost matrices for the LQR calculations are
0.1 0 0 0
25000 0 0 01 0 0
= R, = (5.14)
0 0 0O 0 01 0
0O 0 0 o0.01
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These matrices produce the following K, matrix of gains.

0 0
0 0
K, = (5.15)
0 0
1580 990

As mentioned previously, offsets are computed to account for the affine nature
of the learned model. After the input gains are calculated, the linear offsets can be
computed and converted to offsets for the control inputs. This accounts for any offsets
due to the additional payload not aligning with the natural z axis of the quadrotor.
The thrust control offset is estimated to be the control value which resulted in a stable
hover without altitude changes.

This LQR controller is summarized visually in Figure 5-1 and the entire feedback
loop is visible in Figure 5-2. In order to verify the controller, a typical trial was
simulated using the Simulink model. The desired trajectory was taken from a physical
run of the system and was created by the vision system output. Using the LQR gains
described above, the simulated performance of the quadrotor is shown in Figure 5-
3. The controller causes the quadrotor to converge on the desired trajectory and

maintain close proximity to the desired trajectory throughout the path.
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Figure 5-1: Simulink LQR Controller Block Diagram
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Chapter 6

Experimental Results

In order to evaluate the real world performance of the vision system, the algorithms
from Chapter 4 were tested on video footage of whales taken from field experiments
and the internet. Of primary importance is the footage taken from the field tests in
Argentina. The goal of this thesis is to provide a platform capable of autonomously
tracking these whales utilizing only on-board computation. The algorithm had a
98.99% recall for this footage and the algorithm. Therefore, the algorithm would be
effective at identifying whales in this environment.

In order to evaluate the control systems developed in Chapter 5 for visual ser-
voing, the quadrotor was tasked with autonomously tracking an iCreate platform.
An indoor motion capture system was used to calculate an accurate global state of
the robot similar to Global Positioning Satellite (GPS) since GPS reception is avail-
able outdoors. However, we also desire the ability to continue to track the targets
in environments without reliable GPS signals or even in GPS denied environments.
The Extended Kalman Filter (EKF) described in Section 3.4 is used to fuse Inertial
Measurement Unit (IMU) measurements with the vision system’s position estimates
to estimate the vehicle state independent of any external localization source. Visual
servoing results are presented which show the accuracy of the quadrotor hovering over

a static target with and without motion capture state feedback. We then program
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the iCreate to move along a varied trajectory and present results of the quadrotor

tracking the moving target with and without external localization.
6.1 Experimental Set-up, Methodology, and
Metrics for Object Identification

The primary data set for evaluating the vision system is the video footage we
recorded using a robotic helicopter. From this data set, six clips are extracted re-
sulting in 3,537 frames. All but one of these clips was recorded at an angle directly
overhead of the whales. The ability of the camera on-board the robot to pan and tilt
allowed for one clip to be recorded at an angled perspective. Video footage found on
the web is used to increase the diversity of viewpoints, sea conditions and species.
These fifteen clips comprising 9,543 frames include clips of Blue, Grey, and Humpback
whales recorded at both overhead, angled, and surface perspectives. In both sets of
data, some clips contain multiple identifiable whales. Other clips contain whales that
appear from outside the frame or are occluded by another whale. The clips also vary
in duration as well as environmental factors. A summary of the properties of the
whale clips analyzed is shown in Table 6.1.

The algorithms are processed on a desktop computer for this series of experiments.
For each clip, an output video is recorded which depicts every contour identified as
a target with a bounding box. After each run, the output video is analyzed frame
by frame to compute the performance of the algorithms. All thresholds and heuristic
values remain constant for each video clip. The threshold and heuristic constants are
manually tuned for each clip in order to improve performance.

The following metrics are used to evaluate the vision system’s performance:

e Rate of false positives.
e Rate of false negatives.

e Rate of contour splitting.
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Table 6.1: Properties of Video Clips Analyzed

Clip Name | Frames | View Angle Species # Whales
Web1 281 90° Blue 1
Web2 393 90° Blue 1
Web3 358 90° Blue 2
Web4 1117 45° Blue 2
Web5 1047 45° Blue 2
Web6 343 45° Blue 2
Web7 233 90° Blue 1
Web8 1209 0° Grey 2
Web9 1268 0° Humpback 2
Web10 625 0° Humpback 1
Webl11 514 0° Humpback 1
Web12 364 0° Humpback 2
Web13 546 0° Humpback 1
Web14 o84 0° Humpback 1
Web15 661 0° Humpback 1

Argentinal 520 45° Southern Right 3

Argentina2 259 90° Southern Right 5

Argentina3 657 90° Southern Right 2

Argentina4 97 90° Southern Right 6

Argentinab | 1343 90° Southern Right 4

Argentina6 661 90° Southern Right 2
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Contour splitting occurs when one object is represented by multiple contours. While
the threshold values may prove effective at the beginning of the clip, lighting, white
balance and angle changes can cause these numbers to be less representative of the
target as time progresses. Therefore, the target is sometimes represented as separate
objects. This does not result in a false positive since the correct target is still identi-
fied, but users of the vision system can use the amount of splitting as a soft measure
of hue (H) and saturation (S) variation throughout the duration of the clip. False

positives and false negatives are counted in each frame for each object identified.

6.2 Results of Object Identification Algorithms

This section details the specific results of the vision system’s performance on pre-
recorded video footage. The clips are separated by camera view angle and aggregate
performance statistics are presented. Finally, we present results tracking boats to
show that the vision system is able to adapt to any target with homogenous HS

characteristics which vary from the background.

6.2.1 Tracking with an Overhead Perspective

Nine clips comprising 4,282 frames were analyzed with a mixture of quadrotor
footage from Argentina as well as helicopter based footage from the web. Using this
view angle resulted in a large distance between the camera and the water’s surface as
shown in the sample frame in Figure 6-1. This distance reduced significant lighting
changes in the image which resulted in more consistent H and S values for both the
whales and the background. The only noticeable adverse effect of this viewpoint was
caused by the wakes of the whales. When the whales were on the water’s surface,
their wake’s H and S characteristics were very similar to the H and S characteristics of
the whales. The performance statistics for all clips with an overhead view are shown
in Table 6.2.

In particular, one clip caused a high number of false positives. In this clip, the

whales were near the beach and the waves on the beach could be seen as well. The
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Figure 6-1: Sample Frame From Footage Recorded at an Overhead Perspective

false positives occurred mainly along the beach line where the waves broke along the
beach. The size difference between a large group of whales and a single whale in
the image made size-based filtering ineffective. However, other logic could be used to
improve the performance in this clip and others similar to it. Whales on the surface
do cause waves, but these waves account for only a small number of pixels in the
bounding box that surrounds the whale. By calculating the estimated percentage of
wave pixels in each bounding box, false positives can be rejected. A similar method
of calculating the number of ocean pixels and beach pixels was used. Using these
additional logic arguments on the problematic clips, the vision system’s performance

was vastly improved to the statistics shown in the bottom half of Table 6.2.

Table 6.2: Vision System Results: Overhead Perspective

Minimum | Average | Maximum | Stand. Dev.
False Negative | 0.00% 1.69% 14.43% 4.79%
False Positive 0.00% 26.85% 193.81% 63.93%
Splitting 0.00% 2.45% 13.85% 4.58%
Using Pixel Value Logic
False Negative |  0.00% 0.21% 1.03% 0.43%
False Positive 0.00% 1.54% 6.01% 2.56%
Splitting 0.00% | 2.36% | 9.90 % 3.32%
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Figure 6-2: Sample Frame From Footage Recorded at an Angled Perspective

6.2.2 Tracking at an Angled Perspective

The four clips of 3,027 frames in this section were also recorded from above the
whale, but from an oblique angle that caused the camera to be closer to the water’s
surface as shown in Figure 6-2. As expected, the percentages shown in Table 6.3 were
slightly higher than the aerial perspective statistics when the outliers are removed.
Specifically, the rate of false positives is higher. The closer proximity of the camera
to the whales caused lighting effects to become more pronounced resulting in higher
false positive rates.

As evident in the statistics, the vision system performed poorly for one clip in
particular. This was due to one of the whales having an extended wake that was
consistently identified as a false positive. Unfortunately, the size of the wake was very
similar to the size of the whale reducing the effectiveness of size-based filtering. Also,
the H and S characteristics of the wake were very similar to the H and S characteristics
of the whales. Trying to identify the wake by the amount of wave pixels was also
ineffective due to the combination of similar size and H and S properties of the wake
and the target whales. This clip shows a drawback with the algorithm and potential

for further refinement.
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Table 6.3: Vision System Results: Angled Perspective

Minimum | Average | Maximum | Stand. Dev.
False Negative | 0.00% 2.43% 8.46% 4.04%
False Positive 1.92% 21.09% 68.5% 31.75%
Splitting 0.00% 1.46% 5.38% 2.63%
Without Max Trial
False Negative | 0.00% 3.15% 8.46% 4.63%
False Positive 1.92% 5.28% 9.36% 3.77%
Splitting 0.00% | 1.94% | 5.38% 2.99%

6.2.3 Tracking from the Surface

The surface perspective proved to be the most difficult viewpoint for this vision
system. This is due to extreme lighting changes and changing of camera orientation.
Eight clips from the internet comprising 5,771 frames were used for evaluation. The
results are shown in Table 6.4. The majority of these clips appeared to be recorded

from the side of a boat in very close proximity to the whales as seen in Figure 6-3.

Figure 6-3: Sample Frame From Footage Recorded at a Surface Perspective

The whales would often surface and dive, making their H and S values inconsistent
and resulting in false negatives. They would also change orientation in the water,

sometimes showing a white underbelly, which further hindered the success of the vision
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system. Lastly, sunlight reflecting off the water caused an increase in the rate of false
positives. Decreasing the proximity between the camera and the target exaggerated
the effect of environmental factors. Viewed from high above, these lighting changes
were not noticeable and did not cause the same amount of disturbance compared to

clips recorded from surface level.

Table 6.4: Vision System Results: Surface Perspective

Minimum | Average | Maximum | Stand. Dev.
False Negative |  0.00% 10.8% 45.06% 18.15%
False Positive 0.00% 13.8% 45.50% 17.51%
Splitting 0.00% 6.11% 24.73% 9.15%

6.2.4 Performance Comparison of View Angle

As evident by the statistics shown in Table 6.2, Table 6.3, and Table 6.4, the
vision system’s performance was slightly degraded for clips recorded at an angled
perspective and even more deteriorated for clips recorded at a surface perspective
when compared to those recorded at an overhead perspective. While both overhead
and angled views had specific issues such as beach breaks and surface wakes that
required additional heuristics to rectify, the vision system was more accurate with
clips taken from an overhead perspective. As mentioned previously, the overhead
perspective typically created a larger distance between the whales and the camera
compared to an angled perspective. This resulted in a more distinct target H and S
histogram that was less prone to false positives. Using the vision system on-board a
flying robot should result in video footage similar to those taken with an overhead
perspective and the vision system has shown strong performance for this case.

The vision system performed relatively poorly on the surface level perspective
whale clips due to the similar H and S characteristics of the target and the background
as shown in Table 6.4. Clips that had average background S values within the S
threshold of the target had significantly higher false positive and contour splitting
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rates. This occurred in three of the eight clips recorded from a surface perspective.
These clips also had average background H values within five values of the target H
threshold range. When the background H values were near the target H value range
but the average background S values were not near the target S threshold range there
was not a significant decrease in performance of the vision system. The H plane was
not affected by lighting changes which may explain this result. Lighting changes are
accounted for in the S plane, which is more noticeable at close proximity to the target.
These effects, combined with background H values similar to that of the target cause

the vision system’s performance to deteriorate at the surface perspective.

6.2.5 Boat Identification

The object identification and tracking algorithms can be used to identify other
types of objects at sea, for example boats. Clips were taken from the internet to
gather a variety of boats in various environments. A sample frame from one of these
clips is shown in Figure 6-4. Seven clips were analyzed with five clips recorded from
a surface perspective, one recorded from an angled perspective, and one recorded
from an overhead perspective. Specific details about each clip are shown in Table
6.5. The results of the algorithm’s performance are summarized in Table 6.6. The
vision system was very successful at tracking boats in these clips primarily because
of the H and S difference between the boats and the background. A main cause of
false positives and splitting in the whale clips was the similar H and S characteristics
of the whales and the ocean. The boats were painted distinct colors that contrasted
well from the background. In one clip, only the rear of the boat was visible, and the
rear contained a stripe. This stripe caused the rear to be identified as two separate
objects which caused a large amount of splitting to occur for that specific clip.

The boat clips also displayed the ability of the vision system to track multiple
targets with differing H and S characteristics. To demonstrate this property, a clip
with one red boat and one blue boat was used. A sample frame from this clip was

shown previously in Figure 4-3(b). This clip resulted in no false positives or false
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Table 6.5: Properties of Video Clips Analyzed

Clip Name | Frames | View Angle | Boat Type | # Boats
Boatl 989 0° Tug 2
Boat2 823 0° Tug 2
Boat3 795 0° Tug 2
Boat4 860 0° Cruise 1
Boath 1261 0° Cargo 2
Boat6 551 90° Cargo 1
Boat7 544 45° Cargo 1

negatives and only 0.24% instances of splitting. Without foreknowledge of the H
and S characteristics of the multiple targets, the user must create the new target
histogram in real-time. This may cause the new target to be unidentified for a brief

period of time while the thresholding process is completed.

Figure 6-4: Sample Frame From Boat Footage

6.3 Experimental Set-up, Methodology, and

Metrics for Visual Servoing
To evaluate the performance of the LQR controllers, the vision system was used to
identify the target and created a desired trajectory to position the quadrotor above the

target. The iCreate target was static for these tests. These experiments evaluated the
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Table 6.6: Vision System Results: Boat Identification

Minimum | Average | Maximum | Stand. Dev.
False Negative |  0.00% 0.30% 1.09% 0.51%
False Positive 0.00% 0.00% 0.00% 0.00%
Splitting 0.00% 4.02% 19.44% 7.49 %

performance of the vision system processed on-board a computationally impoverished
platform with a low-quality camera. This contradicted the previous evaluation of the
object tracking algorithms which used a desktop computer with clips taken from high-
quality cameras. We demonstrate the ability to run the control and vision systems
simultaneously in order to hover the robot stably.

The first control strategy utilized the motion capture system to sense the quadro-
tor’s pose and the vision system’s position estimates to determine the translational
error to the target. This method was intended to simulate target tracking in an out-
door environment. Since GPS is available outdoors to give an accurate estimate of
the position of the robot, the motion capture system was used to emulate this sen-
sor. Butterworth filters were used on the translational positions to compute smooth
velocity values for the controller. This approach was also used to define a baseline
performance for the tracking system.

In the first experiment, the quadrotor control module received a global pose es-
timate from the system as well as the attitude compensated estimate of the target’s
position from the vision system. The vision system’s position estimates were used to
create a desired trajectory from the latest quadrotor position to the estimated target
location. Once a new vision estimate was received, the process was repeated and the
desired trajectory extended.

A linear interpolation function was used to compute successive waypoints along the
desired trajectory to send to the LQR controllers. This function adjusted the distance
between successive waypoints as a function of the magnitude of the estimated error
to the target. When the error was small, the distance between waypoints was also

small. This improved the accuracy of the tracking by reducing high frequency noise in
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the vision system output when the quadrotor was directly over the target. However,
when the estimated error was large, a greater distance between waypoints was used.
This caused the quadrotor to move faster and therefore reduce the error faster.

The second control strategy removed external localization and relied entirely on
visual position estimates and IMU measurements. This control strategy utilized an
EKF to estimate the pose of the quadrotor to provides state feedback. Since there
was no external localization source, the target centroid was the origin of the global
coordinate frame and the desired quadrotor position was this origin. As the target
moved, the coordinate frame origin also moved and the quadrotor attempted to stabi-
lize around this dynamic origin. This estimated pose was sent to the control module

which computed commands to maneuver the quadrotor to the center of the target.
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Figure 6-5: Comparison of EKF Output to Ground Truth

An example plot of the estimated values compared to the ground truth is shown

below in Figure 6-5. For this sample of data, the position estimate had a Root
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Mean Square (RMS) error of 0.107 m, a velocity RMS error of 0.037 m/s, and an
acceleration RMS error of 0.121 m/s?. This proved to be a good state estimate. The
velocity signal is the critical estimate for stable control. The EKF velocity estimate
was fairly smooth with a minimal delay. High LQR gains would have amplified the

estimation errors so LQR gains of smaller magnitudes were needed for stable control.

6.4 Results of Visual Servoing Experiments

For each of these tests, the quadrotor was flown autonomously for around thirty
seconds at a desired altitude of 1.35 m. All of the measurements as well as ground
truth data was logged utilizing the LCM framework. This data was then post-
processed in MATLAB. The main criteria for evaluation was the error between the
quadrotor and the target centroid. We also analyzed the error between the estimated
target location computed by the vision system and the ground truth distance. A
sample plot is shown in Figure 6-10(b). Errors in vision system cascaded to errors in
the visual servoing performance. This data was used to improve the accuracy of the

image coordinate frame to robot coordinate frame transformation.

6.4.1 Visual Servoing With Motion Capture Output

Two hovering trials were performed initially to evaluate the controller performance
using motion capture state feedback. The first, shown in Figure 6-6(a), uses the
motion capture feedback to stabilize around a constant desired position. The RMS
error in the x axis is 0.019 m and 0.022 m in the y axis. Due to the integrator
and offsets, the mean steady state error is under a millimeter in each axis. This
demonstrates that the LQR controllers were properly tuned.

The second experiment, shown in Figure 6-6(b), uses motion capture feedback but
the desired position is determined by the vision system. The inherent inaccuracies
in the vision system cause the desired waypoint to move slightly. This results in an
increase in the RMS error between the quadrotor and the target centroid. The RMS

error was (.31 m in each axis for this experiment.
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Figure 6-6: Visual Servoing Utilizing Motion Capture State Feedback

6.4.2 Visual Servoing with EKF Output

Next, the position controller was evaluated by hovering over a static target without
the use of external localization. Figure 6-7 shows the results of this experiment.
The error here is larger than the previous visual servoing experiments which used
the motion capture system for state feedback. This reflects the inaccuracies of the
state estimate from the filter and the limitations of the LQR position controller.
Specifically, this trial had an x axis RMS error of 0.055 m and a RMS error of 0.075

m in the y axis.
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Figure 6-7: Hovering Utilizing EKF State Estimation

6.5 Experimental Set-up, Methodology, and
Metrics for Dynamic Object Tracking

The final set of experiments tasked the Hummingbird with tracking the iCreate
through a varied trajectory. The iCreate was programmed to move along the x axis
around 0.5 m, rotate ninety degrees, and move along the y axis another 0.5 m. The
iCreate moved at a constant speed and the trajectory stayed consistent throughout
the experiments. The control system first used motion capture feedback for tracking
and then relied only on the EKF output for state feedback.

The same performance metrics were used for these experiments. The RMS error
was calculated between the quadrotor and the target centroid as recorded by the

motion capture system.
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6.6 Results of Dynamic Object Tracking

Experiments
These experiments showed the accuracy and robustness of the complete visual
servoing control system. The quadrotor was able to track the iCreate through a
varied trajectory in a consistent manner. With a slight loss in performance accuracy,

the quadrotor is shown to track the iCreate using only vision and IMU data.
6.6.1 Dynamic Object Tracking with Motion Capture
Output

A sample plot of experimental data is shown in Figure 6-8 for tracking the moving
iCreate using motion capture state feedback. This plot shows the desired trajectory
in a dashed red line, the ground truth quadrotor position in blue, and the ground
truth target position in black. This specific trial had a RMS error of 0.051 m in the
x axis and a RMS error of 0.034 m in the y axis between the target centroid and the
quadrotor trajectory.

The results of visual servoing with a known vehicle pose are shown in Table 6.7.
The data was computed over ten consecutive successful trials. The average RMS
error was approximately 6.6 cm in the = axis and 4.2 cm in the y axis. Several factors
affected the performance of tracking but the primary source of error for both tracking
experiments was the vision system. While the attitude compensation is effective when
the distance between the quadrotor and target is small, as the error between the
quadrotor and target increases so does the error between the vision position estimate
and the ground truth. Additionally, errors in the vision system output created errors

in the desired trajectory.

6.6.2 Dynamic Object Tracking with EKF Output
Finally, the EKF state estimate was used to provide state feedback for the con-

troller while the quadrotor followed a moving surface target. A plot of a sample trial
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Figure 6-8: Quadrotor Target Tracking Ground Truth Positions Utilizing Motion
Capture State Feedback

Table 6.7: Dynamic Object Tracking: Motion Capture State Feedback

Statistic |  Axis RMS error (m) | y Axis RMS error (m)
Mean 0.066 0.042
Minimum 0.051 0.028
Maximum 0.083 0.052
Stand. Dev. 0.010 0.008
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utilizing the EKF output for state feedback is shown in Figure 6-9. Here the blue
line is the trajectory of the quadrotor and the black line is the target location. For
this trial, the quadrotor trajectory had a RMS error of 0.083 m in the x axis and a
RMS error of 0.095 m in the y axis. Figure 6-10(a) shows the raw output of the vision
system. This is the pixel location of target centroid in the image plane. Lastly, Figure
6-10(b) shows the vision system output accounting for camera offset and quadrotor
attitude and finally converted into meters. This is compared to the ground truth
error in black as recorded by the motion capture system. The vision system had a

RMS error of 0.049 m in the x axis and a RMS error of 0.076 m in the y axis.
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Figure 6-9: Quadrotor Target Tracking Ground Truth Positions Utilizing EKF State
Feedback

The tracking errors from the experiments using the EKF output for state feed-
back are shown below in Table 6.8. These were also computed from ten consecutive

successful trials. While the performance is slightly more varied and less accurate
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Figure 6-10: Vision System Performance With EKF State Feedback

Table 6.8: Dynamic Object Tracking: EKF State Feedback

Statistic

x Axis RMS error (m)

y Axis RMS error (m)

Mean 0.068 0.095
Minimum 0.056 0.050
Maximum 0.084 0.134

Stand. Dev.

0.009

0.025
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than the tracking with a known pose, the performance is still acceptable. The main
reason in the performance difference was the accuracy in the EKF output and time
delays. While the EKF output is reasonably accurate, its velocity estimate is noisy.
This limits the derivative-like gain that can be used, and which impacts the control
quality. There is also an inherent delay using the filter and for our system, this was

around 0.06 seconds.
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Chapter 7

Conclusions

This thesis focuses on identifying objects, specifically whales in an ocean environment
using a single camera and computer system mounted onto a payload limited aerial
vehicle. It is shown that the same algorithms can be used to identify any object
that can be described by homogeneous hue-saturation values which are distinct from
the background. By examining video clips of whales taken from various settings and
perspectives, the strengths and limitations of the vision system are identified along
with methods to improve accuracy. From an overhead perspective, lighting changes
are less significant and the majority of false positives come from waves created by the
beach or the wakes of the whales.

Through experimental tests using the quadrotor platform, the vision system not
only identifies the intended target, but calculates an estimated centroid location which
is used to control the quadrotor’s position and enable the quadrotor to track the tar-
get. It is shown that the target can make directional changes and the quadrotor is
able to follow the target through a varying trajectory. Additionally, an Extended
Kalman Filter (EKF) is used to estimate the quadrotor state relative to the centroid
of the target using position estimates from the vision system as well as Inertial Mea-
surement Unit (IMU) data. This allows the quadrotor to track the surface target

independent of an external localization source.
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7.1 Lessons Learned

We faced several unique challenges in designing an autonomous system to control
an aerial vehicle with fast dynamics utilizing estimated state feedback. Several key
issues stand out as strong lessons learned which should be noted for future similar

robotic endeavors:

e Open Coding Environment - With the increased interest in software develop-
ment for robotics, several tools and libraries have become common for software
engineers. Systems such as ROS and LCM include tools to pass messages be-
tween modules in a common and efficient way, making it easier to debug code
and implement new features. These libraries also include visualization tools
and the ability to replay logged messages. This allows the user to simulate real
world data without the need to run the physical experiment. Lastly, since the
source code is open source, all developers are able to share code and improve on
the existing codebase. These tools may require initial overhead to use properly,

but the payoff in debugging efficiency is invaluable.

e Systematic Controller Tuning - The system identification and controller design
process is a good tool to analyze the impact of various control schemes on the
desired platform. It is often the case that the controller performs vastly different
on the simulated dynamics when compared to the physical system due to model
assumptions and inaccuracies. Using the simulated values as a baseline is a good
place to start, but developing a systematic tuning process for controllers based
on physical intuition saves time. The low-level LQR position controller was
tuned beginning with the K matrix without any offsets of integrators. The
offsets were then added and finally an integrator loop to remove steady state
errors. The values that resulted in stable performance were then validated in

the simulated environment.
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e Avoid Shortcuts - When developing software, there is a strong desire to get the
code to a working level to test it. Once it proves successful, there is little desire
to restructure the code to improve clarity, performance, and remove the tem-
porary measures used for implementation. Unfortunately, this results in future
bugs which waste time. Once the software works properly, it is recommended
to completely rewrite and restructure the code, removing any artifacts of the

debugging process which may cause future problems.

e Method Suitability - The limited on-board computational power directed the de-
velopment of the vision system as well as the control strategy. Computationally
fast algorithms were chosen to enable the ability for the robot to operate inde-
pendently. In the future, a slightly larger robot should be used to help reduce
the effects of the additional payload on the system’s dynamics and overall flight

time.

7.2 Future Works

A significant amount of future work is planned before our next field-work cam-
paign. We are working on ways to improve the vision system to avoid the hue-
saturation ambiguities between the wakes created by the whales and the whales
themselves, perhaps by including intensity information as well. The current method
of training defines a rectangular region in hue-saturation space which is unlikely to
correspond well to the target. We are investigating alternative ways of training the
vision system that eliminate this restriction, perhaps using active contours. We are
also looking at using optical flow to estimate translational motion of the quadrotor.
The current system relies on having an identified target in order to estimate the
quadrotor state using the EKF. This is seen as a limitation to the system.

We would also like to use the vision system on other platforms. The Autonomous
Underwater Vehicle (AUV) developed in DRL known as AMOUR is equipped with
Point Grey Firefly MV2 cameras as well. This underwater robot has the ability to
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stabilize in six dimensions. However, there is no way to get position feedback since
Global Positioning Satellite (GPS) reception can’t be received underwater. Currently,
multiple sensor nodes are deployed and using range estimates between the robots and
the sensors, an estimated position is computed. Utilizing the vision system, the robot
could identify a target below it and use the vision system to hold its position above
the intended target. Experiments tracking a colored panel are shown in Figures 7-1(a)
and 7-1(b). Additionally, we wish to track the AMOUR robot when it has surfaced.
Equipping the quadrotor with an optical modem receiver would allow the quadrotor

to download large files from the underwater robot.

(a) Tracking Underwater Target (b) Target Tracking with an Underwater Ve-
hicle

Figure 7-1: Future Work Integrating Vision System With AMOUR AUV

Our ultimate goal is to field test this system. With this in mind, we are also
working to better understand the dynamics of our aerial robot to improve its perfor-
mance. While a simplified model was used for our EKF, a model created through a
more rigorous system identification process could prove advantageous if our position
estimates from the vision system are less accurate outdoors. Improvements would in-
clude using complete nonlinear equations and accounting for aerodynamic effects such
as blade flapping. Additionally, a slightly larger quadrotor known as the Ascending
Technologies Pelican should be used. This quadrotor has a recommended payload of
500 g which would carry our system without any additional strain. This would allow

for increased flight time and longer experiments as well.
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We wish to incorporate GPS measurements into our system to allow for au-
tonomous outdoor flight. The applications for this are varied. The main goal would
be to track whales off the coast of Argentina, closing the loop from idea to imple-
mentation. The overall system architecture would vary slightly. Instead of using
the LQR controllers developed in this research, the on-board GPS based position
controller would be used. Since the quadrotor would be flown significantly higher
outdoors, drifts in the pressure sensor altitude estimate would have a smaller impact
on performance. This would eliminate the need to estimate altitude based on vision,
which may be infeasible in an outdoor environment due to noise, occlusions, and the

presence of multiple targets.
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