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1. Abstract

How will we keep our troops secure in a hostile and unpredictable environment? Unmanned
Acerial Vehicle (UAV) surveillance has wide ranging applications in military convoy operations,
as well as other areas of robotics. This project, in conjunction with the Naval Research Lab
(NRL), evaluated and modified a current UAV control algorithm to perform a security role for
military convoys in urban terrain. The desired end state was to provide the simulated military
convoy with constant UAV sensor coverage as the convoy navigated an urban environment.

This research used the NRL multi-vehicle simulator to asses the behavior of the control
algorithm under real world conditions. This included using improved vehicle dynamics and real
world GPS tracks for convoy routes. The control algorithm was evaluated using performance
metrics including the distance between UAVs, distance from each UAV to the convoy, and UAV
fuel consumption. The control algorithm was tested in simulation on three scenarios involving a
UAYV swarm following a military ground convoy. The Basic Navigation scenario simulated a
mechanized convoy while the Foot Patrol scenario simulated soldiers on a foot patrol. Lastly, the
Obstacles en Route scenario simulated a practical convoy route with constant speed fluctuations.

Based on the data taken from simulations, the control algorithm was modified to provide
effective sensor coverage of the convoy in the scenarios. Also, several blending strategies were
created to transition between rectilinear and circular control. Specifically, one involving the
bearing rate of the convoy relative to the UAVs provides a more secure and low tech form of
control than traditional methods. This research identified the limitations of the UMD control
algorithm, provided vital data necessary for further development of the controller for field tests,

and developed a cumulative design process for future NRL control algorithm investigations.
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5. Introduction

Extensive research is currently being focused on swarm control, making it one of the most
exciting and active areas of robotics research. One of the primary reasons for utilizing a swarm
for an application is that a single member may not be sufficient to complete an assigned task. A
single aerial vehicle may carry all of the sensing equipment necessary for surveillance; however,
these vehicles are typically too large and expensive. While a single UAV can cover a specified
area using its onboard sensors, a swarm of the same UAVs is able to provide a much larger and
overlapping area of sensor coverage. Swarms also have the benefits of increased survivability,
reliability, and lower cost due to the ability to decentralize mission specific equipment [1].
Currently, these advantages have led the military to consider introducing aerial vehicle swarms
into active service. The Naval Research Laboratory (NRL) in Washington, DC is actively
conducting research to determine the effectiveness of unmanned aerial vehicle (UAV) swarms
for intelligence, surveillance, and reconnaissance (ISR) missions and particularly in an electronic
warfare role.

By adopting a swarm of vehicles for an application, the supervisory control problem
becomes more complex. That is, how does one coordinate the efforts of these individualized
members in a way to achieve a collaborative objective? To address this problem, formation
control algorithms were developed that allow the swarm members to create specified formations
for more efficient movement, maneuvering, and target acquisition [1, 2, 3]. Examples of some

typical formations are shown in Figure 1.



Column Formation Line Formation Wedge Formation

Figure 1: Example Aerial Formations
Select formations also allow individual swarm members to concentrate their sensors on specific
areas of responsibility.

Still, many of the existing swarm control algorithms have only been evaluated within
cither ideal simulation settings (i.e., perfect sensor measurements) or in open experimental
environments (i.€., no obstacles). Therefore, it is the primary goal of this research to investigate
the ability of an aerial vehicle swarm control algorithm to be utilized within an urban setting
subject to real world disturbances. As military operations move into an urban environment, it
will be necessary for these aerial swarms to operate reliably in this environment as well. This
research looks directly at a convoy escort scenario within an urban terrain (Figure 2), utilizing a

swarm of fixed wing aerial vehicles to provide effective sensor coverage.
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Figure 2: Ground Convoy in Urban Terrain [5]

An urban environment is particularly hazardous to a military convoy because it offers
multiple locations for an enemy to hide as well as the presence of obstacles that can obstruct the
path of the convoy. The urban environment drastically limits the maneuvering potential of a
military convoy while forcing the convoy into close proximity with the enemy. This close
proximity severely limits the US military’s technological superiority and weapons capabilities.
NRL is especially interested in the ability of a swarm of UAVs to provide electronic jamming for
a region around the convoy. It is within this aggressive urban environment that a specific swarm
control strategy will be evaluated. Specifically, this research will analyze the ability of an aerial
swarm to provide sensor coverage of a military convoy as it moves through a virtual Washington
D.C/Annapolis region.

5.1. Current Research

Swarm control algorithms have been motivated to mathematically recreate the behavior
of groups of animals such as bees and ants [1, 2, 3, 4] and have been extended to accurately
modeling the muscle and behavioral systems of fish [2]. In these biologically inspired examples,

the general shape of the swarm is fluid and possesses no predetermined shape (flocking control).
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However, other research efforts strive to promote more predetermined configurations where
individual vehicles are given specific positions to maintain relative to a leader or neighbor [2, 3]
(formation control). Further research has developed control strategies for various objectives
including: obstacle avoidance [2, 3], local sensing to achieve group coverage [4], and potential
fields for route planning [2].

This proposed research project differs from current research in two key areas. First, this
project will investigate a fixed wing aerial swarm control algorithm for suitability within an
urban setting, and not focus on individual tasks of the swarm. While having these algorithms for
optimal task assignment and route planning are important, they are of little use if the swarm is
unable to operate effectively in urban terrain. Rather than focusing on behaviors of specific
vehicles in the swarm, this research will critically assess the behavior of the entire UAV swarm
using a specific control algorithm to determine if UAVs are even capable of performing urban
centric missions. Secondly, many of the algorithms proposed in the existing literature are
verified using ideal simulations. Factors such as weather, communications or sensor loss, and the
presence of obstacles are omitted. With the advanced capabilities of the NRL multi-vehicle
simulator, this research will introduce these realistic disturbances in the simulated environment
and observe how the control algorithm is able to handle the more realistic variables.

5.2. Control Algorithm for Analysis

Though many swarm control algorithms exist, the primary controller under consideration for
this research project was designed by Dr. Eric Justh and Dr. P.S. Krishnaprasad from the
University of Maryland [12] for control of a swarm of fixed wing UAVs. Specifically, this
control law was selected over others for two primary reasons: 1) the algorithms include such

aerial vehicle constraints as constant speed and 2) the ability of the control strategy to produce
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both transiting (rectilinear) and loitering swarm formations. However, the control algorithm of
[12] has only been simulated under ideal conditions. Currently, NRL is considering expending
much effort in the development of an experimental aerial swarm based around this control
strategy; thus, the algorithm must initially be evaluated in detail in order to be determined
effective (this evaluation represents one of the focus points of this project). Drs. Justh and
Krishnaprasad designed their algorithm to perform a few basic functions which make it
applicable to multiple scenarios. Specifically, their algorithm was biologically inspired. They
wished to model three basic characteristics of biological swarms: common orientation, cohesion,
and non-collision [12]. Their algorithm achieves these behaviors through the utilization of a
geometric framework which creates a simple and straightforward representation of the

constraints on the system. A weighted average of the three gains, 7, a, 1, is utilized to control the

overall swarm formation depicted in Figure 3.

n- uabreast _l

o -u —  ————

equidistant

=
/‘1 ’ uheading —_';— \\ —'-__

Figure 3: Potential Field Behavior Illustration

In addition to evaluating the control strategy of [12] within realistic settings, an investigation
to determine how to transition between rectilinear (rapid convoy movement) and loitering (slow

or stationary convoy) swarm movement will be performed. Currently, the controller of [12] does
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not state an explicit strategy for this transition. Therefore, a blending algorithm must be
developed that will allow the swarm formation to effectively transition between these linear and
circular formations.

5.3. Problem Statement

The primary objective of this research is to provide a comprehensive analysis and
modification of the UMD control algorithm [12] when applied to a swarm of unmanned aerial
vehicles for automated urban convoy escort. The performance of the UMD controller will be

evaluated against the following primary performance metrics (Figure 4):

Metric Tactical Significance
Distance between UAVs Too close => risk of collision
Too far => communication loss
Distance from Convoy Too far => jamming and sensors become
ineffective
Fuel Consumption More maneuvering = more fuel used = shorter
mission duration

Figure 4: Performance Metrics and their Tactical Significance

In addition, a blending algorithm to augment the control design of [12] that will allow the
swarm to alter shape depending on such factors as convoy speed and organization will be
investigated. Also, modification of the algorithm to support a convoy if it splits into two distinct
groups will be investigated. These scenarios will be discussed with more detail in the following
sections.

5.4. Task Overview

This section provides a brief overview of the primary tasks that are necessary to successfully
research the convoy escort problem presented in the problem statement utilizing the UMD

control law.
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e Investigation of UMD Controller [12]

Prior to the implementation of this controller into the NRL multi-vehicle simulator, it is
necessary to acquire a solid understanding of the control strategy the authors used in designing
this controller. Specifically, I analyzed the controller’s design process and then implemented the
algorithm in MATLAB. This task familiarized me with all the required measurements,

calculations, and tunable control parameters involved.

e Generation of Convoy Trajectory

In an effort to make the simulation of a foot or mechanized convoy as realistic as possible, I
generated sample convoy trajectories throughout the Washington D.C. metropolitan area. GPS
receivers logged the trajectories of the convoy elements through the city. These trajectories
involved both walking (foot patrol) as well as street navigation in an automobile (mechanized
convoy) to simulate military convoy scenarios. In order to do this, I co-created a GPS route
module that was inserted into the NRL multi-vehicle simulator. This allowed me to inject the

routes I created by moving through the city.

e Implementation into the NRL Multi-Vehicle Simulator

This task involved modifying the existing coding of the UMD control law in the NRL multi-
vehicle simulator in order to support the parameter modification necessary for this project.
Parameter modification is the process of changing the values of 77,a, 1,1, and analyzing the
resulting swarm behavior. This process allows insights to be drawn about the relative effects of

each of the parameters. It also required the creating of code in the simulator to export specific

vehicle data as well as the creation of a MATLAB script to post-process this data.
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e FEvaluation of the UMD controller in the Urban Environment

The evaluation consisted of running the swarm through ever more complex scenarios and
observing the results based on the performance metrics. During these scenario simulations,
specific data was taken and the swarm’s performance was measured based on multiple initial
conditions. The objective was to determine in which scenarios, if any, the UMD controller was
effective and to identify the areas of the controller that need to be re-evaluated in order to be
successful in the future. The information collected allowed me to make specific

recommendations supported by realistic data.

e Development of Blending Algorithm:

This task consisted of formulating a blending strategy that allowed the swarm to smoothly
transition between two forms of the control law depending on such factors as convoy speed and
distance. While the ability for the swarm to create rectilinear and circular formations is already
proven, there was no current focus on how to transition between the formations and under what
circumstances. The rectilinear and circular control laws work well under ideal situations, but
adding the complexities of a real world mission with varying convoy speeds requires a method to
use varying amounts of the rectilinear and circular control outputs in order to improve swarm
performance.

5.5. Controller Investigation

This swarm controller was designed to replicate a formation of animals. The author’s primary
design objectives were to use automatic control to avoid collisions between vehicles, maintain

formation cohesiveness, be robust to loss of individuals, and scale favorably to large swarms
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[12]. Their equations are suitable for control of small UAVs for n number of vehicles. The

control equation is reproduced as follows:

2
_1 [ LSSV (L0 TSUN N U L I (7S ,
u; = nzk¢j n ‘r:k‘ X; ‘ jk‘ Yi|—l [|I?|J ‘r:k"y,‘ + XY [1]

where the following variables are defined as:

e r; =r; —r, which is the distance between any two UAVs

e X is the unit tangent vector to the UAV trajectory

e VY is the unit normal vector to the UAV trajectory

u is the curvature or steering control

These equations above control the position and approximate orientation of the UAV. In
the steering control equation, the term involving x (mu) aligns the heading directions of the
vehicles, the « (alpha) gain is used to control the distances between the UAVs as regulated by

the r, distance, and the 77 (eta) term is used to keep the vehicles abreast of each other. Each of

these terms emulates a biologically plausible behavior. These specific gains are the primary
focus of this research. The gains effectively create a weighted average of the three behaviors to
produce a steering command for the vehicle based on its position and heading relative to all other
vehicles in the swarm. Based on the scenarios and performance metrics, these gains will be
modified extensively to create an algorithm tuned for specific objectives in an urban

environment.
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6. Investigation of UMD Control Law

6.1. Algorithm Derivation

The control algorithm can be given a mechanical interpretation by considering the motion of
a charged particle in a magnetic field. The equations of motion are derived by formulating a
Lagrangian using the kinetic and potential energies, from which Euler-Lagrange equations are

derived. The Lorentz force law for a charged particle in a magnetic field is given by

q(rxB) : - . : . .

K = ———= where ( is the particle’s magnetic charge, B is the magnetic field and C is the
C

speed of light. Refer to Figure 6 for the coordinate system used.

i\ )

Figure 5: Algorithm Derivation Coordinate Frame [12]

fF=mf= q-(FxB) and the magnetic field B is perpendicular to the plane of motion
c

B =(0,0,B,)" then :%Z:B). If u =—£ and we definex =¥ and y = X", then we
mc

0 -u
obtain X = Uy and y = —ux . This simplifies into [X y] = [u ) }[X y] and the Planar

Frenet-Serret equations of motion are derived: F =X, X=Yy-U and ¥ =—-X-U. As seen in Figure
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5, X is the unit tangent velocity vector, Y is the unit normal velocity vector, and U is the curvature
of steering control which is calculated by the control algorithm. Equation 1, the control algorithm
is then used to determine u, the steering control input, based on the interaction between the
vehicles.
6.2. MATLAB Simulations

6.2.1. Rectilinear and Circular Control

From this basic understanding of the equations of motion and the control algorithm, I was
able to code a simple simulation in MATLAB. The basic flow of information is shown in Figure
6 where x and y are the vehicle’s position, 0 is the heading of the vehicle, and u is the control law

output. This code can be seen in Appendix 1 where it is explained in further detail.

Control Calculation
for UAV1
X, Y156,
Initial Xn>¥Yn| Vehicle Dynamics and X5,Y5s 192 - Control Calculation
Conditions »  Position Integration 7| for UAV2
7'}
X3, Y30, )
Control Calculation
for UAV3
u,u,,u,

Figure 6: MATLAB Code Flow Chart

The simulation loop in the code calculates the total u for each vehicle and then exits the
loop. The control calculation is performed once per time step dt and the process continues until

the simulation time expires. This produced plots similar to Figures 7-9, based on initial
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conditions. Figure 7 shows the trajectories of the vehicles from random initial positions and

headings and finish in close proximity travelling in a similar direction.
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Vehicle Seperation Distances

Distance

Figure 9: Intra-Vehicle Separation Distances

Looking at the plot of the steering control U in Figure 8, it is clear that the vehicles had to
do a lot of maneuvering in the beginning to get aligned and headed in the right direction, but
once this was done, steering command values dropped to about 0 as no further adjustments were
needed. This is also seen on the vehicle separation plot, Figure 9. As time continues, the vehicles
find their steady state positions and the intra-vehicle distances remain generally constant and
approach r; as indicated by the red line.

Next, the control law was modified in the code to support the circular control law and
similar plots were created. This was done simply by removing the x term from the calculation
of the control. This creates the circling motion by forcing the vehicles to be equidistant as well as

perpendicular to the baseline between them and removing the behavior which controls heading

alignment. Implementing this form of the control law created the plot in Figure 10.
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Figure 10: Vehicle Trajectory Using Circular Control Law

6.2.2. Parameter Modification

Next, the code was modified to allow for mid-simulation parameter modification. This
was done by implementing an “if” statement inside the simulation loop that switched between
two different parameter values halfway through the simulation. This way, it was possible to run
the simulation and change individual gain values during the simulation to see the vehicles’
responses. Plots of these results can be seen in Appendix 2. The first plot is the simulation run

with base gain parameters and no mid-simulation modification (Appendix 2.1). At first, 77 was
changed as shown in Appendix 2.2. When 7 was made smaller by a factor of 10, its impact on

the behavior of the swarm was reduced and therefore the vehicles begin to converge. This is
because the heading alignment behavior and the separation distance behavior are primarily

controlling the vehicles. However, when 77 is made larger by a factor of 10, its behavior

dominates as seen in Appendix 2.2. Of note is the corkscrew that two vehicles perform right after
the switch. This may be due to the fact that these two vehicles were ahead of a vehicle in close
proximity. Thus, when the parameter was changed, they were forced to circle the vehicle behind

them, keeping all three vehicles abreast, and allowing the vehicle to catch up. Once this
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maneuver was done, these two vehicles continued in the general forward direction the same as
the rest of the vehicles.

Plots in Appendix 2.3 depict the behavior of £, the heading alignment gain. In the first
plot, 77 is reduced by a factor of ten and it is clear that heading alignment is not being
maintained, visible by the oscillatory motion of a few of the central vehicles. However, when the
emphasis is placed on u, the vehicles immediately find a common direction and their forward
paths appear to be perfectly parallel to each other. These plots clearly demonstrate the
importance of zz . This information may be particularly useful when analyzing fuel consumption.
As the vehicles oscillate, they cover more distance and maneuver more often, both of which
consume more fuel. However, if 4 is ramped up, it appears that all vehicles will take a straight
path, and thus conserve energy.

Third, the o parameter was adjusted as shown in Appendix 2.4. This parameter controls
the ability of the vehicles to maintain a constant spacing, as defined by the fourth parameter, r;.
As «a is decreased, some vehicles move away from each other while some remain extremely
close. This is contrasted with the following plot, when « is increased. Here it is clear that all of
the vehicles begin to converge immediately and as the simulation continues, they approach a
very tight formation. Looking closer, T, is set at 20 units and it appears that several vehicles are
closer than this minimum distance which could create collisions in the real world. Since the
control law is calculated based on each vehicle’s position relative to every other vehicle’s
position and not just the vehicle in closest proximity, it is possible that by increasing «

drastically, one can nearly eliminate any factor of safety designed by the r, distance which could

lead to mid-air collisions.
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Finally, r,, the separation distance, was adjusted and the predicted behavioral response
was observed as shown in Appendix 2.5. As I, is drastically decreased, the majority of vehicles
violently converge upon one another. As r; is increased, the vehicles immediately begin to

spread out. This process of parameter modification was repeated on the circular law as well.
Similar results were seen as the parameters were modified but in a less clear manner due to the
fact that the effects of the parameters on the trajectories are more coupled. However, from
combining these results and analyzing the output, the influence of each parameter becomes
visually evident and serves as a strong foundation for further comprehension of the control
algorithm parameters.

6.2.3. Following Waypoints

In the scenarios, a vehicle representing the military convoy sends out its position via a
GPS unit that the vehicle swarm is able to receive. Therefore, the next step in the code
progression was to implement a “beacon” or waypoint for the vehicles to respond to. The
waypoint was initialized with an x and y position as vehicle number one. To prevent the
waypoint from moving, it was skipped over during the integration and position update loop in the
code as is done in NRL’s multi-vehicle simulator. This proved acceptable when the swarm was

kept to smaller numbers as seen in Figure 11.
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Figure 11: Two Vehicles Responding to One Waypoint

However, when the swarm was increased to three vehicles, the vehicles did not respond to
the waypoint and instead moved forward in a different direction. After analyzing this data, it was
evident that the there was an issue with weighting the control calculation from the vehicles to the
waypoint. Initially, this was solved by weighting the steering command between the vehicles and
the waypoint in order to give it a greater value over the intra-vehicle control calculations. As the
swarm size grew from three to six, the weighting amount grew exponentially. Instead, the code
was modified to include the ability for each vehicle to compute its individual heading direction
to the waypoint. This code is explained in further detail in Appendix 1

Also in Appendix 1 is the ability of the swarm to follow a set of waypoints. If one vehicle
gets within a certain distance of the waypoint, the current waypoint is removed and the next

waypoint is used for all future control calculations. The code was also modified so that the
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waypoint locations would update on a per vehicle basis, rather than for every vehicle at one time.

These modifications produced plots such as Figure 12.

Multi Vehicle Control - Follow ing Waypoints

SL____
]

Figure 12: Swarm Moving Between Waypoints Using Rectilinear Control

6.2.4. Blended Control

To conclude the MATLAB initial analysis, a basic linear blending method was
established as well as the ability for the vehicles to loiter at specified waypoints. The final code
incorporating all of these changes can be seen in Appendix 1 along with a detailed explanation of
the code. The effects of this blending process can be seen when comparing the non-blended
control in Figure 13 with the blended control in Figure 14. For the non-blended control plot, the
vehicles initially start using pure rectilinear control, switch to pure circular after the first
waypoint, and then switch back to pure rectilinear after loitering at the second waypoint. This is

a hard switch and there was no combination of the rectilinear and circular control methods.
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Figure 13: Swarm Response without Blending
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Figure 14: Swarm Response with Blending
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It is clear that the blending algorithm is a more efficient means of behavior control for the
swarm and results in much smoother movement between waypoints. Further research in the
multi-vehicle simulator was devoted to analyzing the effects of a non-linear progression as well
as what the cut off distances for the control transition.

6.2.5. Extension into JAVA

The NRL multi-vehicle simulator is a JAVA based program, so the next step of the
project involved converting the MATLAB code into working JAVA code in order to have a
better understanding of the complex code in the NRL simulator. Several JAVA classes were
created and can be seen in detail in Appendix 3. To analyze the data, a JAVA class was created
to write the position values of the vehicles into a text file and MATLAB was used to analyze the
data and produce plots. With the same initial conditions, both the MATLAB (top) and JAVA

(bottom) simulations produce the same results as seen in Figure 15.
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Figure 15: Comparison of MATLAB and JAVA Simulation Outputs

Using the unique style of object oriented coding that is characteristic of JAVA, the more

complex MATLAB functions were incorporated into the JAVA simulation package. Since the

control calculations were done in a separate class, modification was straightforward and the code

enabled the user to easily switch between circular, rectilinear, or blended control. The ability to
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calculate the heading from each vehicle to a specified waypoint was added as evident in the
calcWptControl method in Appendix 3.5. Since the rectilinear and circular control calculations
were done in separate methods (calcControlRect and calcControlCirc in Appendix 3.5), the
implementation of a blending control strategy was easily done. This can be seen in the
blendControl method in Appendix 3.5. Lastly, the waypoint class was modified to support
waypoint loitering on a Boolean logic basis or on a distinct time amount basis. This can be seen
in the checkAndSwitch method in Appendix 3.4. With this addition, simulations where the

vehicles loiter around certain waypoints for varying amounts of time were run Figure 16.

Multi Vehicle Control
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Figure 16: Swarm Response with Loiter Modification
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7. Migration and Implementation of the NRL Multi-Vehicle Simulator
7.1. Software Acquisition

One deliverable for this project was the migration of NRL’s multi-vehicle simulator to
the Systems Department at USNA for both student and faculty use in future research. The
simulator is a powerful tool that can be used to test control algorithms using vehicle models with
advanced and accurate kinematic models. To facilitate this process, a step-by-step installation
guide was developed (Appendix 4) for anyone to follow if they wish to set up a workstation with
the multi-vehicle simulator which contains more detail about the process.

Specifically, several pieces of software were downloaded in order to acquire the
simulator source code. The code is stored in a central location at NRL and using a process called
subversion, multiple users are able to download copies of the code, modify the code, and upload
any changes that may be beneficial to the group. All changes are stored on the central computer
and the source code can be reverted to early version on a user by user basis.

In order to work on the NRL code, a JAVA compiler and editor called Eclipse was
downloaded. The NRL multi-vehicle simulator also uses a CybelePro interface which supports
agent to agent message transfer that is helpful in applications such as swarm simulation.
CybelePro also limits the amount of information the UAV agents have access to by only
allowing their position to be broadcast on the message traffic at certain times. This resembles the
real world since no vehicle has real-time omnipotent knowledge of the properties of the other
UAYV and convoy agents. Once CybelePro is installed, the user is free to run simulations.

7.2. SIMDIS Support
Another role for this project was to serve as a link between the research at USNA and at

NRL. To support this link, I have acted as the POC for questions concerning the use of NRL’s
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visualization software, SIMDIS. This tool allows USNA faculty and students to visualize their
data in three dimensions. To facilitate the use of SIMDIS, a MATLAB script was created that is
able to take a raw data file consisting of time and position data and convert it into the .asi file
format that is needed by SIMDIS (Appendix 5). This allows students and faculty to use
simulated or experimental data to create professional video files of their trials in a graphic rich
environment for use in presentations or post data analysis. A user’s guide was also created to
allow students or faculty unfamiliar with SIMDIS to utilize the software without extensive
knowledge or experience. This guide covers topics including creating presentation videos,
plotting waypoints or desired trajectories, and visualizing sensor ranges (Appendix 5)

7.3. GPS Track Injection

Next, it was necessary to create a JAVA class that could read in a GPS text file and inject
it into the simulator as convoy route. To get the GPS data, a Garmin handheld GPS receiver from
NRL was used to log the vehicle’s position every second. A program called GPSBabel was used
to extract the GPS waypoints that were logged by the GPS and convert it to a form that was more
convenient to work with. The final GPS track was saved in the form of a comma separated value
file which followed the pattern of “waypoint number, latitude in degrees, longitude in degrees,
altitude in feet, date, and time.” This data is extracted and converted from degrees to radians for
the simulator. Also the time stamps are converted from raw time to elapsed time.

The next step in the injection process is to broadcast this message to the other vehicles in
the simulation. The vehicles update their position every second which is limited by the logging
rate of the GPS receiver. To solve this issue, a timer is started when the simulation begins and
every time the elapsed time of the GPS waypoint equals the elapsed time of the simulation, the

GPS point is broadcast on a message channel using the CybelePro infrastructure. Also, the code
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was modified to support time stamps down to the millisecond, which was artificially created
through MATLAB scripts for use in several of the scenarios. This code was created and

debugged with the assistance of a software engineer at NRL.

8. Mechanized Convoy Scenario - Rectilinear Control Investigation

The goal of this research was to find the set of gain values which provided the best
performance for the urban convoy scenario. To begin this research, only the rectilinear form of
the control algorithm was used and along with a GPS track that moved continuously at a constant
speed with no stops. The goal of this scenario was to establish a testing procedure that could be
applied to the other scenarios as well as find the set of parameter values that keep the vehicles
close to the convoy but at a safe distance from each other while minimizing steering energy.

8.1. Data Analysis Plan

In order to find the optimal set of parameter values for the Mechanized Convoy, Foot
Patrol, and Obstacles en Route scenarios, it was necessary to create a separate data analysis
script file to assimilate the data from each of the simulation runs and condense the information
into easily readable plots and tables. The majority of the data analysis was done by computing
the averages for the simulation runs, identifying the parameter values which repeatedly had the
best performance values, and locating any trends in the data by purely visual means. Thus, the
foundation of the data analysis was drawn from a cost function analysis. In order to get the initial
performance values from each simulation run, a MATLAB script was used to import the data
from the simulator and compute the performance metrics, print them to a text file, and produce

plots of the data (Appendix 6.1).
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In order to determine an overall performance value for each parameter set, a cost function
was used to combine the three main performance metrics into one value. First, the distance
between vehicles is calculated over the entire simulation run. The percentage of the time that the
intra-vehicle distance is below a user specified minimum value is reported for this performance
metric. This is a binary metric, meaning that the vehicle is either above the minimum distance or
below it.

The second metric is the distance of the vehicle away from the convoy. The performance
metric represented the percentage of the time that the vehicles were outside of a maximum
distance away from the convoy and was calculated in a linear method and not a binary method as
the collision metric was. When the vehicle is at or under a minimum distance, there is no penalty.
However, as the vehicle moves away from this minimum distance, the performance penalty
increases linearly until it reaches a value of one. At a value of one, the vehicle is at or beyond a
specified maximum distance from the convoy. This way the performance metric is a strong
representation of the distance between the UAVs and the convoy and penalized larger values of
r.

Lastly, it was necessary to calculate a performance metric to determine the fuel efficiency
of the UAVs as well as a method of penalizing large gain values. As the gains increase, they
create larger and larger values of u, the output of the algorithm. However, due to the vehicle
kinematics, there are physical limitations on the size of u. For example, a UAV can not make a
90 degree turn; they have a certain turn radius which limits the steering control. To account for
this, U is set as to not exceed some specified value in the simulations. As the gains increase, U
increases until it is hitting its maximum value. At these points where U is saturated, the control

law desires the vehicle to turn at an angle more than allowed by the dynamics of the vehicle.
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This is called a slew rate limited condition and is a control problem. Since the vehicle is not
physically capable of turning in the desired direction, the control law loses effectiveness and
there exists a greater chance of collision with the other vehicles.

To prevent this case and to put a penalty on larger gain values, it was necessary to
compute the average steering command U for the vehicles and compare it to the maximum value.
This would result in a percentage of the amount of steering control being calculated out of the
maximum allowed value and also serve as a gauge to determine the relative fuel efficiency of the
system. The more the vehicles turn, the more fuel they burn. Therefore, smaller values of
steering are desired. To compute this value, Heron’s formula was used which states that for any
three points in a trajectory, the amount of curvature can be calculated as an inverse of the radius

of the unique circle through those three points. The exact formula is reproduced in Equation 2.

a+b+c
S=—————
2

Js(s—a)(s—b)(s—c)

abc

K| =4 [2]

e a b, and c are the length of the sides of the triangle.
By calculating the curvature this wayj, it is possible to get a good estimate of the steering
command U that is being calculated by the control algorithm. This calculation was done in the
post processing of the data instead of extracting the control value from the simulator for several

reasons. First, this specific performance metric was not added until after analyzing the first
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complete set of data for the first scenario. It was added to penalize high parameter values and to
gain some insight on fuel consumption. Primarily, the simulator was coded to export vehicle
position and time data only. Due to the complex nature of the program, adding additional code to
capture the correct value of U would have been a time intensive process with limited JAVA
experience. Instead, it was decided to estimate U and include the calculations in the MATLAB
script that contained all of the other performance metric calculations. Lastly, for the purposes of
this metric, the exact value is not required. This metric shows how close the control law is to
maxing out the dynamics of the vehicle. As long as the same calculation is done on every
vehicle, the results can be analyzed effectively.

Next, a script was written which would combine these three separate performance metrics
into one single value (Appendix 6.2). This was done using a weighted average of the three
values. The sum of the values added to 1, and the values ranged from 0.1 to0 .8 to create 36
permutations. In order to identify which parameters had specific effects on specific performance
metrics, a process of varying the weights for each metric was used. Each weight was varied from
0.1 to 0.8 such that all of the weights added up to 1 (Appendix 6.3). A final performance value
for each parameter set was created by summing the products of the individual weights and
performance metrics. After each set of parameters had a computed performance value, these
values could be combined based on initial conditions, route, number of vehicles, or even the
entire scenario. This way, it is simple to compare the results of the simulations as an average for
each set of parameters and determine the relationships, if any, to the performance metrics being

considered.
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8.2. Test Matrix Development
To begin the investigation, it was necessary to develop a test matrix which contained all the
values of the parameters that would make the initial search space. This consisted of locating

minimum and maximum values for all four parameters: &, £, 77, and ;. Dr. Justh had done some
previous research to develop a basic mathematical formula used to calculate the maximum r,

value based on the number of vehicles in the swarm (Equation 3)

r ==t [3]

where [, is the separation distance between vehicles when circling and n is the number of
vehicles including the waypoint or convoy in this case. It was then suggested to make the
minimum values a factor of ten below the maximums. For the separation distance s , the

vehicle dynamics were used to find a minimum value. Since the GPS waypoint is updated only
once per second, the minimum separation distance of 50 length units was used since the
maximum speed of the UAV models is roughly 40 length units per second. This resulted in a

range of 0.05 to 0.5 forer, 7 and p and a range of 50 to 1650 for r,. These were interpolated to
produce four values per parameter. , 77 and x had the vales of 0.05, 0.15, 0.35, 0.5 and r,

went from 50, 550, 1100, 1650. Thus each parameter had four different values resulting in 256
permutations in the test matrix for the rectilinear control law investigation.
8.3. GPS Track Data Manipulation
In order to get practical and meaningful results, the control algorithm had to be tested
under a variety of GPS routes, initial starting positions, and with a varying number of vehicles in

the swarm. For the routes, two different paths were logged. The first route was a GPS track taken
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from a suburb of Washington D.C. to NRL in Anacostia. The second track was a route from
NRL to USNA. In order to accurately analyze the effects of the different parameters on the
swarm’s behavior, it was necessary to modify the raw GPS data. For this first scenario, basic
simulations were run with the goal of testing the pure rectilinear form of the control law. This
meant that the GPS vehicle needed to move at a relatively constant and steady speed. However,
when these tracks were logged with the GPS in a vehicle, traffic, stoplights and other
obstructions forced the vehicle to stop or slow down significantly. To solve these issues, a
MATLAB script was created that would read the raw GPS data file and filter out any of these
areas where the vehicle was stopped. This process is explained in detail in Appendix 7. This code
was slightly modified to create timestamps for the latitude and longitude positions that make the
convoy travel at a constant speed. This was done by first calculating the distance between two
points and then dividing by a speed such as 40 mph, to get a time between the two points. This
time is added to the current time to get the next waypoint timestamp adjusted according to a
specific speed. The result is a GPS track that has a constant speed and no loitering points.
8.4. Initial Conditions
For the first scenario, two separate routes were used. Refer to figures 17 for Route 3 and

Figure 18 for Route 4.



Figure 18: NRL to USNA

38



39

From these routes, initial conditions were chosen. In order to prevent the occurrence of
discovering one set of parameters that works very well for only one specific case, it was
necessary to test the parameters over a variety of initial conditions. This way, an average
performance over the starting locations could be taken to improve the accuracy of any results

from data analysis. The set of initial condition is documented in the table in Figure 19.

Scenario 1 Initial Conditions Table |

Mame [Scenario [Route | Convay | UAW 1 | UAV 2 | AV 3

IP1  Close hehind 3875717 -77.2313 38.78882 -77.233579 38.75545 -77.2334T1

IP2  Close front 3875717 -T7.2313 3876351 -77.22445 38753329 -77.222144

IP3  1close, 1far 3875717 -T7.2313) 38.75326 -T7.229722 38.779234 -77.223464

P4 Al far 3B.7E7AT -T7.2313 3877923 -77.223464 38.737324 772437601

IP5  Close behind 38.82176 -77.0227 38.8229 -T7.024016 38.82045 -77.024247

IP6  Close front 38.82176 -77.0227 3882396 -77.02093 35.820183  -77.02035

IP7  1close, 1far 38.82176 -77.0227 358202 -77.02247  33.8301 -77.0252

P& Al far 38.82176 -77.0227 358157 -77.01412 38.83048 -77.022576

IP9  Close behind 3B.7E7AT 772313 3875545 77233471 3875882 -77.233579 38757 -T7.2365
IP10 | Close front 3875717 -T7.2313 3875176 -77.21756  3B.76977 772187016 35.75746 -77 226967
P11 |1 close, 1 far 3875717 -T7.2313 3874915 -T7.2313 38.77861  -77.20861 35.T5668 -77.243635
IP12 Al far 3B.757AT -T7.2313 3873432  -77.2069 3877861 7720861 387549 -77.27418
IP13 | Close behind 38.82176 -77.0227 35.8229 -T7.024016 38.82045 -77.024247 38.8216 -77.025739
IP14 | Close front 38.82176 -77.0227 3882396 -77.02093 358.820183  -77.02035 35.82191 -77.018T1
IP15 |1 close, 1 far 38.82176 -77.0227 358202 -77.02247  33.8301 -77.0252 38.7565  -T7.2335
P16 Al far 38.82176 -77.0227  38.8157 -77.01412 38.83048 -77.022576 35.82098 -77.03659
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Figure 19: Scenario 1 Vehicle Starting Locations
8.5. Data Analysis of the Simulation Results
Since there is a limitless supply of data possible for this project, it was necessary to decide
what type of conclusions would be drawn from the data. This would limit the time spent on a
specific scenario and allow time for the investigation of the other scenarios by directing the focus
of the analysis. The following conclusions were deemed the most appropriate for the goals of this
project.

8.5.1. r, and Collision Avoidance

From the data averaged over all sixteen trials, it was clear that having a separation

distance equal to the minimum vehicle separation distance used to determine the collision metric
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greatly decreased the swarm’s performance. While several factors such as convoy speed and
direction play a role in the intra-vehicle separation, setting a vehicle separation distance equal to
the collision distance results in a large increase in chance of collisions, as expected. However, if
the separation distance is increased to twice the minimum collision distance, the risk of collisions
stays low and in most cases is zero. This parameter was the largest contributor of trials with poor

performance because of the significant increase in collision percentage when r; was roughly

equal to r

min

(the minimum range between UAVs at which collisions occur). As r, continued to

become greater thanr

min ?

the collision percentage dropped to 0 in the majority of cases. However,

once I, became roughly twicer

min °

the r, parameter played a less noticeable role in overall

performance of the swarm.

8.5.2. r, and Convoy Range

One of the unexpected results from the data was the trend that the minimum value of r,
did not result in the lowest convoy range percentages. On average, the parameter sets with I,
equal to 550 had slightly lower convoy range percentages than the sets when r, was equal to 50.
However, when 1, was greater than 550, convoy range did increase as expected. The one clear
difference between the parameter sets with I, equal to 50 and the ones with r, equal to 550 was
the collision percentage. Chances of collision were much higher when r, was equal to 50. This
may have caused the sets with I, equal to 550 to have a slightly lower convoy range percentage.
These vehicles were spaced far enough that they did not need to make any drastic maneuvers to
avoid collision and were thus able to focus more on their convoy separation distance. When r,

was 50 and chance of collision was high, the vehicles had to spend more energy not crashing

which resulted in the vehicles not staying as close to the convoy as expected. Also, as discussed
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earlier, the control law is a sum of behaviors which does not result in precise and predictable
behavior. While the user may want the vehicles to be very close to the convoy, it does not appear
possible that the rectilinear form of the control law is able to support these desires. It appears that
there is a limitation on how close the vehicles are able to stay to each other while avoiding
collisions.

8.5.3. Steering Energy Analysis

Also of note was the apparent relationship between the separation distance I, and the
amount of steering energy used during the simulation. As the separation distance increased, there

was a noticeable drop in the amount of steering energy used once r, was no longer equal to the
minimum collision distance. The vehicles expended much more energy when r, was 50 trying to
avoid collisions. As the distance between the vehicles decreases, the variable r;, in the control

law is also decreased causing the output of the control law, U, to grow. As the control law
demands steering commands with smaller magnitudes, the amount of steering energy needed is
also decreased. When r, was increased and the chance of collisions was minimal, steering
energy remained more consistent as I, increased.

After evaluating the data, it is evident that larger values of the parameters led to larger
values of steering energy. Specifically, high values of 1 and a caused much larger values of
steering energy with relatively lower values of7. Thus, when the control law is weighted so that
the vehicles are strongly driven perpendicular to a baseline (7 is high) while their heading and

spacing behaviors are relatively weak, the resultant behavior utilizes small amounts of steering

energy. However, when x and o are given larger values and the control law weights heading

and separation behavior high, the resultant behavior uses much more steering energy to ensure
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that these behaviors are met. Thus, if direction and vehicle separation are important behaviors for
a specific scenario, the result is a decrease in fuel efficiency as seen by the use of more steering
energy.

8.5.4. Sensitivity of the Minimizing Parameter Set

One of the conclusions drawn from this analysis was the apparent sensitivity of the global
minimum value with respect to the weights of the performance metric. It was necessary to
determine how the global minimum changed if the weights of the final cost function were
adjusted to place varying levels of emphasis on the individual metrics. This would show which
parameter sets performed better when different performance metrics were emphasized. It also
showed how well the global minimum parameter sets responded to changes in cost function
weighting. To determine this, a script file was used which located the global minimum parameter
set while varying the weights of the cost function. (Appendix 6.3)

From this data collected across all 16 initial conditions, there were two parameter sets

which were global minimums. Parameter set 21 (1 =0.2, a =0.2, =0.05, r,=50) appeared eight
times and parameter set 85 (1 =0.2, a =0.2, 7=0.05, r,=550) appeared 28 times. Performance

wise, parameter set 21 had lower convoy range percentage but had a very high collision
percentage. Parameter set 85 had a higher convoy range percentage but a zero collision
percentage. Both parameter sets had similar steering energy percentages. Parameter set 85 was
the global minimum for the majority of the cost function weights and set 21 only appeared when
collision was weighted very low and convoy range was weighted higher. Since only two trials
appeared as the global minimums as the cost function weights were manipulated, it can be
concluded that the parameter sets are not sensitive to the weighting of the performance metric.

The same few trials repeatedly outperform the other trials as the weights are changed and
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continue to result in strong performance. This shows that these two parameter sets are not only
the top sets for certain situations, but they create behavior that is ideal across all of the
performance metrics. Parameter set 85 would be a very strong choice of parameter values for use
in a purely rectilinear scenario.

Also of note were the parameter values that the global minimum trials were comprised of.
For these parameter sets, 4 was 0.2, o was 0.2, 7 was 0.05 and r, was 50 or 550. Clearly,
these gain values yielded very good swarm performance and the controller is very sensitive to
the values of the gains. Gain values were kept low which resulted in low steering energy
performance. In general, when the highest weight was given to ¢ and u equally and the lowest
weight given to7, the best performance was observed. However, because 7 was always .05 for
optimal trials, there were no parameter sets which contained every value strictly inside the test
matrix. Perpendicular alignment to the baseline has a very small influence on overall swarm
performance but the ability for the vehicles to maintain a constant separation distance is critical
to increasing the performance of the swarm. The 7 term probably has a larger influence in the
beginning of the simulations, moving the vehicles from initial conditions to steady state.
However, as the vehicles reach this steady state, they rely more on & and x for improved
performance.

While parameter set 85 had a high convoy range percentage relative to set 21, it must be

taken into account that it had a higherr, . Parameter set 85 had an r, of 550 and a convoy range

of 52% which corresponds to an average distance of about 800 distance units. Parameter set 85

was able to maintain an average distance much closer to its I, distance compared to parameter
set 21. The discrepancies between the convoy range percentage and r, may be due to the

collision percentage as discussed earlier, or a relative speed difference between the convoy and
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the vehicles. There may be some portions of the convoy track where the vehicles simply can’t

keep up with the convoy and fall out of range. It should also be noted that while r, changed for

these two parameter sets, the values of their gains did not change at all. It seems that these
specific values offer ideal performance regardless of the separation distance. The gain values and

r, are not dependent on each other. The gain values offer the best performance and the r, value

dictates the convoy range, collision risk, and steering energy to be used.

8.5.5. Performance Around the Global Minimum

In order to get a stronger idea about the behavior of the swarm with respect to each of the
parameters, one parameter at a time was varied around the global minimum and the effects on
each of the metrics and the overall parameter performance was observed. Parameter set 85 was
chosen since it appeared most often as the top performing parameter set. Parameter set 85 had a
collision percentage of zero which made analysis of the parameter effects on collision avoidance
impossible. In order to examine the effects of the parameters on collision avoidance, set 21 was
used.

As u became larger or smaller than 0.2, the convoy range percentage increased as well

the overall performance. The goal was to minimize the performance percentages; therefore an

increase in the performance percentages resulted in degraded swarm behavior. When u was
less than or equal to7, steering energy was low. However, when x was given the highest weight

in the set, steering energy increased. This shows that as a greater emphasis is placed on heading

alignment, more steering energy is needed. When g was 0.35 or less, collision percentage was
unaffected. Only when x was given the maximum value of 0.5 was there a significant decrease

in collision percentage. This shows that as the heading alignment term is given a stronger

weighting, the chance of collisions decreases.
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As a became larger or smaller than 0.2, the convoy range percentage and overall
performance values increased. As « increased from 0.05 to 0.5, the risk of collision decreased
while steering energy increased. As « gets a higher weight, there is a smaller chance of
collisions and more steering energy is used. The increase in steering energy could be a result of
both the desire of the swarm to maintain a certain distance as well as preventing collisions. The
increase in steering energy due to « 1is not as large as the increase due to7 . This means more
steering energy is used aligning heading than maintaining proper separation distance.

As 1 decreased from the value of 0.5 to the minimum value of 0.05, convoy range
percentage and overall performance values decreased. As less emphasis was put on the
perpendicular baseline alignment, the vehicles were able to maintain closer distances to the
convoy. If this behavior is minimized by having a low parameter value, the vehicles are allowed
a greater range of motion. The swarm focuses on separation distance and heading rather than
being aligned with the convoy. This behavior allows the swarm to stay at a closer distance to the

convoy. Steering energy remained relatively unaffected while 7 was 0.05 to 0.35 and only
increased slightly when 77 was given the maximum value of 0.5. This shows that the 77 behavior

is not a large factor in determining the movements of the vehicles. Once the vehicles are in a
steady state formation, the & and g parameters have much more control over the maneuvering
of the vehicles. There was no clear trend in the data for collision avoidance. It seems that this
behavior has little control over this performance metric when compared with the other

parameters.

Lastly, variations with respect to I, were analyzed and trends similar to those mentioned
earlier were discovered. As I, increased, the collision avoidance dropped drastically after

r,>r,,, and steering energy dropped as well. Convoy range percentage increased as I, increased,

min
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which is expected. As one moved away from an I, of 550 in either direction, overall
performance percentage increased. It was also shown that once I, is greater than r_, and the

collision percentage drops to zero, steering energy remains roughly the same. This shows that as
the size of the orbit increases, the increase in the amount of steering energy is not significant.

The « and x parameters have a much greater effect on steering energy than r, .

8.5.6. Comparison of 2 and 3 Vehicle Trials

One of the goals of this analysis was to determine if implementing a gain scheduling
process that modified the gains of the control law based on certain physical conditions of the
system was an efficient method to create consistent swarm performance. One case where this
could be beneficial is if the swarm size were decreased either due to a malfunction or a crash of
one of the vehicles. It may be possible that certain parameter sets offer better behavior for
different size swarms, and thus, the user would want to switch between parameter sets as the
swarm size changed.

When the performance averages for all trials where the swarm was 2 vehicles were
analyzed across varying weights of the cost function, parameter sets 21, 41, 85, and 106 were

identified as global minima. For these parameter sets, ¢ ranged from 0.2 to 0.35, & from 0.2 to
0.35, n ranged from 0.05 to 0.2 and r, ranged from 50 to 550. These gain values are slightly

higher and have a larger range of values than the sets for all trials averaged together. This may be
due to the fact that since the swarm size is low, performance can be enhanced by using higher
gain values. There is less interaction between vehicles which results in less average steering
energy being used and also a smaller risk of collision. This leads to the conclusion that as the

swarm size increases, the values of the parameters are decreased. For all of the parameter sets, u

and o were always equal. Also, 7 was always the smallest value. 77 only increased from 0.05 to
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0.2 when r; increased from 50 to 550 and « and x increased from 0.2 to 0.35. The increase in
I, had no effect on the & and x parameters. Both parameter sets 21 and 85 appeared in both the

2 vehicle minimum parameter sets as well as the sets for all trials averaged together. Parameter
sets 41 and 106 were slightly more aggressive versions of sets 21 and 85.

Analysis of the 3 vehicles trials revealed results more in line with the averages of all 16
trials together. Parameter sets 21 and 85 were global minimum as the cost function weights were

varied with ¢ equal to 0.2, & equal to 0.2, 77 equal to 0.05, and r; equal to 550 and 50. Both

parameter set 21 and 85 appeared in the 2 vehicle global minimum sets. All of the gains become
more sensitive when another vehicle is added. The addition of the extra vehicle resulted in a

decrease in the magnitude of the gains and an increase inf,. This results in a decrease in collision

percentage when compared to the results from the 2 vehicle data sets. This is due to the fact that
the separation distance is always 550 in the 3 vehicle case and split between 50 and 550 in the 2
vehicle case. The vehicles are farther apart for the 3 vehicle minima which have a stronger
influence over the collision behavior than the value of the gains. This results in fewer collisions
for the global minima parameter sets, even though there are more vehicles. While the addition of
a vehicle may result in fewer collisions, it also drastically increases the average range from the
convoy and increases the average steering energy as well. The paths of the vehicles are less
flexible as more vehicles are added and in order to prevent collisions, range to the convoy is
sacrificed.

When the top performing parameter sets for 3 vehicles are evaluated in the 2 vehicle
conditions, they still perform well with set 85 in the top 5 parameter sets and set 21 in the top 25
depending on the cost function weights. However, when the 2 vehicle parameter sets are

analyzed for 3 vehicle scenarios, they perform poorly, roughly in the middle of the test matrix.
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Only parameter set 85 performs consistently well regardless of the number of vehicles in the
swarm. As the size of the swarm increases, the parameter sets begin to match those of the top
parameter sets for all of the trials. While there may be a slight increase in performance by
switching from the top parameter set to one specific for 2 vehicles, keeping the original
parameter set for 3 vehicles will result in very similar performance. Thus, it is not clear that gain
scheduling would be necessary for the case where the swarm is reduced in size from 3 to 2
vehicles based on this data. However, if the swarm is initially at 2 vehicles and parameter values
set for 2 vehicles are used and the swarm size increases, it would be beneficial to change the
parameter values to a set with better performance with a 3 vehicle sized swarm.

While moving from 2 to 3 vehicles results in some minor changes, what will happen as

more vehicles are added to the swarm? From this analysis, the trend appears that the r, value

would increase to the largest value possible while the magnitude of the gains would decrease. As
vehicles are added, the parameter sets would approach the same values as those found in the
global minimum of the largest swarm size. Thus, if one took the global minimum for the largest
swarm and used those same values for swarms of smaller size, there should not be any
significant loss in performance. However, if the global minimum for a small vehicle case is
applied to a large swarm, there would be a significant and detrimental decrease in performance.

8.5.7. Comparison of Route 1 and Route 2

It was also necessary to compare the performance of the swarm over the different routes
that were used. If there were clear preferences for certain parameter sets based on the physical
attributes of the route, it is possible that certain gains could be selected based on these properties.
By examining the two routes, it is clear that Route 2 followed a straighter path and had less

extreme turns when compared to Route 1. Therefore, Route 1 caused the swarm to maneuver
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more which would lead to more collisions, more steering energy and possibly a further convoy
range percentage. The minimum parameter sets for the two routes were found as the performance
weights of the cost function were changed.

Route 1 had parameter set 85 as a minimum all 36 times. u equaled 0.2, o was 0.2, 7
was 0.05 and r, was 550. This showed that the performance of all the parameter sets in relation

to Route 1 was extremely sensitive. For all cost function weighting, parameter set 85 performed
the best. This also means that parameter set 85 had the best performance in all three performance
metrics. It may be possible that this parameter set is highly flexible in the formations that it
creates which allows the swarm to be responsive to the changes on convoy direction.

Route 2 contained global minima parameter sets with more variability. Parameter set 1
appeared once, set 21 appeared eight times, set 41 appeared once, set 85 appeared twenty times

and parameter set 93 appeared 6 times. Here, ¢ ranged from 0.05 to 0.35, « from 0.05 to 0.35,
n was 0.05 and r; ranged from 50 to 550. When the route requires less maneuvering, the control

law is able to use a wider variety of gain values. These sets also reflected the observation that the

best performance occurs when « and u are equal and 7 is small. When r, was 50, the ¢ and
a values ranged from 0.05 to 0.35. However, when r, was 550, o and g were 0.2. This shows
that when the vehicles are required to stay closer to each other and the convoy with a small r;

value, which increases the risk of collisions, the parameter sets become relaxed to support a
wider range of swarm behaviors. This wider range allows the swarm to remain close to the
convoy while reducing the chances of collision along with steering control.

Only parameter set 85 appeared in both the Route 1 and Route 2 global minima. When all
sixteen trials are averaged together, set 85 is the global minimum a majority of times, but the

appearance of parameter set 21 may be due to its performance when the route is more direct.
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Parameter set 85, a global minimum for both routes, appeared when the convoy range percentage
weight was low and the steering performance was emphasized. The convoy range percentage
was around 46% for Route 1 and jumped to about 57% for Route 2 while steering energy
remained roughly the same. This prevented parameter set 85 from being the global minimum for
more sets in Route 2.

It appears that as the route becomes less complex, parameter set 85 actually has more
trouble following the convoy than when the route requires more maneuvering. This contrasts
with the other parameter sets. For sets 1, 21, 41, and 93 the convoy range percentage decreases
from Route 1 to Route 2. This is logical since Route 2 requires less maneuvering. This allows the
vehicles to get closer to the convoy without a large risk of collisions. Since the convoy path is
fairly linear, the vehicles can move into a steady state position and remain in that position
without much readjustment. This reduces the chance for collision and the overall steering energy
as well. While parameter set 85 improves performance when the route is more complex, the
majority of the other parameter sets have better performance when the route is more linear.
Parameter set 85 was able to keep the vehicles close to the convoy with minimal steering energy

and without the high chance of collisions that are common with parameter sets with a r, equal to

50. The ability of parameter set 85 to adapt to a variety of routes is a primary reason that it
appeared as a global minimum when all of the trials were averaged together.

When comparing the performance metrics of the global minima for the two routes, there
are several trends. First, the average range to the convoy is higher for Route 2 when compared to
Route 1. By using a more linear route, relative speed differences are exaggerated, resulting in an
increased convoy range in Route 2. Since for both routes, the steering percentages are roughly

the same, the vehicles are not maneuvering more to respond to the convoy. If there is a large
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speed difference but the convoy maneuvers repeatedly, the vehicles are given time to catch up.
However, if the convoy follows a straight path, the vehicles have no chance to catch up and
continue to fall behind the convoy.

On average, collision slightly decreased for Route 2 when compared to Route 1. In Route
1, the vehicles are forced to maneuver more to stay headed in the same direction as the convoy,
resulting in an increased use of steering energy and leading to a higher risk for collision. If the
convoy path was straight in one direction, it would be expected that the steering energy would go
to 0 once all the vehicles had reached steady state positions and headings and therefore, the risk
of collisions would also go to 0. This seems to be similar to what happens in Route 2. However,
as the convoy is constantly changing direction in Route 1, the swarm is forced to respond. Thus,
Route 2’s lower level of complexity reduces collisions.

When comparing the parameter ranges for the global minima for the two routes, it is
evident that these ranges closely mimic those of the parameter sets that are local minima when

all 16 trials are averaged together. ¢ remains 0.2 for Route 1 and ranges from 0.05 to 0.35 in
Route 2. However, when I, is 550 for Route 2, x remains 0.2, which is the same when all trials

are averaged together. This contrasts with the analysis of the two versus three vehicle scenarios

where u ranged from 0.2 to 0.35. It appears that x is more sensitive to the number of vehicles
rather than the properties of the route of the convoy when r, is 550. This could be due to the fact

that as more vehicles are added, there are more headings to align, and a greater weight is needed
on this behavior to produce effective performance from the swarm.

Lastly, the magnitude of r, was varied between the routes. Where Route 1 had every
parameter set with a r, equal to 550, Route 2 had r, values split between 50 and 550. Since

Route 1 has more maneuvering, a higher separation distance was needed to prevent collisions
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and minimize steering energy as much as possible. This contrasted with Route 2 where the

vehicles could afford to be closer together with a smaller r; since there were less turns and thus

fewer opportunities for collisions.

Overall, Route 2 was able to use a wider range of gain values and smaller r, when

compared to the parameter values for Route 1. The flexibility of gain values allowed the
controller to decrease steering energy while bringing the vehicles closer to the convoy with a

smaller r,. This was done at the expense of possibly increasing collisions between vehicles. This

was possible since Route 2 was less complex compared to Route 1 and the chance of collisions

was less likely.

9. Foot Patrol Scenario — Circular Control Investigation
The next scenario for analysis was designed to test the parameters of the circling form of

the control law. To transition to this form of the algorithm the heading alignment term x is

dropped. If the user desires the vehicles to maintain a circular orbit, the vehicles should not have
their headings aligned. This prevents problems when vehicles are on opposite sides of the orbit
and facing opposite directions. By removing the alignment behavior, the control law is able to
support stable circling formations which are useful when tracking slow moving convoys or foot
patrols. Thus, convoy routes that mimicked foot patrols were created in order to isolate the
circular control law for analysis.
9.1. Convoy Trajectory

For this scenario, the convoy needed move at a slow and steady pace simulating a foot

patrol. Having obstacles in the route of the convoy was no longer an issue. The convoy would be

moving at such a slow speed that obstacles would not have an affect on the swarm’s
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performance. To get the GPS data, a path walked around USNA was recorded and is shown in
Figure 20. Next, a route take at a running pace was logged in downtown Annapolis and is shown

in Figure 21.

Google

Figure 20: USNA Foot Patrol
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Figure 21: Annapolis Foot Patrol

Specifically, a goal of this scenario was to determine at which convoy speed the circling
form of the control law began to lose stability. This was tested by using foot patrols at two
different speeds. This knowledge would prove useful when attempting to create a blending
algorithm based off of the convoy’s speed. It was also necessary to add a five minute delay to
give the vehicles time to maneuver into a stable orbit before the convoy started moving. This
resulted in the convoy remaining stationary for 5 minutes and then beginning the route. The code
used for this modification of the GPS tracks can be seen in Appendix 7.

9.2.Initial Conditions
Similar to Scenario 1, this Scenario had a breakdown between 2 and 3 vehicles, the two
routes discussed above, and the four sets of initial starting locations for the vehicles to produce

16 total trials. The starting locations of all the vehicles are depicted in the table in Figure 22.
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9.3.Data Analysis

Scenario 1 Initial Conditions Table |

Mame [Scenario [Route | Convoy UAW 1 [ UAWV 2 UAV 3

IP1  Close behind 3 389810478 -76.45075906  38.9802054 -76.4860928 38.9834205  -76.48506

P2 Close front 3 389810478 -76.45075906 38.9821029 -76.4756455 38.9771306 -76.4824217

IP3  1close, 1far 3 389810478 -76.45075906  38.9802054 -76.4860928 38.9932055 -76.4870563

P4 All far 3 389810478 -76.458075906  38.9932055 -76.4870563 38.9780114 -76.4972665

IP5 [ Close behind 4 38.97861617 -76.48467523 38.981971 -76.4880643| 38.9769139 -76.4797995

IP6  Close front 4 38.97861617 -76.48467523 38.9747008 -76.4830384| 358.9792478 -76.4899496

IP7  |1close, 1far 4 38.97861617 -76.48467523 36.9818528 -76.4812726| 35.9918707 -76.4965082

P8 All far 4 38.97861617 -76.48467523 38.9918707 -76.4968082| 38.9735385 -76.4631502

IP9 | Close behind 3 389810478 -76.48075906| 38.9802054 -76.4860928 38.9834205  -T6.48506 38.9850818 -76.4798841

P10 Close front 3 389810478 -76.48075906| 38.9821029 -76.4756455 38.9771306 -76.4824217 38.9788254 -76.4761842

IP11 |1 close, 2 far 3 389810478 -76.48075906| 38.9802054 -76.4860928 38.9932055 -76.4870563 38.96821029 -76.44756455

P12 All far 3 389810475 -76.45075906| 38.9932055 -76.4870563 38.9780114 -76.4972665 35.9745231 -76.4657372

IP13 | Close behind 4 38.97861617 -T6.48467523 38.981971 -76.4880643| 38.9769139 -76.4797995 38.9818528 -76.4812726

IP14 | Close front 4 38.97861617 -T6.48467523 38.9747008 -76.4830384 35.9792478 -76.4899496 389756587 -76.4882937|

IP15 1 close, 2 far 4 38.97861617 -T6.48467523 35.9818528 -T6.4812726 35.9918707 -76.4966082 389756587 -76.4882937)

P16 All far 4 38.97861617 -T6.48467523 38.9918707 -76.4965082 35.9735385 -76.4631502 389648132 -76.4976047]
Figure 22: Scenario 1 Initial Conditions

Since the circling form of the control law did not contain the g gain, the data analysis

for this scenario was a simpler process and it was more clear which behaviors and performance

metrics were affected by changes in specific parameters.

9.3.1.

r, and Collision Avoidance

Similar to the trend observed in the rectilinear control law, as ther,, or separation

distance between the vehicles is decreased, there is an increase in the chance of collisions

reflected by an increase in the collision percentage. Overall, the circling form of the control law

established formations that had less chances of collision when compared to the rectilinear form

of the control law. This can be explained by the types of formations that the control law forms

produce. While neither form of the control law designates specific vehicles to occupy specific

locations, they do control the shape of the swarm through the implementation and weighting of

the behaviors that comprise the control law. For the rectilinear case, the resulting shape is a

constantly evolving formation that adapts to the locations of the vehicles and the convoy. The

circular form of the control law lends to swarm formations of a much more constant and stable
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shape. This formation is much less sensitive to any abrupt direction changes of the convoy when
compared to the rectilinear law. It also results in swarm behavior that once established, has zero
chances for collision if the steady state formation is able to be kept. The only real chance of

collision for this scenario occurs as the vehicles move from their initial positions into the steady

state circling formation. While r; does have an affect on collision percentage due to the fact that

the closer the vehicles are supposed to be, the more likely they are to collide, the behavior
generated by the circling control law lends itself to collision free formations.

9.3.2. r, and Convoy Range
Also of note was the general relation between r, and the average distance to convoy
percentage. Logically, as I, is decreased, the radius of the circle that is created by the circling

form of the control law decreases, and the vehicles are able to remain in orbit at a closer distance

to the convoy. This was reflected in the data as well. When r, was small, the vehicles maintained
extremely close ranges to the convoy. As T, increased so did the average distance to the convoy.
When 1, was about equal to the maximum sensor range of 1 mile, average distances were about

98% in range. This meant that the vehicles were maintaining an orbit right at the limitations of
the sensor. One observation from this scenario was the precision of the control law with respect

to orbiting distances. At smaller values ofr,, the actual orbit was larger than the prescribedr, .
Only when r, was the largest value in the test matrix, did the actual orbit radii match with the
prescribed r, value. The table in Figure 23 summarizes the differences between the prescribed r,

value and the resulting average orbit radius as well as the percent error difference.



Iy Average Convoy Average Orbit Percent
(yards) | Range Percentage (%) | Radius (yards) Error (%)
50 15.56234 273.8973 81.745
550 55.8735 983.373 44.07
1100 93.3624 1643.18 33.0566
1650 97.50476 1716.084 3.8508

Figure 23: Prescribed r, Values Compared to Experimental Values

When r; is low, there is a large margin of error r, and the actual separation distance

calculated from the simulations. Also at a low [, level, there is a larger difference between the
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average convoy range values between the parameter sets. Some range as low as 6% while others

are as high as 40%. However, as the size of I, is increased, the percent error between the
parameter and the range to convoy percentage decreases until at an r, about equal to the
maximum range to convoy, the percent error is effectively 0. Also as T, is increased, the

variation between the parameters decreases. This means that maintaining a very tight orbit as

prescribed by a low I, value is much more sensitive to the gain values than the case when r, is

large. As r, is increased, the vehicles are given more room to maneuver with a larger orbit. Also,

as the convoy moves, the relative distance between the convoy and the vehicles is much larger

than the case when the vehicles keep a tight orbit. When a tight orbit is used, the vehicles must

respond faster and in a more energy demanding manner to keep the tight orbit around the convoy

and this increase in maneuver will rely on precise gain value. Thus, as I, increases, the average

range to the convoy increases as expected, but the behavior is more representative of the

prescribed r, , more consistent, and less dependent on the gain parameters.
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9.3.3. Steering Energy

As seen in the first scenario, as the values of the gains increase, the amount of steering
control used increases as well. However, in the circling form of the control law, the steering
energy was much more closely related to the value of o as opposed to77. When the data was
sorted to locate those parameter sets with the lowest amounts of steering energy used, the best
performing parameters sets all had very low values of « (0.05 or 0.2), but 7 ranged from 0.05
to 0.5 in the top 10 parameter sets. This is most likely due to the fact that & controls the size of
the orbit that the vehicles form. While 77 may be important in getting the vehicles to the right
positions and equally spaced around the orbit, it is the & parameter which determines how tight
that orbit will be. This is directly related to steering energy since the tighter the orbit, the more
the vehicles will have to turn and the more energy they will use. This data appears to support
earlier conclusions that the 77 parameter is most effective when establishing the steady state
formation of the vehicles and loses relevance once this position is generally established.

Also evident was a correlation between I, and the amount of steering energy used. As
I, increases, the size of the orbit increases and the vehicles use less steering energy. This

combined with the weight of & were the most influential factors that caused either very high or
very low levels of steering energy to be used. Thus, to increase fuel efficiency, a user could

lower o which would result in an orbit larger than specified by r,, or increase I, directly.
However, it should be noted that increasing r, has a much more predictable affect on the size of

the orbit than decreasing « .
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9.3.4. Sensitivity of the Minimizing Parameter Set
The script in Appendix 6.3 was used to compute the global minimum parameter set for
all of the trials as was done before for the rectilinear control law. This produced parameter set 1
seven times, set 2 two times, set 6 thirteen times, and set 7 fourteen times. For these parameter
sets, a ranged from 0.05 to 0.2, 7 ranged from 0.05 to 0.35 and r, was always 50. This was

initially surprising since the smallest value of r; was consistently in the top performing

parameter set. It would be expected that the gains achieved by creating a very tight orbit around
the convoy and keeping the vehicles close would be offset by an increase in collision percentage
and steering energy. As discussed previously, the separation distance only affects collision
percentage as the vehicles are moving to their initial positions. In the top performing parameter
sets, only set 7 had a non-zero collision percentage and even this percentage was less than 0.5%.
It is evident that for the circular form of the control law, the initial conditions create the only
cause for collision concern as vehicles transition into the steady state orbit.

These parameter sets also showed that swarm behavior was more closely related to r,
while it was fairly insensitive to the sizes of & and g . This shows that while steering energy
may have increased for the smaller r, values, this increase was not as significant as the decrease
in convoy range. By using a small r, and a small &, the swarm was able to stay very close to the
convoy while still using relatively little steering energy. When r, was 50, even the largest
convoy range was not as large as the smallest convoy range for the sets when r, was 550.
However, certain values of & and x used with an r, of 50 got values of steering energy
comparable to the parameter sets with r, equal to 550. The results also reinforced the concept

that as « decreased, steering energy decreased, but convoy range increased as a penalty. In
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general, it was evident that the benefits of using a small r, value outweigh any steering penalty
associated with the tighter orbit. It may be possible to make r, so small that collisions do occur
and steering control is maxed out, but this is not practical. Having r, at the minimum collision

distance proved that this parameter has no real impact on collision and provides the best overall
performance.
None of the top performing parameter contained all three gain values strictly inside the

test matrix. This was due to the fact that a small r, was the strongest indicator of swarm
performance. This is not a large problem because researching parameter sets with an r, less than

the collision distance is not practical. Any benefit in performance would not be worth an

increased chance of collision. Parameter sets 6 and 7 had values of « and 7 that were both

within the interior of the test matrix. These sets also made up the majority of the minima as the
cost function was varied. These parameter sets had extremely low convoy range percentages as
well as low collision and steering percentages. The performance for these two sets was about
equal in all areas. The only case when these sets were not the global minimum was when steering
control was explicitly emphasized, however, they were the top performers when all metrics were
weighted evenly or preference was given to collision or convoy range. These sets also reiterated

the trend that steering energy is most directly related to increases in & vicer . There were much
larger jumps in steering energy as « increased than compared to increases in7 . Overall, the

circular law did not seem to be any more or less sensitive to cost function weighting than the

rectilinear law.
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9.3.5. Performance Around the Global Minimum
Since none of the top performing parameter sets contained all gain values within the
test matrix, parameter sets 6 and 7 were used to evaluate the swarm performance around a global

minimum since they contained values of ¢ and 7 which were inside the test matrix. To analyze

the swarm behavior on a per parameter basis, all parameters were held constant while only one
was varied and the changes in the performance metrics were observed.
First, changes in @ were observed. As witnessed before, steering energy increases in a

fairly regularly pattern as « increases. Since I, for both of these parameter sets is 50, it would

be expected that the vehicles remain close to the convoy. When « is at its lowest value at 0.05,
convoy range is high at about 35%. When « increases to any larger value though, convoy range

drops to about 8%. For both parameter sets, convoy range is smallest when « equals7. As
discussed previously, if « is given a small weight compared to 7, the resulting behavior does
not create a stable orbit with a radius close tor,. However, when « is increased to the same
level of 77, the behaviors are weighted equally, and the resulting orbit has a radius that is much
more reflective of the r, specified. Also of note is the fact that once o and 7 are on the same

orders of magnitude, increasing & has no further impact on the convoy range.

Similarly, if « is less than or equal to77, collision percentage is 0. Since there is no
heading alignment term in the circular control law, 7 is the only behavior which prevents the
vehicles from colliding. Since 1, is about equal to the collision distance, o acts to increase the
chance of collisions by bringing the vehicles closer to the collision distance andr, . Therefore,
when « is given a higher weight thanz, the resulting behavior places a larger emphasis on

separation distance and there are collision risks.
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Next, the response as 77 is modified was observed. As shown in the & observations,
the convoy range is minimal if & equals7. However, where o had a large impact on convoy
range based on its relation to7, 7 seems to have a much smaller impact. As 77 moves, the

differences in convoy percentages changes by only about 6% in either direction. Also observed

was the relation betweena , 77 and collisions distance. When 7 was given a larger value than e ,
collision percentage dropped to zero. However, when o was greater than or equal to7, collision
percentage became a non zero number. Lastly, as 7 was changed, the values of steering energy

varied by less than one percent. As seen earlier, steering energy is most directly correlated to the

o gain and the size of 7 has no clear affect.
Lastly, the swarm behavior with respect to r, was observed. While it was not possible
to asses the performance trends when 1, decreased from the value of 50 which parameter sets 6

and 7 contained, it was not necessary since these values would not be practical in a real world

application. Again it was observed that as I, increases, the convoy range increases as expected.

Also, it was noted that as the orbit becomes larger, there is less error between the radius of the

orbit measured by convoy range, andr,. Also as I, increased, the collision percentage decreased.
There was a noticeable effect on steering energy as I, decreased similar to the effect ¢ had on
convoy range. When r, was 50, steering energy was around 11%. However, once [, increased,
steering energy dropped to about 2% and stayed constant as I, continued to increase. This shows

that when the vehicles maintain a small orbit, they must use significantly higher amounts of

steering energy. However, as I, is increased beyond 50, the vehicles maintain a much wider
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orbit which requires minimal steering energy to maintain. Once [, is greater than the minimum

collision distance, increasing « has a stronger affect on steering energy.
9.3.6. Comparison of 2 and 3 Vehicles

The global minimums for the 2 and 3 vehicle cases were then analyzed to determine if a
form of gain scheduling would be appropriate when switching between these situations. For all
the 2 vehicle trials, parameter set 1 appeared 6 times, set 6 appeared nine times, seven appeared 3
times, 8 appeared 3 times, and 12 appeared 15 times. Parameter sets 1, 6, and 7 were all top
performing parameter sets for the 2 and 3 vehicle cases combined. Parameter set 12 was
dominant in the 2 vehicle trials even though it did not appear in the set for all trials. For all of the
2 vehicle trials, o ranged from 0.05-0.35, 77 ranged from 0.05 to 0.5, and r, was always 50.
Overall, these gain values were more aggressive than those of the parameter sets for all trials
combined. With fewer vehicles than the 3 vehicle case, there is less chance of a collision and less
steering energy used so the gain values are able to fluctuate into higher regions. While the o and
n values were fairly insensitive, it was again seen that for the best performance, r, of 50 was the
best choice. For all of these parameter sets, there was zero chance of collision. The trend that as
a increases, range to convoy decreases while steering energy increases was also apparent. It was
also noticed that when & was constant and 7 increased, there was an increase in convoy range.
This effect was not noticed when all the trials were averaged together, so it may show that 7
plays a stronger role when only 2 vehicles are used compared to 3 vehicles.

When the 3 vehicle trials were averaged together, parameter set 1 appeared ten times,
set 2 appeared twice, set 6 appeared 12 times, and set 7 appeared twelve times. « ranged from

0.05-0.2, n from 0.05-0.35, and r, was 50. These values were also identical to the parameter

ranges for all sixteen trials averaged together. When compared to the 2 vehicle trials, the 3
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vehicle trials had a higher average convoy range and steering percentages and all but one
parameter set had zero collision percentage. As more vehicles are added, the stable orbit
increases in size and more steering energy is needed to maintain the orbit. This seems
contradictory to previous results that showed that as orbit size increases, steering energy
decreases. For the 3 vehicle cases, this is true. But when trials 6 and 7 were compared between
the 2 and 3 vehicle cases, their convoy range was about the same but for the 3 vehicle case, there
was a noticeable increase in steering energy. This may be due to the period of time for the
vehicles to get into position. As more vehicles are added to the swarm, more maneuvering is
necessary before the vehicles can find the steady state orbit.

When determining if gain scheduling is necessary, parameter set 6 and 7 were
compared for the 2 and 3 vehicle case. These sets appeared in the 2 and 3 vehicle cases as well as
when all the trials are averaged together. Both perform well regardless of the number of vehicles
in the swarm and cost function weighting. While parameter set 12 appeared more for the 2
vehicle case, it did not appear at all in the 3 vehicle case. In the 3 vehicle trials, parameter set 12
was able to keep the vehicles close to the convoy, but at the cost of a noticeable increase in
steering energy which prevented it from appearing as a top trial for 3 vehicles. Parameter set 12
had very close performance to both parameter sets 6 and 7. While sets 6 and 7 may not be the
absolute best for every cost function weighting permutation, they still performed well. This fact,
combined with their performance in the 3 vehicle trials would conclude that choosing either of
these parameter sets would be safe for both the 2 vehicle and 3 vehicle case. These sets would
also still perform strongly if the swarm size was manipulated during the mission. Due to these

results, gain scheduling would not produce any noticeable benefits for the circling scenario.
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9.3.7. Comparison of Route 3 and Route 4
The top performing parameter sets were then compared for the two separate routes to
see how the swarm responded to changes in direction and varying convoy speeds. Route 3 had
parameter set 1 six times, 2 three times, 6 fourteen times, and 7 thirteen times. When route 4 was
averaged together, parameter set 1 appeared 8 times, set 2 appeared once, set 6 appeared fourteen

times, and set 7 appeared thirteen times. o ranged from 0.05-0.2, 7 from 0.05-0.35, and r, was

50. These were the same trials that were global minimums for all 16 trials averaged together and
had the same parameter ranges.

From these results, it is evident that the amount of maneuvering the convoy performs
has no strong impact on the performance of the swarm. Both routes had the same parameter sets
showing that the swarm performance is insensitive to the convoy route. This is much different
than the rectilinear case where the route was a large factor in the ability of the swarm to follow
the convoy effectively. If a mission planner was preparing to use UAV swarms for an all foot
patrol mission, they would not have to worry about the complexity of the route if the loitering

formation was used.

10. Obstacles En Route - Blended Control Investigation

In this scenario, the main objective was to create a more realistic convoy trajectory with
varying speeds which represented practical military convoy characteristics. In the real world,
military convoys do not always travel at a constant speed. When traveling in and urban
environment, especially in a conflict zone, unforeseen events may cause the convoy to slow
down or even stop progress. In these situations, the UAVs must still be able to provide accurate

and reliable security in the form of sensor coverage. If only the loitering form of the control law
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was used, the vehicles would quickly fall behind when the convoy moves at a high speed.
However, if only the rectilinear form of the control law was used, the vehicles would scatter and
move in a disorganized and inefficient fashion when the convoy speed slows significantly or
stops suddenly. To solve this control issue and in order to asses the ability of the control law to
operate in a more realistic convoy scenario, a blending of the rectilinear and loitering forms of
the control law was investigated. This blending was based on several factors including the speed
of the convoy, the distance between the vehicles and the convoy, and the turn bearing rate of the
convoy relative to the UAVs.
10.1. Developing Blending Functions

In order to find the best blending method, several blending functions were used. These
varying functions determined how quickly or slowly the blending transition between loitering
and rectilinear occurred. Based on the speed of the convoy at each time step, a parameter called

trans was calculated. The final steering command was then calculated using Equation 4.

u = trans*u_rect + (1-trans)*u_circ [4]

When pure rectilinear control is desired, the trans parameter is a value of one. A trans value of 0
is used for pure circular control. These values occur when the convoy speed is below the
minimum specified value or above the maximum specified value. In between these minimum and
maximum convoy speeds, several different functions were used to calculate the value of trans
and apply the blending.

10.1.1. Linear Function

First, a linear interpolation between the minimum and maximum convoy speed values

was used. Since the value of trans varies between 0 and 1, the trans value for the linear function

was simply the percentage of the current convoy speed relative to the minimum and maximum
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convoy _speed —min_ speed
max_ speed —min_ Speed

specified speeds. This function looks like trans = ( ) and produced

the plot of trans values in Figure 24.
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Figure 24: Linear Blending Function
This function results in a linear blend between the minimum and maximum values which were
20 mph and 45 mph for this and subsequent examples unless otherwise stated. It is also clear that
varying the minimum and maximum values will change the slope of the line and therefore the
behavior of the swarm.
10.1.2. Exponential Function
Next, an exponential function was used which created a function that resulted in a low
trans value as the speed increased to a point, then a drastic rise as the speed continued to increase

to the maximum user specified speed. The formula used was

convoy _ speed—min_ speed
e 10* max_ speed —min_ speed

trans

- 2. 20264657948067200% which resulted in the plot in Figure 25.
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Figure 25: Exponential Blending Function

The specific values used in the formula were chosen on a trial and error basis to enable
to function have a minimum value of 0 and a maximum value of 1 for the trans parameter. It is
evident that there is little change in the trans value between convoy speed of 20 mph and 35
mph. However, after the convoy speed surpasses 35 mph, the trans parameter increases
drastically and maximizes at a value of 1 at a convoy speed of 45 mph.

10.1.3. Logarithmic Function

The next function tested was a logarithmic function that was essentially the inverse of
the exponential function. As the convoy speed increased, the trans parameter quickly increased
and then settled near 1 as the convoy speed approached the maximum blending speed. This
function would show how the behavior of the swarm would react when a greater emphasis is

placed on the rectilinear form of the control law. The function used for this was
convoy _ speed—min_ speed
10g 10%( ™ max_speed—min_speed +2.303

4.606

trans =

and produced the plot in Figure 26.
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Figure 26: Logarithmic Blending Function
As the convoy speed exceeds the minimum value of 20 mph, the trans parameter quickly
increases and eventually settles at a value of 1.
10.1.4. Hyperbolic Tangent Function
Lastly, the hyperbolic tangent was used to effectively combine the effects of the
exponential and logarithmic functions. The hyperbolic tangent creates little variation in the trans
parameter near the maximum and minimum blending speeds. However, in the middle of the

speeds, the trans value quickly increases. The function

max_ speed — min_ speed
2

. tanh{ 5. (convoy_ speed — min_ speed J L 5}

trans = was used to create the plot shown in

Figure 27.
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Figure 27: Hyperbolic Tangent Blending Function
This function would show if a symmetric function with a steep initial slope would
provide better swarm behavior in contrast to the skewed increases of the exponential and
logarithmic functions and the smooth transition of the linear function.
10.2. Speed Blending
This first factor to be analyzed for the basis of blending was the speed of the convoy.
This has a very large impact on the effectiveness of the UAV swarm as shown in the previous
plot. This blending method assumes that the vehicles all begin in close range with the convoy.
10.3. Speed Limitation Investigation
It would be expected that due to the circling nature of the formation, changes in route
direction would have little impact on the vehicles. What would have an impact on the stability of
the swarm loitering formation would be the convoy speed. If the convoy is moving too fast, the
swarm will not be able to loiter effectively around the convoy. This relationship becomes more

important as the size of the orbit decreases. When the orbit is small, the swarm has to respond
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quicker to changes in the convoy position. When the orbit is large, the relative position changes
of the convoy are small when compared to the size of the orbit. For these reasons, it was
necessary to find the limiting speeds of the circular and rectilinear form of the control law

In order to evaluate the effectiveness of the blending schemes and their ability to
control the vehicles, a new convoy trajectory was created. This trajectory combined the GPS
points of two separate routes; the route from the suburbs to NRL and from NRL to USNA. This
longer track provided more time and distance to observe the UAV swarm’s behavior. The goal
for this trajectory was to have the convoy begin at a slow speed at which point the UAVs could
use the pure loitering form of the control law. As the convoy moved along the trajectory, the
convoy speed was incrementally increased until the convoy speed reached a point where only
pure rectilinear control would allow the swarm to cover the convoy effectively. Thus, a track was
made which began with a convoy speed of 10 mph and ended with a convoy speed of 55 mph
using Appendix 7. The UAVs were simulated on this track using only pure loitering and then
only pure rectilinear control laws. As shown in Figure 28 of the outputs of these two trials, it is
evident that at slower speeds, loitering is more effective, and rectilinear becomes more effective

as speed increases.
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Figure 28: Comparison of Circular and Rectilinear Control

There is a point where both the rectilinear and loitering forms of the control law

provide roughly equal quality of performance based on the distance to convoy metric. Using this

plot, the minimum and maximum speeds between which the blending would take place were

estimated. From this plot, it would be most efficient to transition from circular to blended control

once the convoy speed meets 20 mph and for blending to end and transition to rectilinear control

once the convoy speed has passed 45 mph. Using these guidelines, a test matrix was created

using the values shown in the table in Figure 29. The delta is the value that the speeds were

incremented to get a range of values between the respective minimum and maximum speeds.

Circular Rectilinear
Saturation Saturation Speed
Speed (mph) (mph)
Min 10 35
Max 30 55
delta 2.5 2.5

Figure 29: Speed Blend Test Matrix
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For all of the simulations, the gain values were chosen from the best performing parameter sets

found in the previous scenarios. For rectilinear control, # was 0.2, o was 0.2, 7 was 0.05, and
r, was 550. For loitering control, & and 7 was 0.2 and r, was 50.

10.3.1. Ideal Speed Blending

Data was collected first using the GPS route which had incremental speed increases. In
theory, this should allow for the smoothest blending possible and should be the ideal case for
each of the blending functions. The data confirmed the assumption that a blending algorithm
would perform better than a pure rectilinear or circular algorithm and would be more widely
applicable to real world GPS routes. Using pure circular control, the swarm had an average
convoy distance of about 22% and this distance increased to 95% when pure rectilinear control
was used. However, the majority of the blending algorithms resulted in convoy range
percentages averaging around 18%. Clearly, the blending algorithm allowed the swarm to
maintain a closer proximity with respect to the convoy as the convoy’s speed varied along the
route. In this ideal speed varying situation, the convoy’s speed changed in equal increments
which meant that the blending functions were not perfectly smooth curves.

After collecting the data, a MATLAB script (Appendix 6.3) was used to locate the
simulations runs which resulted in the lowest final performance metric as the weights of the cost
function were manipulated. The chart (Figure 30) summarizes the important characteristics of the

top performing blending functions as the weights of the cost function are manipulated.
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Pre-Blended
Scenario
Times a
Global Min Speed | Max Speed | Convoy | Collision | Steering
Blending Function Trial Min (mph) (mph) % % %
Linear 72 12 27.5 55 14.3627 0 8.902
24 10 15 47.5 14.6895 0 8.2901
8 12 10 52.5 15.7229 0 7.5854
2 2 10 37.5 20.9863 0 6.8227
Exponential 10 1 125 35 22.907 | 0.20862 | 7.4179
3 35 10 40 20.6665 0 7.7638
Hyperbolic Tangent 4 3 10 42.5 17.8603 0 7.8989
5 3 10 45 16.7781 0 8.1091
34 30 175 50 14.1925 0 8.855
Logarithmic 9 3 10 55 26.3548 0 6.4765
51 1 22.5 47.5 18.1701 0 7.9007
70 12 27.5 50 15.2661 0 8.4941
80 20 30 52.5 15.0388 0 8.6858
Averages 16.3461538 | 46.9230769 | 17.9227 | 0.01604 | 7.938615
Pure Rectilinear 95.208 0 9.7309
Pure Circular 21.9228 1.102 9.814
Overall Top
Performer 34 17.5 50 14.1925 0 8.855

Figure 30: Summary of Ideal Speed Blending

When plotted, these functions produce the plot in Figure 31.
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Figure 31: Plot of Top Performing Speed Blending Functions
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From these results, it is possible to make several basic conclusions about the best
possible method of blending. Most notably is the clear performance advantage that speed
blending gives to the behavior of the swarm when convoy speed is non-constant compared to
pure rectilinear or circular control. While it appears that pure circular control is sufficient, the
UAYV swarm begins to quickly fall behind the convoy as the convoy speed increases at the end of
the simulation run. Thus, having a blending function that takes this acceleration of the convoy
into account and transitions to a more rectilinear based control allows the UAV swarm to keep
pace with the convoy as its speed varies.

Of the blending functions, it appears that with the right minimum and maximum speeds
set, similar performance appears. Overall, the performance across all range of speed limits did
not change drastically and it is not evident that the blending algorithms are extremely sensitive to
these bounds. This is also evident when analyzing the plot of the top performing blending
functions plotted together. There are no clear trends or distinct overlaps and all seem to fit into a
fairly wide band. It may be seen that as the minimum speed limit of the function increases, the
initial slope of the blending function increases as well. This suggests that when the minimum
speed is set low, the functions allow a gradual transition to rectilinear control. However, when
the minimum speed is set high, the blending algorithm must quickly transition from pure circular
control to a blend that is more influenced by rectilinear control in order to keep up with the
already fast moving convoy. What is clear is that speed blending is an important method to
improve the behavior of the swarm and is simple to do computationally.

10.3.2. Practical Speed Blending
For this simulation run, the raw version of the ideal GPS track was used that began in a

DC suburb and ended at NRL. This version did not contain any filtering of stop points or speed
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modification by manipulating GPS timestamps. This is a more practical and realistic case

compared to the ideal situation where the convoy speed steadily increased and the blending could

occur smoothly. For this track, the control algorithm would have to adapt to a constantly

changing convoy speed and still provide effective convoy security. The same test matrix and

blending functions were used for this set of simulations. The data was analyzed by identifying

the top performing speed permutations for each blending function as the weights of the cost

function were modified. The results are displayed in the table and plot in Figure 32 and 33

respectively.
Suburb-USNA
Min
Times a Speed Max Speed | Convoy | Collision | Steering
Blending Function Trial Global Min (mph) (mph) % % %
Linear 6 3 10 47.5 42.554 0 6.8804
11 25 12.5 37.5 41.002 | 0.15438 | 7.4131
13 6 125 42.5 42.946 0 6.7657
21 2 15 40 42.177 0 7.0468
Exponential 57 2 25 40 58.157 1.245 6.7781
58 32 25 42.5 57.411 1.245 6.9283
62 2 25 52.5 58.353 | 1.4442 | 6.6645
Hyperbolic
Tangent 2 36 10 37.5 41.611 0 6.9887
Logarithmic 3 3 10 40 43.365 0 7.4421
6 3 10 47.5 46.332 0 6.8463
35 30 175 52.5 42.486 | 0.15438 | 7.4482
Averages 15.681818 | 43.636363 | 46.945 | 0.3857 | 7.01838
Pure Rectilinear 62.955 0 3.7714
Pure Circular 58.284 | 1.4143 6.9093
Overall Top
Performer 11 12.5 37.5 41.002 | 0.15438 | 7.4131

Figure 32: Summary of Suburb to USNA Speed Blending
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Figure 33: Plot of Top Performing Speed Blending Functions

As is evident from the plot of the top performing blending functions, the practical
simulations resulted in a fairly narrow range of top performing blending functions with the
exception of the exponential function. The band of top performing blending sets appears slightly
narrower in this route when compared with the pre-blended route used before. Since this
simulated route is a purely raw track, these top performing blending trials may be better suited
for raw GPS routes. Also, the blending for this raw track began on average at a lower speed and
the blending ended on average at a lower speed compared to the ideal case. The blending needed
to transition to rectilinear earlier and reach pure rectilinear control faster in order to keep up with
the convoy accurately. Ultimately, the performance across the various blending functions was
very close which supports the previous conclusion that swarm performance is not sensitive to the
specific function and the speed limitations of the blend.

Performance wise, the practical simulation had significantly higher performance
percentages compared to the ideal situation which is to be expected. The methodical blending

used in the first simulation allows for a smooth transition between circular and rectilinear control
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whereas the raw track causes much more abrupt transitions between circular and rectilinear.
Also, in the pre-blended track, the convoy moves at a slow speed compared to the UAV max
speed for the majority of the simulation. This is not the case in the raw track, since the convoy’s
speed varies constantly and erratically. Lastly, it is of note that with this more realistic GPS
route, the speed blend still outperformed the pure rectilinear and pure circular control. This is
more evidence to suggest that blending is an effective control method that should be pursued. It
is believed that as long as some form of blending is used with appropriate speed limitations, the
result will be improved swarm performance.

10.3.3. Analysis of Additional Routes

In order to gain a broader perspective on the performance of the speed blending method,
two additional real world GPS tracks were used to analyze the performance of the speed
blending method. The first track comprised of a route from NRL to a house in Northern DC on
Van Ness Street. The second track is a route from the house in Northern DC back to USNA. The
results for speed blending in the route from NRL to Van Ness are depicted in Figure 34 and

Figure 35.
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NRL to VN
Times a Min Speed | Max Speed | Convoy | Collision | Steering

Blending Function | Trial | Global Min (mph) (mph) % % %

Linear 1 4 10 35 44,946 | 0.28937 | 6.0557
4 17 10 42.5 44.677 | 0.08064 | 6.4549
13 3 12.5 42.5 46.777 | 0.14706 | 5.328
14 12 12.5 45 45.923 0 5.5749

Exponential 1 1 10 35 53.451 | 1.9165 | 5.8103
7 35 10 50 51.912 1.518 6.1378

Hyperbolic

Tangent 1 34 10 35 43.084 0 6.393
2 1 10 37.5 46.202 | 0.0948 5.878
5 1 10 45 50.830 | 0.0948 5.295

Logarithmic 18 2 12.5 55 45.892 0 5.4253
19 34 15 35 39.770 0 6.3923

Averages 11.136363 | 41.5909090

Pure Rectilinear 63.474 0 3.8508

Pure Circular 55.798 | 5.2989 | 6.4702

Overall Top

Performer 19 15 35 39.770 0 6.3923

Figure 34: Summary of NRL to Van Ness Speed Blending
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Figure 35: Plot of Top Performing Speed Blending Functions

Again, the performance numbers for the blending functions are all relatively similar and

all out perform the pure rectilinear and circular control methods. For this route, the linear

function had relatively good performance, but one logarithmic function ended up being the best
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overall performer for this route. The results from the Van Ness Street to USNA track are shown

in Figure 36 and Figure 37.

VN to USNA
Blending Times a Min Speed | Max Speed | Convoy | Collision | Steering
Function Trial | Global Min (mph) (mph) % % %
Linear 10 4 125 35 23.1941 0 9.2997
19 7 15 35 23.0779 0 9.3311
20 24 15 37.5 22.8733 0 9.4391
44 1 20 52.5 24.9572 | 0.09498 | 9.0418
Exponential 6 4 10 47.5 23.4565 | 0.86673 | 10.0246
10 26 125 35 24.0986 0 9.3807
15 6 125 47.5 23.6872 | 0.27011 | 9.7838
Hyperbolic
Tangent 1 12 10 35 23.3103 0 9.2734
3 4 10 40 22.826 0 9.4143
10 18 12.5 35 22.826 0 9.4143
Logarithmic 33 8 175 47.5 22.6126 0 9.346
35 27 175 52.5 22.2784 0 9.4917
45 1 20 55 23.8679 | 0.08607 9.153
Averages 14.2307692 | 42.6923076 | 23.3127 | 0.10137 | 9.414885
Pure Rectilinear 60.1059 0 4.8993
Pure Circular 24.1143 | 0.48679 | 9.8864
Overall Top
Performer 35 17.5 52.5 22.2784 0 9.4917

Figure 36: Summary of Van Ness to USNA Speed Blending
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Figure 37: Plot of Top Performing Speed Blending Functions
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These results repeated the trends seen throughout the speed blend data. All of the blends
have very close performance metrics, showing that the type of blending function is generally
irrelevant in determining the resulting behavior of the swarm. In the Van Ness to USNA track,
the pure circular control is very close to the blending performance. This is due to the slow
convoy speed for this route which results in the blending function relying mostly on pure circular
control.

For these two additional routes, the top performer ended up being a logarithmic function.
However, since all of the performance metrics are so similar, there is no strong evidence to
conclude that a logarithmic blend is better than the other functions. Thus, there was no specific
blending function that performed better over the range of routes throughout the speed blending
simulations. Still, the simulation results suggest that an exponential blending function is a poor
blending method. Even the top performing exponential blends had noticeably poor performance
compared to the other blending methods. Examining the plots of the blending functions shows
that the exponential function is typically displaced from the other functions. While the linear,
hyperbolic tangent and logarithmic functions are not in a very precise band, they are all in the
same relative position when plotted. The exponential function may blend at the same relatively
low convoy speeds like the other functions, but it takes longer for the impact of increased convoy
speed to have a noticeable effect on the transition to rectilinear control. When the slope does
increase, the convoy speed is typically at a higher speed relative to the other blends which means
the UAVs are falling behind the convoy as they transition to rectilinear. This results in increased
convoy range percentage and poorer performance. For GPS routes where the convoy moves at

quicker speeds such as in the Suburb to USNA track and the NRL to Van Ness Street track, this
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effect is more pronounced and can be seen when comparing the convoy range percentages of the
exponential blends and the other blending functions.

Also, looking at the average minimum and maximum speeds that determine the blending
limits, the minimum speeds tend to be towards the lower end of the speed range while the
maximum speeds are more towards the middle of the speed range. There also seems to be a slight
correlation between the convoy range percentage and the average transitions speeds. The higher
the average distance to convoy percentage, the lower the average minimum and maximum
speeds of the blending limits are. The routes that have lower convoy range percentages tend to
have convoys that move at generally lower speeds. By looking at the average convoy range
percentage for the pure circular and the overall top performer case, one can tell how slow the
convoy was moving. The closer these percentages are, the more the speed blend was using
circular control, and thus the slower the convoy was moving. The NRL to Van Ness track begins
with a fast highway section that leaves the UAVs behind. Eventually, the convoy hits traffic in
the city, slows down, and the UAVs catch up. It seems logical then that as the convoy moves
faster, the blend would want to transition to rectilinear control faster, hence the blends with
lower speeds cut offs appear as top performers. These lower transition speeds allow the UAVs to
reach maximum speed with the rectilinear control faster, and thus enable the UAVs to reach the
convoy in a faster manner.

10.4. Distance Blending
Speed blending proved to be an effective technique for improving the behavior of the
swarm as the vehicles followed a convoy of constantly fluctuating speed. However, the blending
function had one assumption which is not always true on the battlefield. For the speed blending,

the UAVs all started relatively close to the convoy. In the real world, it may not be possible to
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launch the UAVs near the convoy. To support a wider variety of missions, a form of distance
blending was also implemented. For example, if the UAVs began several kilometers away and
were tasked with following a slow moving convoy using speed blending, they would use
predominantly circular control which would prevent the vehicles from reaching the convoy in a
timely manner. What would be desired in this case is for the vehicles to use rectilinear control to
quickly close the distance to the convoy then switch to speed blending once in the immediate
vicinity of the convoy.

With this goal in mind, distance blending was implemented in to the control of the
UAYV swarms. When the UAVs were outside a certain user specified distance, pure rectilinear
control was used. As the UAVs get closer to the convoy, the distance blending formula blends
rectilinear control with speed blending control. Once inside a certain distance, only speed

blending control is used. For this method, the values shown in Figure 38 were used.

Minimum Maximum
Blending Blending
Distance (miles) | Distance (miles)
Min 0.1 0.8
Max 0.5 1.2
delta 0.5 0.5

Figure 38: Distance Blending Test Matrix

This blended control method produced the chart in Figure 39 depicting the top performing blends
for each blending function, as well as the results for pure rectilinear, pure circular, and pure

speed based control for comparison purposes.
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Suburb-USNA

Blending Times a Max Dist Min Dist Convoy | Collision | Steering

Function Trial Global Min (miles) (miles) % % %

Linear 28 14 1.05 0.1 34.893 0 7.286
59 12 0.9 0.3 34.2899 0 7.8222
74 10 0.8 0.15 34.407 0 7.6214

Exponential 6 11 1.2 0.35 34.9779 0 7.7169
28 17 11 0.5 35.0984 0 7.5635
43 4 1 0.4 34.8936 0 8.1246
47 4 0.95 0.15 35.6369 0 7.4367

Hyperbolic

Tangent 39 2 1 0.2 35.1561 0 7.218
74 34 0.8 0.1 33.8266 0 7.4091

Logarithmic 1 4 1.2 0.1 48.9129 0 3.7878
68 12 0.85 0.3 34.2013 0 7.4872
70 20 0.85 0.4 34.2696 0 7.3663

Averages 0.975 0.25416666 | 35.8802 0 7.236642

Pure

Rectilinear 62.9555 0 3.7714

Pure Circular 58.285 1.4143 6.9233

Pure Speed

Blend 41.0029 | 0.15438 | 7.4131

Top Overall

Performer 74 34 33.8266 0 7.4091

Figure 39: Summary of Suburb to USNA Distance Blending

From the chart in Figure 39, it is clear that adding this distance condition to the blend
created swarm behavior that is much more desirable. The vehicles stay significantly closer to the
convoy with this addition. All of the top performing distance blending trials, vice one
logarithmic trial, have lower convoy range percentages than speed control and pure circular and
rectilinear control. Again, all of the performance metrics are very similar leading to the
conclusion that the type of blending function is fairly irrelevant for distance blending as well.

A comparison of a simulation run with distance blending and then a plot of the same run
without distance blending is depicted in Figures 40 and 41. Here it is evident that the distance
blending brings the UAVs closer to the convoy faster when the UAVs are placed at a distance of
over a mile away from the convoy. In these simulations, the swarm using distance blending gets

under the red line, meaning that the vehicles are now in sensor range of the convoy, in about 300
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seconds. In the plot without the distance blending, the swarm takes almost twice as long, about
600 seconds, to get to within effective range of the convoy. Also from this plot, it is evident that
in cases where the convoy vehicle speeds up and the swarm falls behind, distance blending
forces the swarm to rely more on rectilinear control faster than pure speed blending. This can be
seen at the end of these simulation plots where the swarm without distance blending begins to

fall out of convoy range compared to the swarm with distance blending which remains in convoy

range.
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Figure 40: Simulation using Distance Blending



Vehicle Separation Distances - 56.6272% range from conwoy violation
«=02,1=02 n= =0.05, ro = 550

N

=
o

Max Distance 1 mlle(s)

Distance (miles)
=

o
@

| |
| | - DSOS SO G ON -
0 200 400 600 800 1000 1200 1400 1600 1800

Distance (miles)

Percentage

B PO O 0 N N 1 P11 o111 AT 1

0 200 400 600 800 1000 1200 1400 1600 1800
Time (seconds)

Figure 41: Simulation using only Speed Blending

10.4.1. Analysis of Additional Routes

86

A similar method of analysis was applied to the data for the use of distance blending on

the additional GPS routes. The final data tables for the Van Ness to USNA route and the NRL to

Van Ness route are shown in Figure 42 and Figure 43.
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VN to USNA
Times a Max Dist Min Dist Convoy | Collision | Steering
Blending Function Trial Global Min (miles) (miles) % % %
Linear 3 1 1.2 0.2 28.459 | 0.09795 | 8.9426
43 29 1 0.4 27.295 | 0.01238 | 9.2865
63 1 0.9 0.5 27.580 0 9.5668
64 1 0.85 0.1 29.189 0 8.8015
65 4 0.85 0.15 30.257 | 0.07123 | 8.5114
Exponential 30 2 1.05 0.2 29.867 | 0.12763 | 8.8786
61 5 0.9 0.4 29.197 | 0.02077 | 9.0383
64 9 0.85 0.1 28.972 | 0.07123 | 9.2611
66 1 0.85 0.2 28.280 0 9.4615
78 19 0.8 0.35 28.159 0 9.5657
Hyperbolic
Tangent 64 29 0.85 0.1 28.36 0 8.8357
65 7 0.85 0.15 27.963 | 0.13951 | 9.5784
Logarithmic 10 3 1.15 0.1 49.415 | 0.07717 | 4.3425
14 5 1.15 0.3 28.702 0 8.8901
17 15 1.15 0.45 27.952 | 0.18106 | 9.2773
39 3 1 0.2 34.684 0 7.1241
72 10 0.85 0.5 28.214 | 0.10686 9.055
Averages 0.9558823 | 0.2588235 | 30.118 | 0.0567 8.7304
Pure Rectilinear 60.105 0 4.8993
Pure Circular 24114 | 0.48679 | 9.8864
Pure Speed Blend 22.278 0 9.4917
Top Overall
Performer 43 29 27.295 | 0.07123 | 9.2865

Figure 42: Summary of Van Ness to USNA Distance Blending
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NRL to VN

Blending Times a Max Dist Min Dist | Convoy | Collision | Steering

Function Trial Global Min (miles) (miles) % % %

Linear 10 1 1.15 0.1 46.232 0 6.3648
28 5 1.05 0.1 46.999 0 6.0781
49 27 0.95 0.25 44.0568 0 7.2996
65 3 0.85 0.15 48.655 0 5.7482

Exponential 48 2 0.95 0.2 48.0894 0 6.8069
51 9 0.95 0.35 47.7143 0 7.1933
54 19 0.95 0.5 47.8355 0 6.906
60 3 0.9 0.35 49.1802 0 6.4894
67 3 0.85 0.25 51.3239 0 6.0872

Hyperbolic

Tangent 1 13 1.2 0.1 46.3949 0 7.3876
28 4 1.05 0.1 47.4667 | 0.10436 | 6.5976
31 15 1.05 0.25 46.6485 0 6.9942
35 4 1.05 0.45 50.1234 0 6.12

Logarithmic 20 5 1.1 0.15 54.1215 0 4.3697
22 30 1.1 0.25 44.6926 0 6.9292
40 1 1 0.25 48.2714 0 5.8656

Averages 1.009375 0.2375 47.9878 | 0.0065 6.4523

Pure Rectilinear 63.4749 0 3.8508

Pure Circular 55.7989 | 5.2989 6.4702

Pure Speed

Blend 39.7704 0 6.3923

Top Overall

Performer 49 27 44.0568 0 7.2996

Figure 43: Summary of NRL to VVan Ness Distance Blending

In these blends, the exponential function is still displaced from the other top performing

blending functions as seen in Figure 44 of the top performing functions for the suburb to NRL

route.
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Figure 44: Plot of Top Performing Distance Blending Functions

However, unlike in speed blending, this displacement does not appear to have such an
adverse affect on the performance of the swarm. One reason for this is the speed of change of the
variable being measured. In speed blending, the blend is based off the convoy’s speed which can
change from the minimum blending speed of 10 mph to the maximum of 55 mph in a matter of
seconds. However, in distance blending, the vehicle dynamics prevent the UAVs from closing
the distance to the convoy at such a comparatively quick rate. Thus, in speed blending, the delay
in transition to rectilinear control caused by the exponential function is intensified. In distance
blending, the convoy to UAV distance variable can not change as fast as the convoy speed, and
the detrimental effects of the exponential function are not as apparent. Lastly, similar to the
results of the speed blending, the specific function does not seem to have a large impact on the
final behavior of the swarm, as evident by the relatively similar performance numbers for the top

performing distance blending trials.
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In distance blending, there also appeared to be a correlation between convoy speed, as
measured by the average convoy range percentage, and the distance minimum and maximums
that appeared in the top performing blending trials. As average convoy range percentage
increased, the minimum distance value decreased and the maximum distance value increased.
When the convoy was moving at a faster speed, the blending functions which started blending
sooner, and therefore had larger maximum distance values, performed better. Also, the minimum
distance was made smaller, which meant that the blend favored rectilinear control to get the
UAVs closer to the convoy before transitioning to full speed control. A faster moving convoy
resulted in a wider range between the minimum and maximum distances to allow more
rectilinear control in the final steering command which resulted in the UAVs being able to
maintain a closer distance to the convoy. At slower speeds, the opposite happened. The transition
to speed blending happened when the vehicles were closer to the convoy and transitioned to
speed control faster as well. The range was smaller which allowed the UAVs to transition to
speed control faster and at a farther distance since the convoy was moving at a slower speed and
was unlikely to take off suddenly. When the convoy is moving slow, speed control is a more
accurate and effective form of blending as the UAVs get closer to the convoy.

A comparison of the results for the top performing distance and speed blends also
revealed some important information about the implementation of distance blending. In order to
get the most effective distance blend possible, the parameters for the best speed blending on each
track were utilized so that the distance blend would transition from rectilinear to top performing
speed blend control. As evident in the tables in Figure 42 and Figure 43, for two out of the three
routes, the speed blend outperformed the distance blend. There are several reasons for this. First,

in these scenarios, the UAVs were not placed at an extreme distance away from the convoy. This
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limited the advantages that distance blending would have in such a situation. Also, if the convoy

begins the route moving near the maximum blending speed, the speed control will result in pure

rectilinear control and have the same effect as the distance controller outside of the maximum

distance range. If the vehicles are placed at a significant range and the convoy is moving at a

moderately slow pace, the effect of the distance blending is clearly evident. In the plots in

Figures 45 and 46, the UAV's were placed about 6 miles away from the convoy initially, and the

convoy moved at a slow pace throughout the simulation. Comparing the two plots, it is evident

that the distance component brings the UA Vs very close to the convoy before transitioning to

speed control. When pure speed control is used, the only variable is the convoy speed and since

the convoy is moving fairly slow, circular control is mostly used. This results in noticeably poor

performance.
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Figure 45: Simulation using Speed Blending
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Figure 46: Simulation using Distance Blending

If the vehicles are launched fairly close to the convoy, the advantages of the distance
blend are negligible. Part of the reason is that when the vehicles using pure speed control begin
to move towards the convoy, they start to converge into a large circular orbit. This, in effect,
brings them to the convoy in a fairly straight manner similar to rectilinear control, and allows
them to establish a stable circular orbit as they approach the UAV which benefits the
performance if the convoy is moving slow and circular control is utilized. However, one way to
improve the performance of the distance blending method is to increase the minimum and
maximum distances of the blending function. This was done on the route from NRL to Van Ness

Street.
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Figure 47: Simulation using Speed Blending
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Figure 48: Simulation using Distance Blending

By increasing the blending distances, in effect putting a larger influence on speed
blending, performance was increased from the previous top performing distance blending
function. Previously, the top performing blending function had a convoy range percentage of
44.0568%, collision percentage of 0%, and a steering energy of 7.2996%. The performance was
improved to 40.4861% convoy range, 0% collision, and 7.7956% of maximum steering energy.
While further refinement and testing would need to be done to identify the appropriate limits for
the new top performing distance values, it is evident that when the UAVs are placed near the
convoy, speed or distance blending result in similar performance and the distance blending can

be refined for improved behavior if necessary.
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10.5. Bearing Rate Blending

The intent behind this form of bended control was to create a method that was effective,
but also more robust and requiring less technology to implement. With an electronic warfare
defensive mind frame, it is evident that having the military convoy broadcast its GPS position
constantly is not operationally secure. The GPS signal can be jammed or degraded by enemy
forces, reducing the effectiveness of the swarm. Worse still, the enemy could intercept the GPS
signal and have an accurate idea of the position of our troops in a potentially hostile area.
Alternate methods of distance calculation can be used between the UAVs and the convoy to
determine the straight line distance between the vehicles. This could include, but is not limited
to, using an electromagnetic signal and measuring the transfer time between the convoy and the
UAV to determine the distance between the vehicles. This would provide the distance
measurement without transmitting exact GPS coordinates.

10.5.1. Bearing Rate Calculation

In an attempt to remedy the electronic attack hazard, the method of calculating the
relative bearing rate of the convoy to each UAV was developed to blend the circular and
rectilinear control laws. This form of blending requires the UAVs to be outfitted with some sort
of visual device such as a camera or IR sensor. These are usually available on modern UAVs and
do not require any additional hardware to implement this method. The convoy only needs to
wear some sort of IR flasher or other visual identification mark for the UAVs to recognize. Most
convoys already carry this sort of equipment to prevent blue on blue targeting, so there is no
additional hardware needed on that end either. Using these devices, the UAVs are able to locate
the relative position of the convoy and determine the rate at which the convoy is moving. This, in

effect, combines the distance and speed variables used in previous methods into one simple
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calculation. To understand how this works, imagine a ship on the ocean coming into harbor. If
one was on the bridge, a lighthouse far in the distance may be seen. This position doesn’t change
when the ship is far away. However, as the ship maneuvers closer and begins to pass the
lighthouse to either side, the relative position of the lighthouse moves and it does so at an
increasing rate. In our scenario, the only difference is that the lighthouse is a military convoy
which is not stationary, but capable of moving. Still, the concept is the same and the calculation

is shown in Equation 5.

V,

Y
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ﬁ[ ) r

UAV
Convoy

Figure 49: Bearing Rate Blending Model
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This formula was applied to the Suburb to NRL route and the bearing rate for the vehicles
was recorded. This data is represented in Figure 50 showing the bearing rate for a single vehicle

in a two vehicle swarm.
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By comparing this plot, it was possible to determine some general bearing rate numbers

for loitering and rectilinear control. In the beginning of the plot, the bearing rate is low so
rectilinear control would want to be used for bearing rates below about 3 degrees per second.
Between 2 and 3.5-10% seconds, the bearing rate oscillates which corresponds to the UAVs
loitering around the convoy. Therefore, circular control should occur between 4 and 6 degrees

per second of bearing rate. With these general guidelines, a test matrix was made (Figure 51).

Minimum Blending
Bearing rate (deg/sec)

Maximum Blending
Bearing Rate (deg/sec)

Min 1 3.25
Max 3 5.25
delta 0.25 0.25

Figure 51: Bearing Rate Blending Test Matrix



10.5.2. Data Analysis for Additional Routes

98

The bearing rate method was used on the same three routes as the previous blending

methods. The results for the top performing bearing rate blending functions are summarized in

the table in Figure 52 as well as the performance of speed control, distance control, pure circular

control and pure rectilinear control for comparison purposes.

Suburb-USNA
Max Min
Bearing Bearing
Times a Rate Rate Convoy | Collision | Steering

Blending Function | Trial | Global Min (deg/sec) (deg/sec) % % %
Linear 10 3 3.5 1 36.9241 0 5.8003

12 33 3.5 1.5 36.6335 | 0.13944 | 5.6101
Exponential 9 36 3.25 3 44.6305 0 5.2335
Hyperbolic
Tangent 9 36 3.25 3 44.6385 0 5.2415
Logarithmic 6 36 3.25 2.25 31.2597 0 2.3004
Averages 3.35 2.15 38.81726 | 0.027888 | 4.83716
Pure Rectilinear 62.9555 0 3.7714
Pure Circular 58.285 1.4143 6.9233
Pure Speed Blend 41.0029 | 0.15438 | 7.4131
Pure Distance
Blend 33.8266 0 7.4091
Top Overall
Performer 6 36 3.25 2.25 31.2597 0 2.3004

Figure 52: Summary of Suburb to USNA Bearing Rate Blending

It is evident from these results that the bearing rate blending function used had a much

larger impact on the resulting swarm performance. Also, for the suburb to USNA track, there

was much less variability between the top performing blends for each individual function. Only

the linear function had two different trials appear as top performers and even then, trial 10 only

appeared three times. Overall, the bearing blend outperformed the pure rectilinear and circular

control methods significantly and managed to produce better performance than the speed or

distance blending on the same route for the bearing rate blend using a logarithmic function.



99

The results of the bearing rate blending simulations on the NRL to Van Ness Street

route are summarized in the table in Figure 53.

NRL to VN
Max Min
Bearing Bearing

Blending Times a Rate Rate Convoy | Collision | Steering

Function Trial Global Min (deg/sec) (deg/sec) % % %

Linear 10 6 3.5 1 47.4418 | 0.08538 | 4.9672
31 6 4 1.75 47.4987 0 4.8906
56 24 4.75 1.25 47.7825 0 4.3766

Exponential 2 6 3.25 1.25 50.0774 0 4.6643
6 5 3.25 2.25 51.1619 0 4.3647
12 25 3.5 15 49.5532 | 0.20398 | 4.7159

Hyperbolic

Tangent 5 2 3.25 2 51.0638 | 0.16129 | 4.2498
16 15 3.5 25 49.2736 0 4.8567
29 18 4 1.25 49.4683 0 4.6054
39 1 4.25 15 51.1784 0 4.2904

Logarithmic 1 2 3.25 1 45.1924 | 0.8112 | 5.5458
2 2 3.25 1.25 45.0795 | 1.1717 | 5.6976
10 12 3.5 1 45.4565 0 5.3983
26 3 3.75 2.75 50.5995 0 4.2735
38 17 4.25 1.25 45.6648 0 5.1444

Averages 3.68333333 | 1.56666666 | 48.4328 | 0.16223 | 4.80274

Pure

Rectilinear 63.4749 0 3.8508

Pure Circular 55.7989 | 5.2989 6.4702

Pure Speed

Blend 39.7704 0 6.3923

Pure Distance

Blend 44.0568 0 7.2996

Top Overall

Performer 10 12 35 1 45.4565 0 5.3983
38 17 4.25 1.25 45.6648 0 5.1444

Figure 53: Summary of NRL to Van Ness Bearing Rate Blending

For this route, the top performing parameter sets were more varied. All of the functions

appeared to produce similar results, but the logarithmic function routinely produced swarm

behavior that maintained the UAVs closer to the convoy while sacrificing a minimal amount of

steering energy. All of the top performing sets out performed the pure rectilinear and circular
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control, however, the top performing speed and distance blends surpassed the performance of the

bearing rate blending method for this GPS route.

The results of the bearing rate blending simulations on the Van Ness Street to USNA

route are summarized in the table in Figure 54.

VN to USNA
Max Min
Bearing Bearing
Times a Rate Rate Convoy | Collision | Steering

Blending Function | Trial | Global Min (deg/sec) (deg/sec) % % %
Linear 1 27 3.25 1 35.8175 0 6.3673

10 8 35 1 36.1076 0 6.2503

75 1 5.25 15 48.3833 0 4.5704
Exponential 10 36 3.5 1 44.3247 | 0.15138 | 5.5879
Hyperbolic
Tangent 4 35 3.25 1.75 36.8506 0 6.2523

52 1 4.5 2.5 45.7361 | 0.24933 | 5.0738
Logarithmic 1 32 4 2 26.3571 0 6.717

64 3 3.25 15 29.3231 | 0.18997 | 5.8553

74 1 3.25 1 34.4203 0 5.2418
Averages 3.75 1.47222222 | 37.4800 | 0.06563 | 5.76845
Pure Rectilinear 60.1059 0 4.8993
Pure Circular 24.1143 | 0.48679 | 9.8864
Pure Speed Blend 22.2784 0 9.4917
Pure Distance
Blend 27.295 | 0.071238 | 9.2865
Top Overall
Performer 32 1 4 2 26.3571 0 6.717

Figure 54: Summary of Van Ness to USNA Bearing Rate Blending

This route had multiple bearing rate blends as top performers for each function, but was

not as widely distributed as the NRL to VN route. The performance even between the same

function also varied considerably more than in the speed or distance blending results. This

reinforces the idea that bearing rate blending method is much more sensitive to the blending

function and the saturation limits imposed on the function. Unlike in the distance or speed

blending methods, there doesn’t appear to be any correlation to determine the best saturation

limits for the bearing rate functions. The minimum and maximum bearing rates don’t appear to
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have been effected by variables in the route such as convoy speed or initial positions. Also, there
does not appear to be any correlation between these limits and the specific functions. It seems
that these values can vary greatly and this blending method is not sensitive to certain ranges of
the saturation limits. This may be due to the somewhat crude nature of the bearing rate variable
itself, which is also reflected in the wide range of performance across the different bearing rate
blending functions.

For this route, the bearing rate blend outperformed pure rectilinear control as well as
pure distance blending, but it failed to outperform pure circular or the speed blending top
performance on the same route. This is most likely due to the fact that in this route, the convoy
moves at a much slower pace, which results in pure circular control being highly effective. Also,
measuring the speed of the convoy is a much more accurate variable to determine how to
transition between the two forms of control. Bearing rate blending attempts to combine speed
and distance into a single measurement, but it is not as strong a measurement as the convoy
speed. While the bearing rate is not as precise a measurement as convoy speed or range, this
variable proves to be an effective way to blend the two forms of the control law when the convoy
is progressing at a slow rate.

For all three of the routes, the logarithmic bearing rate was the top performing blend. In
most cases, the several logarithmic trials that were the top performing logarithmic blends out
performed the other bearing rate blending functions. Based on this evidence, a logarithmic
function appears to be the most effective bearing rate blending function. The logarithmic
function has an initially fast transition to rectilinear control, but then levels out to full rectilinear
control. This performs well for bearing rate blending because the bearing rate also rapidly

changes from low to high, as seen in the bearing rate plot above. Thus, the logarithmic function
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compliments the characteristics of the blending rate variable. As the bearing rate suddenly spikes
as the UAVs approach and pass the convoy, the logarithmic function is able to quickly transition
between rectilinear and circular control in an almost binary manner. This quick transition speed,
which proved to be ineffective in speed blending, is beneficial to handle the spikes in bearing
rate.

From this limited data, it is not possible to determine which of the three blending
methods is superior. As shown in this analysis, adding additional variables to base the control
law transition off of could increase swarm performance. When limitations were seen in the speed
blending, a distance component was added that in effect created a blending of a blending when it
combined speed blending with pure rectilinear control. While adding multiple layers of blending
with additional variables might increase swarm performance, there is no indication that this
increase would be significant when compared to the results from this research. What is clear, is
that each blending method as its own unique mission which it would be well suited. If the
convoy is going to be moving at a slow pace and the UAVs are going to start at a close distance,
less than two miles, speed blending would be appropriate. However, if the convoy is going to be
varying speeds widely and the UAVs start out a significant distance from the convoy, distance
blending is most effective. Lastly, if operational security is the priority for the mission, and
performance can be slightly sacrificed, bearing rate blending should be utilized. Specifically, a
blending function appears to perform routinely well, and this form of blending can still give
reasonable performance and keep the UAVs well within sensor range. If the mission requires the
UAVs to be as close as possible to the convoy though, a distance or speed blending method

might be preferred.
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11. Implementations of Research and Future Work

This research served as the crucial link between the development and mathematical
proof of the UMD control algorithm and potential implementation of this algorithm in field tests.
While the control law had been proven to converge in mathematical proofs as well as basic
MATLAB simulations, there was no previous research concerning the effects of the specific
parameters on overall swarm behavior. This research analyzed the algorithm using realistic
convoy routes and more advanced vehicle dynamics to study the effectiveness of using UAV
swarms to provide urban convoy escort. For the pure rectilinear and circular forms of the control
law, a strong understanding of the relationship between the magnitudes of the parameters and
their effect on the swarm’s performance was determined. This allowed for improved
performance of the pure control forms when simulated in their respective ideal scenarios.

From the pure control form analysis came the development of several blending
methods. At first, a blending method based on the speed of the convoy was evaluated. This
method proved to be very effective when compared to the pure forms of the control law.
However, this method assumed that the UAV’s initial locations were relatively close (less than 2
miles) to the convoy’s initial location. To improve upon the blending strategy, a method was
examined in which the range of each UAV to the convoy was also included as a variable. For the
distance blending method, the UAV's would use pure rectilinear control when outside of a certain
user specified range. The blending function would then combine rectilinear control with speed
blending control as the UAVs approached the convoy. When the UAVs were within a certain
user specified minimum distance from the convoy, only speed blending control was used. With
the addition of the UAV to convoy range component, the blending was improved. Swarm

performance was no longer dependant on initial conditions. An unexpected benefit of the
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distance variable addition was the ability to dampen sudden convoy accelerations. The distance
blending combined pure rectilinear control with speed blending control. Contained in the speed
blending was a portion of pure rectilinear control as well. Thus, distance blending utilized an
increased amount of rectilinear control, which allowed the UAV swarm to respond faster to
changes in convoy acceleration. As the convoy speed increased, not only would speed blending
utilize more rectilinear control, but as the range between the UAVs and the convoy increased, the
distance blending would utilize more pure rectilinear control as well.

Speed and distance blending methods used very accurate variables as a basis for
transitioning between the two forms of swarm control supported by the UMD algorithm. This
resulted in improved swarm performance when compared to the pure control forms and is a
practical control strategy. However, these strategies rely on the exact convoy location expressed
in a GPS string that is transmitted by the convoy. While this results in strong swarm
performance, it is also a security risk in today’s operations. Thus, a blending method which
would not rely on GPS positions transmitted by the convoy was evaluated. By computing the
relative bearing rate of the convoy from each UAV, it was possible to blend rectilinear and
circular control to produce swarm behavior which generally improved upon simulations using
only one of the pure control forms. Since the bearing rate calculation was not as precise as
convoy speed and range, the bearing rate method was not as effective as the speed and distance
blending strategies used earlier. Nevertheless, bearing rate blending proved to be a secure
strategy for swarm control.

While these results help further the implementation of the UMD control law into real
UAVs for future field tests, the process which has been used to evaluate the algorithm can be

beneficial to operators in theatre right now. By using the blending strategies analyzed in this
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research in conjunction with the parameter values that are most effective for the convoy escort
scenario, operators can simulate their own convoy missions. They have the ability to “plug in”
the convoy GPS coordinates as well as variables specific to their UAV platforms such as sensor
range, speed, and fuel load in order to analyze an accurate representation of their convoy
missions. This will allow them to asses the amount of coverage their UAV swarm will be able to
provide to the convoy and the amount of time the UAVs will be available based on fuel
limitations. If the mission requires more security than the UAVs are simulated to provide, there
could be justification for altering the mission or, more likely, getting a more capable UAV
platform for the swarm. If there are specific locations where the mission planner deems it
essential to have UAV coverage, these waypoints can be loaded into the simulator and the UAVs
can ignore the convoy and process only to these specified waypoints. This reduces overall fuel
consumption and increases the accuracy of the UAV coverage. Lastly, based on this research, the
mission planner has a foundation of knowledge for the effects of the swarm size on the parameter
sets used for the control. This research concluded that changing these gain values does not
increase overall swarm performance drastically when the convoy reduces in size. However, if the
convoy size increases due to the late launch of a UAV, the mission planner has justification that
the parameter values for the control law should be modified to improve swarm performance.
This research not only progressed the investigation of the UMD control algorithm
through realistic simulations, it also made the tools available for similar analysis available at
USNA. SIMDIS along with the multi-vehicle simulator is installed and set up on multiple
machines at USNA along with a detailed guide for basic set-up and operation of these tools.
MATLAB scripts are available to convert basic vehicle data into the .asi file that is used by

SIMDIS. A Garmin GPS is also available for students to capture position data for
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implementation into the simulator. These tools are already being used in current Systems
Department design projects. Lastly, a cumulative analysis process has been developed for USNA
and NRL to utilize for future investigation of multi-vehicle control algorithms. This will allow
for a more efficient and directed analysis of potential control algorithms which will expedite the
time it takes for the control laws to go from mathematical proofs to implementation in real
vehicles.

Future work on the UMD control law can now be focused on the implementation of the
algorithm in real vehicles. This research identified the limitations and strengths of the algorithm
so that future researchers have a basic understanding of the performance of a swarm utilizing this
control law. While the control law is ultimately limited by the dynamics of the UAV platform,
the control law is also sensitive to the parameter values. Increasing a specific parameter such as
a will result in the vehicles maneuvering closer to each other and the convoy, but at the cost of
increased collisions and potentially higher amounts of steering energy. This research identifies
these relationships and limitations so that future researchers have an accurate idea about the
effects of the specific behaviors the algorithm attempts to model. In the future, less work will
need to be focused on the specific parameter values and more will be done with the
implementation of the algorithm into real vehicles. This will be the true test of performance for
the control law. Also, evaluating the effects of communications degradation between the UAVs
and convoy as well as GPS drop out may be beneficial. With the role of electronic attack in
mind, limiting the communications between vehicles is important for security purposes.
Identifying the frequency of communications necessary to maintain swarm performance would

be an important area of research.
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In conclusion, this research provided a strong foundation of data and conclusions to
support further investigation and implementation of the UMD algorithm. Depending on the
scenario, distance or bearing rate blending is shown to be an effective way to maintain sensor
coverage around the convoy with a UAV swarm. Future investigations can delve even farther by
simulating communications degradation and GPS dropout and evaluating their effects on swarm
performance. Identifying the minimum communications frequency that still enables acceptable
swarm performance is also an important area of research for defense from electronic attack.
Lastly, this research organized a cumulative evaluation process for future algorithms and enables

the tools for this research to be implemented at USNA for future research projects.
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14. Appendix

1. MATLAB Simulation Script
%

% File Name : mvscript _wpt _blend_transition_pervcl.m

% Authors - W. Selby

% Date - 19-May-2008

% Description : Simulates UMD control algorithm and plots the output

for vehicles following a set of waypoints moving based
on each vehicle®s distance to the waypoint and
switching at a specific waypoint and blending from
rectilinear to circular.
% Inputs: : None
% Outputs:

- None
% Requirements : None
% Revisions - None

%

%% Initialization
clc; clear all; close all;

tfin = 2000.0; %run time

dt = 0.1; Y%step time

index = 1.0; %index

n =7; %number of vehicles, must be >1 b/c waypoint is a vehicle
vel = 1.0; %velocity

eta = 1/(n-1); %perpendicular to baseline

mu = 1/(n-1); %heading alignment

alpha = 1/(n-1); %equidistance

ro = 10.0; %minimum distance (meters)

rwpt = 10.0; %Proximity to waypoint distance

sumterm_rect = 0.0; %Sum of the control terms

sum_wpt_rect = 0.0; %steering command for waypoint

sumterm_circ = 0.0; %Sum of the control terms

sum_wpt_circ = 0.0; %steering command for waypoint

umax = 0.5; %Maximum steering command

trans = 0.0; %%Percentage of circular control to use O<trans<l
tdmax = 300.0; %%Distance from waypoint to begin transition
tdmin = 100.0; %%uDistance from waypoint to end transition
for(i=1:n) % Set all waypoints to first point

place(i)=1;
counter(i)=0;
end

%% Vehicle initial positions
if(1) %Input same positions for every simulation
r(1,7)=-10;
r(2,7)=-2;
r(1,2)=20;
r(2,2)=11;
r(1,3)=0;
r(2,3)=14;
r(1,4)=-15;
r(2,4)=-22;
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r(1,5)=27;

r(2,5)=0;

r(1,6)=0;

r(2,6)=27;

theta(7)= 1.45;

theta(2)= -pi;

theta(3)= 2.1;

theta(4)= 5.75;

theta(5)= 3.3;

theta(6)= 6.0;

for(J=1:n) %Set all initial conditions to random numbers
u(@)=0.0;
for(i=1:n)

rsep(jJ,i)=0.0;

end

end

else

for(J=1:n) %Set all initial conditions to random numbers
u(j)=0.0; %steering control
r(1,j)=50*randn(1); %x values
r(2,j)=50*randn(1); %y values
theta(j)=randn(1); %thetas
for(i=1:n)

rsep(j,i)=0.0;

end

end

end

%% Simulation loop
for(t=0:dt:tfin)

%% Waypoint vehicle

wpt=[ 150, 100; %%Position of Waypoint 1
450, -50; %%Position of Waypoint 2.
200, -50;
300, O
50, 150
200, -50];

%% Integration/vehicle dynamics

for(J=2:n) %% Not for Waypoint
theta(j) = theta(@)+u(@)*dt;
r(1,j) = vel*cos(theta(j))*dt+r(1,});

r(2,j) vel*sin(theta(j))*dt+r(2,j);

end

%% Control Per Vehicle

for(j=1:n)
xj= [cos(theta(j)); sin(theta()) 1:
yj_temp= cross(JO 0 1], [xj(1,1) xj(2,1) 0D;
yJ = yij_temp(1:2);



if(place(j)==5)
for(k=1:n)

1f(k==1)

%%Use transition control

if(k==1) %%Computes waypoint properties

end

%% Make sure waypoint exists
if(place(jJ)<=size(wpt,1))

%% Update waypoint coordinates
r(1,1)= wpt(place(j),1);
r(2,1)= wpt(place(j),2);

end

rik = [ r(1.0)-r(1,1); r(2,)-r2.1 1
rsep(J.,k) = norm(rjk);

%% Direction to waypoint
theta(l)=pi+atan2(rjk(2,1),rjk(1,1));
xk= [cos(theta(l)); sin(theta(l))];
runit = rjk/norm(rjk);

%%Non-reduced waypoint control
sum_wpt_circ = -eta*[dot(runit,xj)]*[dot(runit,yj)]
—alpha*[1-(ro/norm(rjk))"2]*[dot(runit,yj)];

%%Non-reduced waypoint control

sum_wpt_rect = -eta*[dot(runit,xj)]*[dot(runit,yj)]
—alpha*[1-(ro/norm(rjk))"2]*[dot(runit,yj)]
+dot(mu*xk,yj);

%%Tells when to switch to next waypoint based on
distance
iT(norm(rjk)<=2*rwpt)

%% Time delay until waypoint switch
counter(j) = counter(J)+1;
end

%%Delay is over, switch to next waypoint

if(counter((j)==3000)
place(J)=place(jJ)+1;

end

%% Transition Parameter Calculation
if(norm(rjk)>tdmax)
trans=0;
end
if(norm(rjk)<tdmin)
trans=1;
end
iTf(norm(rjk)<tdmax && norm(rjk)>tdmin)
trans=1-(1/ (tdmax-tdmin))*(norm(rjk)-tdmin);
end

rjk = [ r(1,1)-r(1,k); r(2,5)-r(2,k) 1;
rsep(j,k) = norm(rjk);

Xk=

[cos(theta(k)); sin(theta(k))];
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runit = rjk/norm(rjk);

sumterm_circ= -eta*[dot(runit,xj)]*[dot(runit,yj)]
—alpha*[1-(ro/norm(rjk))"2]*[dot(runit,yj)];

sumterm_rect= -eta*[dot(runit,xj)]*[dot(runit,yj)]
—alpha*[1-(ro/norm(rjk))"2]*[dot(runit,yj)]---

+dot(mu*xk,yj);

%% Transition Control Calculation

if(trans==0) %%Use rectilinear
u(d)=(1/n)*(sumterm_rect+u(j))+sum_wpt_rect;

end

if(trans==1) %%Use circular
u@)=/n)*(sumterm_circ+u(jJ))+sum wpt_circ;

end

if(trans<l && trans>0) %%Blend Control
u()=/n)*[ (1-trans)*sumterm_rect +
trans*sumterm _circ + u(g)] +(1-
trans)*sum_wpt_rect + trans*sum_wpt_circ;

end

iT(u(@)>umax)
u(J)=umax;

elseif(u(j)<-umax)
u(J)=-umax;

end
end
end
else %% Use rectilinear Control
for(k=1:n)
if(k-=j)
if(k==1)

%%Computes waypoint properties

%% Make sure waypoint exists

if(place(j)<=size(wpt,1))

%% Update waypoint coordinates
r(1,1)= wpt(place(d).,1);
r(2,1)= wpt(place(d).,2);

end

rik = [ r(1,3)-r(1,1); r(2,5)-r(2,1) 1;
rsep(.,k) = norm(rjk);

%% Direction to waypoint
theta(l)=pi+atan2(rjk(2,1),rjk(1,1));
xk= [cos(theta(l)); sin(theta(l))];
runit = rjk/norm(rjk);

%%Non-reduced waypoint control

sum_wpt_rect = -eta*[dot(runit,xj)]*[dot(runit,yj)]
—alpha*[1-(ro/norm(rjk))"2]*[dot(runit,yj)]
+dot(mu*xk,yj);

%%Tells when to switch to next waypoint based on
distance
iT(norm(rjk)<=2*rwpt)



end

end

end

end
end

%% Logging
for(J=1:n)
LV_theta(index,j) = theta(j);

end

LV_rx(index,j)
LV_ry(index,j)
LV_time(index)
LV _u(index,j)

for(i=1:n)
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%% Move to next waypoint
place(J)=place(j)+1;

end
end
rik = [ r(1,3)-r(1,k); r(2,31)-r(2,k) 1;
rsep(.,k) = norm(rjk);
xk= [cos(theta(k)); sin(theta(k))];
runit = rjk/norm(rjk);

sumterm_rect= -eta*[dot(runit,xj)]*[dot(runit,yj)]
—alpha*[1-(ro/norm(rjk))"2]*[dot(runit,yj)]
+dot(mu*xk,yj);

u(d)=/n)*(sumterm_rect+u(j))+sum_wpt_rect;
if(u@)>umax)
u(J)=umax;
elseif(u(@)<-umax)
u(jJ)=-umax;
end

= r(1,j);
= r(2.1);

= t; %Logs time

= u(d); %Log Steering Control

LV _rsep(index,j,i) = rsep(,i);

end

index=index+1;

%% Plotting
% Initialize the figure

if(isempty(findobj("UserData",gcb)))

DIPFigure = figure("MenuBar", "figure®, ...
"NumberTitle®, "off", "Resize", "off","Name", "Vehicle Control
Animation®);
set(DIPFigure, "UserData”,gch);

set(DIPFigure, "DoubleBuffer®,"on");

set(gca, "fontsize",8);

grid on; hold on;

title("Multi Vehicle Control - Following Waypoints®);
xlabel ("Distance®);

ylabel ("Distance®);

end

it
%%Plot Path
it
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for(j=2:n)
plot(LV_rx(:,3),LV_ry(:,3),"b")
vehicle(J) = rectangle("position”®,[LV_rx(size(LV_rx,1),j)
LV_ry(size(LV_rx,1),j)-.5*2 2 2], curvature”, ...
[1 1], linewidth", .01, "facecolor”,"r");
end
for(g=1:n)
vehicle(J) = rectangle("position”®,[LV_rx(size(LV_rx,1),j)
LV_ry(size(LV_rx,1),j)-.5*2 2 2], curvature”, ...
[1 1], linewidth", .01, "facecolor”,"r");
for(j=1:size(wpt,1))
vehicle(J) = rectangle("position”,[wpt(J,1l) wpt(J,2)-.5*2 2
2], "curvature®, ...
[1 1], linewidth", .01, "facecolor®,"r");

end
end
end
%% Plot Steering Control u
it
for(J=1:n)
figure(2);
title("Steering Control Output®);
xlabel ("Time");
ylabel ("Steering Control*);
hold on; grid on;
plot(LV_time,LV u(:,}));
end
end
%%Plot Vehicle Separation Distances
it
figure(3);
title("Vehicle Separation Distances”);
xlabel ("Time");
ylabel ("Distance®);
hold on; grid on;
line(O:tfin,ro, "Color","rv);
for(g=1:n)
for(i=1:n)
plot(LV_time,LV_rsep(:,j,1));
end
end
end
else
%% Can see vehicles move
for(h=1:n)

vehicle(h) = rectangle("position”,[ r(1.j) r(2.j) -2
.2],"curvature®, ...
[1 1],"linewidth", .01, "facecolor®,"r");

end
for(i=1:index-1)
for(j=1:n)
set(vehicle(), "position”,[LV_rx(i,j) LV _ry(i,j)-.5*.2 .2 .2]);
plot(LV_rx(i,j), LV_ry(i,j), "b--","LineWidth",10);
pause(.1*dt)
end
end

end
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2. Parameter Modification Plots

2.1. Plot of Initial Conditions
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2.2. n Modified
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2.3. u Modified
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2.4. a Modified
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2.5. 1, Modified
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3. JAVA Simulation of UMD Control Algorithm

3.1. Vehicle.java

package advancedControl;

public class Vehicle {

//Simulation Paramters
private double dt = 0.1;
public static double vel

//Vehicle Orientation
public Vector Rxy = new Vector();

public double theta;
public double u;
public Vector X
public Vector y
public Vector z

public Vehicle(Q) {

= 1.0;

new Vector();
new Vector();
new Vector(0.0, 0.0, 1.0);

} //Constructor

public void newPosition() { //lIntegration and progression
this.theta = theta + u * dt;
this.Rxy.elem[0]

Rxy.elem[0] + vel * Math.cos(theta) *

Rxy.elem[1] + vel * Math.sin(theta) *

dt;

this.Rxy.elem[1]
dat;

this.setPosit(Rxy, theta);
}

//Set position for Waypoints
public void setPosit(double newRx, double newRy){
this.Rxy.elem[0]= Rxy.elem[0];

this.Rxy.elem[1]= Rxy.elem[1];

}

public void setPosit(Vector Rxy, double newTheta) {

position and heading vectors
this.Rxy.elem[0]= Rxy.elem[0];
this.Rxy.elem[1]= Rxy.elem[1];
this.theta =newTheta;

this.x.elem[0]
this.x.elem[1]
this.x.elem[2]

Math.cos(theta);
Math._sin(theta);

0

this.y.cross(z, X);

}

public void setU(double u_in) { //Set control limits

if(u_in>.5)
this.u =

if(u_in<-.5)
this.u =

if(u_in<=.5 &&
this.u =

0.

u_
u_

5;

- o (J]

n>=-_.5)
n;

//Update
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}
3.2. Swarm.java

package advancedControl;
public class Swarm {

// Vehicle Numbers

public static int n = 6;
public static double num = n;

//Creates n number of new vehicles

public Vehicle[] vehicle = new Vehicle[n];

// Vehicle Initia
public Vector R1
public Vector R2
public Vector R3
public Vector R4
public Vector R5
public Vector R6

Pos
new
new
new
new
new
new

itions
Vector(-10,-2,0);
Vector(20,11,0);
Vector(0,14,0);
Vector(-15,-22,0);
Vector(27,0,0);
Vector(0,27,0);

//Data Logging Variables

public Vector LV_rx
public Vector LV _ry

public Swarm(Q) {
for (int i
vehicle
}
}

//Set vehicle initial conditions (X,y,z) , theta

0;

Lil

new Vector();
new Vector();

// Constructor

i <n; i++) {
= new Vehicle(Q);

public void initSwarm() {
vehicle[0].setPosit(R1,1.45);
vehicle[1l].setPosit(R2, 0);
vehicle[2] .setPosit(R3, 2.1);
vehicle[3]-setPosit(R4, 5.75);
vehicle[4].setPosit(R5, 3.3);
vehicle[5].setPosit(R6, 6.0);

}

public void moveSwarm() {//Move all vehicles and update positions
0;

for (int i1 =

i < vehicle.length;

vehicle[i].newPosition();

}

}
3.3. waypointVector.java

package advancedControl;
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public class waypointVector extends Vector {

public int delay;

public waypointVector(double x, double y, double z, int delay){

elem[0] = x;
elem[1] = vy;
elem[2] = z;

this.delay = delay;

3.4. Waypoint.java

package advancedControl;
import java.lang.Math;
import gpsModule.*;

public class Waypoint extends Vehicle {

// Waypoint properties

double dist = 10; // Minimum distance to waypoint
int numpts = 6; // Number of waypoints

public int place = 0; // Current Waypoint location
public int count = O;

public static final double PI = 3.141592653589793;

// Waypoint Locations (X,Yy,
public waypointVector wptl
public waypointVector wpt2
public waypointVector wpt3
public waypointVector wpt4
public waypointVector wptb
public waypointVector wpt6

,Flag)

new waypointVector(150, 100, 0, 10000);
new waypointVector(450, -50, 0, 5000);
new waypointVector(200, -50, 0, 0);

new waypointVector(300, 0, 0, 5000);
new waypointVector(50, 150, 0, 0);

new waypointVector(200, -50, 0, 0);

L 1 1 1 O

// Waypoint Locations in a List
public waypointVector[] wptList = new waypointVector[numpts];

public Waypoint() { // Constructor

wptList[0] = wptl;
wptList[1] = wpt2;
wptList[2] = wpt3;
wptList[3] = wpt4;
wptList[4] = wpt5;
wptList[5] = wpt6;

}

public Vector getPosition() { // Update Waypoint Location
return wptList[place];
}

//Check distance to waypoint and move to next point
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public void checkAndSwitch(Vector R) {
Vector rsep = new Vector();
double length;
rsep.elem[0]
rsep.elem[1]
rsep.elem[2] 0;
length = rsep.norm();

R.elem[0] - wptList[place].-elem[0];
R.elem[1] - wptList[place].elem[1];

ifT (wptList[place].delay>=0) { // if true- should delay

iT (length <= dist) {
wptList[place].delay--;

ifT (wptList[place].delay == 0) {
if (place < wptList.length - 1) {

place++;

}
}

} else { //if false -move to next point

iT (length <= dist) {
if (place < wptList.length -
place++;
}

}

//Check distance to waypoint and move to next point
public double distToWpt(Vector R) {
Vector rsep = new Vector();
double length;
rsep.elem[0] R.elem[0] - wptList[place]
rsep.elem[1] R.elem[1] - wptList[place]
rsep.elem[2] 0;
length = rsep.norm();
return length;

// Calculate distance from Vehicle to waypoint
public double dirToWpt(Vector R) {

double newTheta;
Vector rsep = new Vector();
rsep.elem[0] = R.elem[0] - wptList[place]
rsep.elem[1] = R.elem[1] - wptList[place]
rsep.elem[2] = 0; // z
rsep.divid(rsep.norm(Q));

DL

-elem[0];
-elem[1];

-elem[0]; // x
-elem[1]; 7/ vy

newTheta = Pl + Math.atan2(rsep.elem[1], rsep.elem[0]);

return newTheta;

}

@Ooverride
public void newPosition() {
} /7 Override movement of waypoints
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3.5. Control.java

package advancedControl;
public class Control {

// Gain Paramaters

private static double eta = 1/(Swarm.num-1);
static double alpha =1/(Swarm.num-1);

static double mu = 1/(Swarm.num-1);

static double eta _circ = .9;

static double alpha circ = .2;

public static double ro = 10.0;

//Create Waypoint Object
Waypoint wpts = new Waypoint();

// Control Calculation Variables
double u;

double norm;

double sumterm;

public Vector rjk = new Vector();
public int delay = 400;

public ControlQ{} //Constructor

public double calcControlRect(int vid, Swarm swarm) {

//Rectilinear control
double tempu=0;
Vector tempkx = new Vector();

for (int k = 0; k < swarm.vehicle.length; k++) {

if (k 1= vid) {

this.rjk.elem[0] = swarm.vehicle[vid].-Rxy.elem[0] -
swarm.vehicle[k].-Rxy.elem[0];

this.rjk.elem[1] = swarm.vehicle[vid]-Rxy.elem[1] -
swarm.vehicle[k] .Rxy.elem[1];
this.norm = rjk.normQ);

this.rjk.divid(rjk.normQ));

tempkx.elem[O] swarm.vehicle[k]-x.elem[0] * mu;

tempkx.elem[1]

swarm.vehicle[k]-x.elem[1] * mu;

tempkx.elem[2] 0;
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this.sumterm = -eta * Vector.dot(rjk, swarm.vehicle[vid].x)* Vector.dot(rjk,
swarm.vehicle[vid].y)- alpha* (1 - (ro /7 norm)*(ro / norm)) * Vector.dot(rjk,

swarm.vehicle[vid].y)+ Vector.dot(tempkx, swarm.vehicle[vid].y);
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tempu = (1 /7 Swarm.num) * (sumterm + tempu);

}
}
return tempu;

}

public double calcControlCirc(int vid, Swarm swarm) {

//Circular Control
double tempu=0;
for (int k = 0; k < swarm.vehicle.length; k++) {

if (k 1= vid) {

this.rjk.elem[0] = swarm.vehicle[vid]-Rxy.elem[0] -
swarm.vehicle[k] -Rxy.elem[0];

this.rjk.elem[1] = swarm.vehicle[vid].Rxy.elem[1] -

swarm.vehicle[k]-.-Rxy.elem[1];
this.norm

= rjk.normQ);
this.rjk.divi

(rjk.normQ));

this.sumterm = -eta_circ * Vector.dot(rjk, swarm.vehicle[vid].-x)*
Vector.dot(rjk, swarm.vehicle[vid].y)- alpha circ * (1 - (ro /7 norm)*(ro /
norm)) * Vector.dot(rjk, swarm.vehicle[vid].y);

tempu = (1 / Swarm.num) * (sumterm + tempu);
}

}

return tempu;

}

public double calcWptControl(int vid, Swarm swarm) {

//\Waypoint Oriented Control
double tempu = O;
Vector tempkx = new Vector();
wpts.getPosition();
wpts.checkAndSwitch(swarm.vehicle[vid] -Rxy);

this.rjk.elem[0] = swarm.vehicle[vid].-Rxy.elem[0]-
wpts._wptList[wpts.place].elem[0];

this.rjk.elem[1] = swarm.vehicle[vid]-Rxy.elem[1]-
wpts.wptList[wpts.place].elem[1];

this.norm

= rjk.norm(Q);
this.rjk.divi

(rjk.normQ));

it (true){
// Heading Control

wpts.theta = wpts.dirToWpt(swarm.vehicle[vid].-Rxy);

tempkx.elem[0] = Math.cos(wpts.dirToWpt(swarm.vehicle[vid].-Rxy)) * mu;



tempkx.elem[1] = Math.sin(wpts.dirToWpt(swarm.vehicle[vid].-Rxy)) * mu;
tempkx.elem[2] = O;

else{
//No heading control
tempkx.elem[0] = swarm.vehicle[vid].x.elem[0] * mu;

tempkx.elem[1] = swarm.vehicle[vid].-x.elem[1] * mu;
tempkx.elem[2] = O;
}

this.sumterm = -eta * Vector.dot(rjk,
swarm.vehicle[vid].-x)* Vector.dot(rjk, swarm.vehicle[vid].y) - alpha
- (ro / norm) * (ro / norm))* Vector.dot(rjk, swarm.vehicle[vid].y)+
Vector.dot(tempkx, swarm.vehicle[vid].y);

tempu = sumterm + tempu;
return tempu;

}

public void pureControl(Swarm swarm){
double totu;
for(int 1 = 0; i<Swarm.num; i++){
double rectu = calcControlRect(i, swarm);
double circu calcControlCirc(i, swarm);
double wptu = calcWptControl (i, swarm);
if(wpts.wptList[wpts.place].-delay>0 &&
wpts.distToWpt(swarm.vehicle[i]-Rxy)<=wpts.dist){
//Circular Control

}

else{

// Rectilinear Control
totu = rectu + wptu;

3

swarm.vehicle[i].setU(totu);

totu = circu + wptu;

}
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* (1

public void blendControl(double maxd, double mind, Swarm swarm){

double totu=0;
double trans=0;
for(int 1 = 0; i<Swarm.num; i++){
double rectu = calcControlRect(i, swarm);
double circu = calcControlCirc(i, swarm);
double wptu = calcWptControl (i, swarm);
wpts.getPosition();
this.rjk.elem[0] = swarm.vehicle[i]-Rxy.elem[O]
- wpts.wptList[wpts.place].elem[0];
this.rjk.elem[1] = swarm.vehicle[i].-Rxy.elem[1]
- wpts.wptList[wpts.place].elem[1];
this.norm = rjk.normQ);
iT(norm>maxd){
trans=0;

}
if(norm<mind){



trans=1;

}

if(norm<maxd && norm>mind){
trans=1-(1/(maxd-mind))*(norm-mind);

}
if(trans==0){
totu= rectu+ wptu;

}
if(trans==1){
totu= circu+ wptu;

}
if(trans<l && trans>0){

}

swarm.vehicle[i].setU(totu);

totu= ((1-trans)*rectu+t+trans*circu)+ wptu;

}

public Matrix vehicDist(Swarm swarm){
double norm = O;
Matrix sep = new Matrix{((int)swarm.num, (int)swarm.num,
norm);
for(int 1 = 0; i<Swarm.num; i++){
for (int k = 0; k < swarm.vehicle._length; k++) {
if (k= 1) {
this.rjk.elem[0] = swarm.vehicle[i]-Rxy.elem[0] -
swarm.vehicle[k].Rxy.elem[0];

this.rjk.elem[1] = swarm.vehicle[i]-Rxy.elem[1] -
swarm.vehicle[k] .Rxy.elem[1];

this.norm = rjk.normQ);
sep.elem[i][k]= rjk.normQ);
}

}
}
return sep;
}
}
3.6. Log.java

package advancedControl;

import java.io.File;

import java.io.FileWriter;
import java.io.lOException;
import java.io.PrintWriter;

public class Log {

// Creates new waypoint object
Waypoint wpts = new Waypoint();

// File Variables
private PrintWriter pw;
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private PrintWriter pwt;
private PrintWriter pwu;
private PrintWriter pwd;

public Log(Q {
} /7 Constructor

//Vehicle Positions Log
public void openLog() { //0Open Log for Vehicle Position Data
try {
File data = new File("'data.m');
FileWriter fw = new FileWriter(data);
this.pw = new PrintWriter(fw);
} catch (10Exception e) {
System.out.printin(e);
}
}

//Log vehicle positions x,X,y,Yy
public void dataLog(double numvehicles, Swarm swarm) {
for (int j = 0; jJ <= numvehicles - 1; j++) {
pw.print(swarm.vehicle[j]-Rxy.elem[0]);
pw.print(”,”);

for (int j = 0; J <= numvehicles - 1; j++) {
pw.print(swarm.vehicle[jJ]-Rxy.elem[1]);
pw.print(',™);
iT (J == numvehicles - 1) {

}
}

public void closeLog() {//Close Log for Vehicle Position Data
pw.close();
}

//Steering Command u log
public void openULog() {//Open Log for Vehicle Position Data
try {
File data = new File("u.m"™);
FileWriter fw = new FileWriter(data);
this.pwu = new PrintWriter(fw);
} catch (10Exception e) {
System.out.printin(e);
}
}

//Log vehicle positions Xx,X,y,Y
public void ULog(double numvehicles, Swarm swarm) {
for (int j = 0; jJ <= numvehicles - 1; j++) {
pwu.print(swarm.vehicle[j]-u);
pwu.print(”,”);
iT (J == numvehicles - 1) {
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public void closeULog() {//Close Log for Vehicle Position Data
pwu.close();

//Vehicle Separation Distance Log
public void openDistLog() { //Open Log for Separation Distance
try {
File data = new File("sepdist.m");
FileWriter fw = new FileWriter(data);
this.pwd = new PrintWriter(fw);
} catch (10Exception e) {
System.out._printin(e);
}
}

public void logDist(double numvehicles, Matrix rsep){
for (int j = 0; J <= numvehicles - 1; j++) {
for(int 1 = 0; i<= numvehicles-1; i++){
pwd.print(rsep.elenm[j][i]);
pwd.print(,™);

}

iT (J == numvehicles - 1) {
pwd.printin(""");

}

}

public void closedDistLog() { //Close Log for Vehicle Separation
pwd.close();
}

//Waypoint Log
//Log waypoint positions X,X,y,Yy
public void WptLog(double numvehicles, Waypoint wpts) {
for (int j = 0; J <= numvehicles - 1; j++) {
pwt.print(wpts.wptList[j]-elem[0]); // X positions
pwt.print(,™);

for (int j = 0; J <= numvehicles - 1; j++) {
pwt.print(wpts.wptList[j]-elem[1]); // Y positions
pwt.print(”,");
iT (J == numvehicles - 1) {
pwt_printIn(’"");

}
}
}
public void openWptLog() { //0pen log for waypoint data
try {
File data = new File("wpts.m');
FileWriter fw = new FileWriter(data);
this.pwt = new PrintWriter(fw);
} catch (10Exception e) {
System.out.printin(e);
}
}
public void closeWptLog() { //Close log for waypoint data

pwt.close();
}
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3.7. Simulate.java

package advancedControl;
public class Simulate {

public static double dt;
public static double tfin;
public static double t;
public static int n;

public static double maxd;
public static double mind;
public static double count;

public static void main(String[] args) {

// Simulation Paramaters

dt = 0.1;

tfin = 2000;

n = 6;

maxd = 300;

mind = 50;

//Create objects for simulation

Swarm myswarm = new Swarm();

Waypoint waypoints = new Waypoint();

Log data = new Log(Q);

Control control= new Control();

data.openLog(Q); //0pen vehicle position log
data.openULog(); //0pen steering command log
data.openDistLog();//0pen vehicle separation distance log
myswarm. initSwarm(); //Initialize swarm

for( double t=0; t<=tfin; t=t+dt){
//Blended Control
//control _.blendControl(maxd, mind, myswarm);

//Pure Rectilinear or Circular control
control .pureControl (myswarm) ;

//Move swarm and update position

myswarm._moveSwarm() ;

data.dataLog(n, myswarm); //Log vehicle positions
data.ULog(n, myswarm); //Log steering command

//Logs vehicle separation distance matrix
data.logDist(n, control.vehicDist(myswarm));

}
data.closelLog(); //Close vehicle position log
data.closeULog(); //Close steering command log

data.closedDistLog(); //Close vehicle separation log
// Waypoint Position File

data.openWptLog();

data.WptLog(n, waypoints);

data.closeWptLog();
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4. Naval Research Laboratory Multi-Vehicle Simulator Installation Procedure

1. Java SE Development Kit (SDK)
a. http://java.sun.com/javase/downloads/index.jsp
b. Select Platform: Windows, Language: Multi Language, Continue
c. Under required files, click Windows Offline Installation, Download

SO O = DU (Ioay SETeT =

Java SE Development Kit 6u7 First Customer Ship
Select Platform and Language for your download:

Platform: | Windows M
Language: Multi—language[i]

| agree to the Java SE Development Kit 6 License Agreement

2. Eclipse Classic
a. http://www.eclipse.org/downloads/
Click on Eclipse Classic 3.4 (or latest version)
Chose a mirror close to current location
Open with WinZip
Click on eclipse.exe
Set up a workspace location to store all your projects

™o oo

3. TortiseSVN
a. http://tortoisesvn.net/downloads
b. Download the 32bit Installer
c. Next -> Install -> Finish -> Restart

For detailed info on what's new, read the changelog and the release notes.

This page points to installers for 32 bit and 64 bit operating systems. Please make sure that you
choose the right installer for your PC. Otherwise the setup will fail.

We got reports that upgrading sometimes does not work properly. If you have problems after
updating TortoiseSVN, just uninstall it, reboot, and then install it again.

Note for x64 users: you can install both the 32 and 64-bit version side by side. This will enable the
TortoiseSVN features also for 32-bit applications.

Download Application

32 Bit TortoiseSVN-1.5.3.13783-win32-svn-1.5.2.msi Installer
TortoiseSVN-1.5.3.13783-win32-svn-1.5.2.msi.asc GPG signature

64 Bit TortoiseSVN-1.5.3.13783-x64-5vn-1.5.2.msi Installer
TortoiseSVN-1.5.3.13783-x64-svn-1.5.2.msi.asc GPG signature

The public GPG key can be found here. To verify the file integrity follow these instructions
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4, PuTTY
a. http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html
b. Latest Development Snapshot -> Windows Installer
c. Install

The latest development snapshot. This will be built every day, automatically, from the current development code - in whatever state it's currently in_ If you need a fix for a particularly
crippling bug, vou may well be able to find a fixed PuTTY here well before the fix makes it into the release version above. On the other hand. these snapshots might sometimes be
unstable.

(The filename of the development snapshot installer contains the snapshot date. so it will change every night. It is not offered by FTP. because FTP does not support the redirect
mechanism that implements this )

For Windows 95, 98, ME, NT, 2000, XP and Vista on Intel x§6

PulTY: putty.exe (or by FTP) (RSA sig) (DSA sig)
PuTTYtel puttytel exe (or by FTP) (RSA sig) (DSA sig)
PSCP: scp.exe (or by FTP) (RSA sig) (DSA sig)
PSFTP: psftp exe (or by FTP) (RSA sig) (DSA sig)
Plink: plink.exe (or by FTP) (RSA sig) (DSA sig)
Pageant: pageant exe (or by FTP) (RSA sig) (DSA sig)
PuTTYgen: puttveen.exe (or by FTP) (RSA sig) (DSA sig)
A ZIP file containing all the binaries (except PuTTYtel), and also the help files

Zip file: putty.zip (or by FTP) (RSA sig) (DSA sig)
A Windows installer for everything except PuTTYtel

Installer: putty<version>-installer.exe SA si SA si
MD5 checksums for all the above files

MD3sums: mdSsums (or by FTP) (RSA sig) (DSA sig)

Source code
This is the source code for all of the PuTTY utilities.

For convenience. we provide several versions of the source code. for different platforms. The actual content does not differ substantially between Windows and Unix archives: the
differences are mostly in formatting (filenames, line endings, etc).

5. CybelePro
a. www.cybelepro.com/login/login.asp
b. Login using username and password
c. Download liscense.prop file (not on website)
d. Download latest version academic

Profiling Service v3.0.2
(1-Mode, Commercial)
change.log
cybelepro-profile-3.0.0-jdks.zip
cybelepro-profile-3.0.0.zip
cybelepro-profile-3.0.1-jdk3.zip
cybelepro-profile-3.0.1.zip
cybelepro-profile-3.0.2-jdk5.zip
cybelepro-profile-3.0.2.zip
Install.txt

CybelePro v3.0.2
(3-Node, Academic)
change.log

cybelepro-3.0.0-jdk5.exe
cybelepro-3.0.0-1dk3.jar
cybelepro-3.0.0.exe

cybelepro-3.0.0.jar
cybelepro-3.0.1-1dk5.exe
cybelepro-3.0.1-jdk3.jar
cybelepro-3.0.1.exe
cybelepro-3.0.1.jar
cybelepro-3.0.2-jdk3.exe
cybelepro-3.0.2-jdk3.jar
cybelepro-3.0.2.exe
cybelepro-3.0.2.jar
Install.txt

6. Optional — Pin Putty, Pageant, TortoiseSVN, Eclipse to start menu
a. Start -> Programs -> Desired Program ->Right Click ->Pin to Start Menu
7. Obtain SSH key and pass phrase and store on relevant computers

8. Configure PUuTTY



136

Add the path to the PuTTY executable directory to the path environment variable.
1. Command prompt type “set PATH=C:\Program Files\ PuTTY

Test this by running PuTTY from the command line. If the path was added
successfully, then you should just be able to type “putty” at the command prompt
(i.e. the full path is not required).

Copy your private key to the mvsim repository to the local machine. I recommend
creating a directory called “ssh”.

Set up Pageant to take care of authentication by following these steps. First, if you
don't see the Pageant icon (a computer wearing a hat) in the system tray, you'll
need to start Pageant by going to Start - All Programs - PuTTY - Pageant. Then
right-click on the icon in the system tray and choose "add key". Browse to the
location where you saved your private key file. Then Pageant will ask you to enter
your passphrase associated with that key. Once you've entered this, Pageant will
take care of all authentication for the rest of that session (i.e. if you log out or
restart, you'll have to do this step again).

Tunneling

If you are connecting to the repository from off site you must use ssh (or PuTTY)
to tunnel in, to connect to the mvsim computer. You must have an active
connection to spg.nrl.navy.mil to read or write from the simulator repository.
Open Putty and enter the following:

Category Field Value
Session Host Name (or IP address) username@spg.nrl.navy.mil
Session Port 22
Session Saved Session <any name you want>

Connection = ssh = Auth

Private key file for

<browse and select your

authentication private key file>
Connection = ssh = Tunnels | Source port 22
Connection = ssh = Tunnels | Destination spgmvsim:22 <then press

add>

Go back to the session screen in PuTTY and save the configuration.




2 PuTTY Configuration

Categary:

[=- Seszion B azic optiong for pour PuTTY seszion
L.Dggmg Specify the destination you want to connect to

[=I- Terrmninal

Haost Hame [or IP addresz] Part

K.evboard -
Bel |$pg.nrl.nav_l,l.m|| | |22 |
Features Connection bpe:

= Window (O Raw O Telmet () Rlogin &) 55H (O Serial
Appearanice :

PP . Load, zave or delete a stored zeszion

Behaviour
Translation Saved Sessions
Selection | EMEWS |
Enluyrs Default 5 ettings #

[=- Connection =
Diata EEJrE:US (Internal]
Prowy

home [internal] -
Telngt rogercortesi.com -
Rlogin FPgINEIm b
55H
Seral Cloze window on exit;
O thways (O Never (&) Only on clean exit
[ About ] [ Help ] [ Open ] [ Cancel

Step 1: configure for connecting to spg.nrl.navy.mil on port 22
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2 PuTTY Configuration

Categary:
[=- Terminal - Options contraoling S5H authentication
K.epboard
Eel [ ] Bypass authentication entirely [S5H-2 anly]
o owi Zeatures Authentization methods
irdo
Appearance Attempt authentication uzing Fageant
BehaviaLr [ ] &ttempt TIS or CroptaCard auth [S5H-1]
Tranzlation Attempt "keyboard-nteractive’" auth [55H-2)
ée:ectmn Authentication parameters
olours
= Connection [ ] &llows agent fonwarding
Diata [ ] &llovs atternpred changes of usemanme in 55H-2
Prowsy Private key file for authentication:
Telnet |E:'\D|:u:ument$ and Settingzcortesihash | [ Browse. ..
Rlogin
= 55H
K.em
TTY
=11
Tunrels
Bugs il
[ About ] [ Help ] [ Open l [ Cancel ]

Step 2: Configure for private key authentication using your private key file.
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2 PuTTY Configuration

Categary:
[=- Terminal - Optione controlling S5H part fonwarding
EE';'; board Puart fonwarding
F:atures [ ] Local ports accept connections fram other hasts
= window [ | Remote ports do the same [SSH-2 anly]
fppearance Forwarded ports: [
Behaviour
Tranzlation
Selection
) EDHS;EE: Add new forwarded part:
Data Source part 22 fdd
Prosy o -
Telnet D estination spgmvEin 22
Rilogin () Local () Remate () Dyhamic
= 55H () Auto ) IPwd ) IPvE
K.em
Auth
TTY
=11
Tunnels
Bugs W
[ About ] [ Help ] [ Open ] [ Cancel ]

Step 3: Configure for tunneling to spgmvsim. Then press “Add”

Step 4: Save the configuration by going back to the screen in step 1 and pressing “Save”.

9. Configure Tortoise SVN (also see note below about optional install of Subclipse)

a. Go to the TortoiseSVN settings dialog box (right click and choose “settings” in
the TortoiseSVN menu).

b. In the general setting enter the following in the “Global ignore pattern:” field
“* class .project .classpath *.metadata Thumbs.db *.log *.aux *.dvi .* *~”

c. In the network settings enter the following in the “SSH client:” field
“tortoiseplink —1 <username>"

10. Check out a working copy from the repository:

a. Note: if you are using a roaming profile on the ENEWS domain (I.e. Rob
Lacefield set you up so that your Desktop, Preferences, and Documents get
imported to wherever you log-in on an ENEWS computer) then you probably
don't want to save a working copy of the repository code on your Desktop or in
your Documents folder because it will take a long time for the system to log in
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every time (the working copy is about 1.5GB and that will have to be transferred
over the network every time you log in.) Instead, you probably want to check out
the working copy to your space on the “Enewsfs” share drive, which will always
be accessible to you but won't have to be transferred across the network every
time you log in. However, you must ensure that you check “Save my password”
when you first browse to your space on the Enewsfs share drive; otherwise
Subversion won't be able to write to the folder and SVN updates will fail.

b. Right-click at the location where you want to save your working copy and go to
"SVN Checkout". In the URL box, you'll either type:

i. If your computer is located at NRL and on the ENEWS domain, type
"svn+ssh://spgmvsim/mvsim".

ii. If your computer is located at NRL and NOT on the ENEWS domain,
type "svn+ssh://spgmvsim.enews.nrl.navy.mil/mvsim"

iii. If your computer is NOT located at NRL type
“svn+shh://localhost/mvsim”, and see the section on Tunneling in the
Configuring PuTTY section..

c. Click OK; Tortoise should start adding the requested files to your working
directory. This may take a few minutes.

11. In Eclipse, create a new JAVA project:
File > New - Project...

IS

Select “Java Project”

Select “create project from existing source”

e o

Browse to “mvsim/code/java2/mil.navy.nrl.spg” and select OK
Name the project “mil.navy.nrl.spg”

Select “Next...”

Select the “Libraries” tab and click “Add External JARs”

5 @ oo

Browse to the CybelePro install location. Usually: “C:\Program
Files\cybelepro\lib”

1. Select all and click “Open”
j. Click “Finish”

Note: Before running an application using the CybelePro framework. The Cybele-daemon must
be running. If the daemon is not running then the Cybele start up will hang at “Contacting
[AIDaemon ...”

k. In Eclipse, if there are any files with errors that are not necessary
i. Right click -> Source path -> Exclude

. Running a basic simulation in eclipse
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i. Locate the class with the main function you wish to run (for example
MultiBoatSimulation)
i1. Open and edit the simulation config.xml file and the boat initialization.xml
file
iii. Open and edit the track.csv file for the convoy waypoints
iv. Run the main class
v. Using the GUI, a typical simulation will run as:
1. “1”to initialize agents
2. “s” to begin simulation

vi. Output in the form of a .asi file

12. (Optional) Install Subclipse plug-in

a.

Subclipse is a plug-in for the Eclipse IDE which allows you to interact with the
Subversion repository through the Eclipse interface. This is convenient because
you can update, commit, move, and delete versioned files without having to
bounce back and forth between Eclipse and a file explorer window. Also, it
prevents you from confusing Subversion by moving/deleting a versioned file in
the Eclipse package explorer (I.e. without doing the proper SVN move or SVN
delete).

Download the Subclipse plug-in (and necessary additional items that are
packaged with it) by clicking on “Help” in Eclipse and then selecting Software
Updates. On the Available Software tab, click on Add Site on the right hand side.
For the URL, put in http://subclipse.tigris.org/update 1.4.x. Click on the box next
to “Subclipse” and then click on Install. When it's complete, it will have you
restart Eclipse.

Find the Subversion configuration file C:\Documents and
Settings\<username>\Application Data\Subversion called “config”.

1. We need to modify this so that Subclipse will know how to use SSH.
Scroll down to the section entitled “tunnels”. Uncomment the “ssh” line

and replace it with: ssh = C:\\Program
Files\\TortoiseSVN\\bin\\TortoisePlink.exe -I

<put_your_username_here> (For some reason you have to put in the
double slashes).

ii. We also need to tell subclipse which files to ignore for versioning.
Uncomment the “global-ignores” line and make sure it reads as follows,
you will have to add some items to the list.

’global-ignores = *.class Thumbs.db *.log *.aux *.dvi *.0 *.lo *.l1a
*.rej *.rej .*~*~ * DS _Store”
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d. Now, in Eclipse when you right click on a file you will find some new options.
The main one is a menu item called “Team” which has many of the typical
Subversion commands. Also, under Refactor you can do moves and deletes.
(Note: The black asterisks are equivalent to the red exclamation marks in
TortoiseSVN.)
13. SIMDIS

a.
b.

&

https://simdis.nrl.navy.mil/

Create an account and log in

Download latest version of SIMDIS

Register System to receive license number

To download extra terrain

i. Downloads -> Data -> Imagery and Terrain

1. Download config text file

iii. Download all .db files stated in the config file

iv. Place .db files in corresponding folders in the SIMDIS folder tree

Logged

+News
+Account Options
+Documentation
=Downloads
=SIMDIS 9.2.0
Release Notes
Installation
Instructions
How Do I Choose a
Version?
Linux GCC 3.2.2
Linux GCC 4.1.2
Solaris GCC 3.2.2
Wwindows VC 7.1
Windows VC 8.0
Windows VC 9.0
=3-D Models
Models (EXE)
Models (GZip)
+Plug-in API 1.5

Terrain
+SIMDIS Symposium 2008
Welcome!

SIMDIS Brochure

IMDIS Presentation

Windows VC 8.0

IMPORTANT: PLEASE READ THE FOLLOWING AGREEMENT CAREFULLY.

BY DOWNLOADING, COPYING, INSTALLING OR OTHERWISE USING ANY PART OF THE SIMDIS
TOOLSET, YOU ARE DEEMED TO HAVE AGREED TO THE TERMS AND CONDITIONS OF THIS
LICENSE AGREEMENT.

REDISTRIBUTION AND USE IN SOURCE AND BINARY FORMS, WITH OR WITHOUT
MODIFICATION, ARE PERMITTED PROVIDED THAT THE NAME OF THE NAVAL RESEARCH
LABORATORY NOR THE NAMES OF ITS CONTRIBUTORS MAY BE USED TO ENDORSE OR
PROMOTE PRODUCTS DERIVED FROM THIS SOFTWARE WITHOUT SPECIFIC PRIOR WRITTEN
PERMISSION.

THIS SOFTWARE IS PROVIDED BY THE NAVAL RESEARCH LABORATORY AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE NAVAL RESEARCH LABORATORY OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,

+DCS 2.3 EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+TimeSync PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
+Archives BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
=Data WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR

Imagery and OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED

OF THE POSSIBILITY OF SUCH DAMAGE.

Image Gallery -IA
; gree

Register System

Help Desk File Name: NRL_SIMDIS_v@.3.0_win32_vc-8.0.exe

Size: 283143 kb (289938616 bytes)

v. In SIMDIS Map ->Imagery and Terrain-> Tool-> Load config file

Location of latest version and link for Terrain downloads

vi. Also possible to make your own config file

1.

Load all terrain and altitude files you want and hit save and name

the config file
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@ simois BEX]

“ Fle Tme View Eye DataManager Meda Overlays T:m\s Dusp\ay | Map  Plug-n Tools

Help
Point Map v

2 4 W LatLon Grid » ‘E‘ == = E= ‘
Py Ny 3 Imagery and Terrain b oal...

DED

wvs

@ Imagery and Terrain Tool

¥ Use Imagery and Terrain Config File: \SIMDIS'data'\sdTerrain\MasterSet.txt_ Load...|Save...
Sphere Settings i Assauatians]

Earthsurface > New.. |  Remove | Edit... |

Texture Layers | Alfitude Layers|

C:\Program Fies|SIMDIS \data'sdTerrain ETOPO2\blusMar Commands | settings ] Info
C:\Program Files\SIMDIS \datasdTerrain\POC \pdcLandsath

C:'Program Files\SIMDIS \data\sdTerrain\BlueMarble bluet
C:\Program Files\SIMDIS \data\sdTerrain\GLCF\glcfLandsas — .. .
CiProgram Fles\SIMDIS datalsdTerrain|UsGS\apr_2007 ——Add SIMDIS Texture Set... |
C:'Program Files\SIMDIS \data \sdTerrain USG5 \Apr_2002_ Add Georeferenced File....
C:VProgram Files\SIMDIS \data\edTerrain|USGS usgsAeriall Add OGC WMS Layer...

Create SIMDIS Texture Set...

| |

|| | Display imagery and terrain tool |11:58: ? T o th,’A

)" T T T IO @ [ [ [o. | e | _J@s | pavameemMoa@s 7em

f. To run a simulation

i. Open the .asi file that is outputted by mvsim
14. Garmin GPSmap 60Cx

a. Download and install USB driver

i. http://www8.garmin.com/support/download_details.jsp?id=591

b. Update software version

i. http://www8.garmin.com/support/download_details.jsp?id=1225

c. Install Tracking and Route saving
1. http://www.gpsbabel.org/download.html
11. Extract the ZIP file and run GPSBabelGUI.exe

1. Ininput, select Garmin serial/USB protocol

2. In output, select Universal csv with field structure in first line

15. Apache Logger
a. Download apache-log4j-1.2.15.zip

1. http://logging.apache.org/log4i/1.2/download.html
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b. Update referenced .jar library in Eclipse
i. In Eclipse, right click referenced libraries->add external JARs and find the
log4j-1.2.15 jar file
16. Automated simulation trials

a. Controls.JusthCalcParamFactory

i. Modify indexfilename and paramfilename with computers classpath

1. use “\\” vice “\” for folder separation

b. Add log4j-1.2.15jar in Cybele/lib folder with Cybele .jar files

i. In Eclipse, right click referenced libraries->add external JARs and find the

log4j-1.2.15 jar file
Place log4j.properties in mil.navy.nrl.spg folder

d. batchrun.bat

i. add classpath in quotes “C:\....\mil.navy.nrl.spg”

ii. ad number of trials in the for loop

1. for %%iin (1.....20)

e. JusthCalcParamfactory.properties

i. make index =1 (or line number of the params.csv file you wish to read)
f. matlabAgent

i. change output file name if needed
g. params.csv file needed
h. sim_config.xml

i. make sure track file is correct for convoy
i. smallboat_init.xml

1. update all information for the vehicle agents

j- To run, double-click batchrun.bat in the source folder vice eclipse



5. SIMDIS User’s Guide

This guide covers the following topics
e SIMDIS initialization
e Creating presentation videos
e Plot desired trajectories
e Sensor Projection
1. Use SIMDIS Logger.m to convert data file to .asi file format
a. Both the Scenario Initialization and the Platform initialization are required
1. Scenario Initialization must contain a Version name, Ref LLA, and
Reference Coordinate System
1. Platform Initialization must contain PlatformID, PlatformName and

PlatformIcon
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iii. Optional keywords are explained on in the SIMDIS manual Appendix A

b. Editing input and output filenames

%% Initialize variable

}Change output filename

fidw = fopen{'31 IF1 1150.a=i','w'}; %.asi file

%% Dpen data file .
filename = 'Scenariol 119 IP1.txt'; Change input filename

data = load [(filename):;
1lla = '0 0 0': %Reference location [(Severn River)

T~

Change reference Latitude, Longitude and Altitude (LLA). This
allows the user to set a reference position on the earth which all of
the data will be based from. This is useful if the input data is not
in a latitude, longitude, altitude format but in an x ,y, z format
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c. Editing .asi file header information

i. Additional information can be removed/added at user’s preference.

%% Print Header

fprintfi(fidw,'# IIMDIZ Ascii Zcenario Input (A3I) File Formathn');
fprintf(fidw, '#Created from data in file %3',filensmwe);

fprintf (fidw, 'hn');

fprintfifidw, 'Version 16%Yn'):
fprintf(fidw, ' ScenarioInfo "ULV trajectory™i n'); %Describe scenario here
fprintf (fidw, 'hn');

fprintfifidw, 'RefLLL %=in', llal: Edit Reference LLA
fprintf (fidw, 'Coord3ystem "LLA™\n'): and the Coordinate

fprintf(fidw, ' Reference¥ear 1970%n'): t th f
fprintf (fidw, ' TangentPlanedffset 0. 0. O0.%n')} Sys cm ¢ reference

fprinte (fidw, 'Yn'); point is given in

fprintfifidy, 'Classification "UNCLASISIFIED"™ OxS000££00%n');
fprintf(fidw, 'ReferenceTimeECI "O."Wn');
fprintEifidw, 'vn');

fprintfifidw, 'Windingle O.%n');
fprintfifidw, ' TindZpeesd O.%n');
fprintf (fidw, 'hn');

fprintf (fidw, ' ITConfigFile "eonfiglUSMA.txt"'); sLoads terrain config file €—— Edit default

fprintf(fiduw, 'hn'}; terrain file

fprintfifidy, 'Verticalbatum "UG3IS4™4Wn'):
fprincf (fidw, 'vn');

fprintfifidu, 'PlatformID 1Wvn'):

fprintfifidu, 'PlatformIcon 1 "CRERC™\wn'):

fprintf(fidw, ' Platforniame 1 "AUV"in'); Initialize
fprintf (fidw, 'PlatforwCoordiystem 1 "ENT™\n')} 3¥-Eazt y-North =z-altitude V h leS
fprintf(fidw, ' CategorvData 1 -1 "Platform Type™ "ship™wn'): chic
fprintEifidw, 'vn');

ii. The addition of another vehicle would result in the following additional

code:

LConvoy

fprintf (fidw, 'FlatformID 2%n'):

fprincfifidw, 'FlacformIcon 2 "jeep_wrangler"\n']:
fprintf (fidw, 'FPlatformflame 2 "Convoy™in'l:

fprintf (fidw, 'FlatformCoordivstem 2| "LLA™\n') ;
fprintf (fidw, 'Categorybata 2 -1 "Platform Type™ "Unknown™h,n')
fprintf(fidw, '"'n'):
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iii. Depending on the format of the input data, PlatformCoordSystem may

need to be changed from LLA to ENU or others.

d. Data input for platform

%% Print logyed data
% Format Used (pg. 367)
%  Time, position, orientation and speed

for(i=l:size(datca, 1))
fprintf (fidw, 'PlatformData 1 %d %d %d $d %d %d 0.0 %d\n', i, data(i,8), data(i,8), -data(i,5), dat=a(i,1) , dat=a(i,12), data(i,3)):
end

1. PlatformData string must contain the following
1. Platform unique 1d
2. Time (set to -1 for static entities)
3. X position (meters, radians, degrees)
4. Y position (meters, radians, degrees)
5. Z position (meters)
1. Optional
1. Yaw or Psi orientation (radians or degrees)
2. Pitch or Theta orientation (radians or degrees)
3. Roll or Phi orientation (radians or degrees)
4. Quantenion scalar and vector (q0,q1,92,93) if
PlatofrmUsesQuanternion is set in header
5. Speed or Velocity vector (Vx, Vy, Vz) (meters/sec)

iii. The following string formats are permitted:
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/4 Minimum input, time and position

PlatformData 1 0.0 1115.0 342.0 0.0

fF Time, position and orientaticon

PlatformbData 2 0.0 1115.0 342.0 0.0 3.344 0.0 0.0

/4 Time, position, orientation and speed

PlatformData 3 0.0 1115.0 342.0 0.0 3.344 0.0 0.0 10.0

fF Time, position, oriemntation and wvelocity wvector

PlatformData €4 O.0 1115 .0 242.0 0.0 3.344 0.0 0.0 2.0 5.0 2.0

2. Recording video of simulation using Fraps

a. http://www.fraps.com/download.php

b. Configure

] FRAPS™ (C) beepa™ 2007 [ £

General | FPs | | screenshots |
Folder to save movies in h u

CAFrapsivids J
Video Capture Hotkey . 22 I’Sﬁ |
|Fa ~ &0fps
G0 fps
O Fecord Sound  [29.97
Sound Device
hi'i:igrs':r:'i';'-.! I ) Mo cursor
Sound Input

c. To capture video
1. Make sure Fraps is running and minimized
i1. When you want to begin recording, hit F9 (or assigned video hotkey)
iii.  Press F9 (or assigned video hotkey) to end recording
1. Output file is .avi

d. Use video editing software for compression and editing
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3. Plot desired trajectories
a. Initialize as an object for plotting waypoints
i. Create unique PlatformID, PLatformName and PlatformlIcon as any
normal vehicle.
ii. Data input for platform
1. Platform Unique ID
2. Timeis -1
3. X,Y, z position
iii. This method will treat waypoints as simulation objects and cause user to
have to cycle through all waypoints when trying to center on a vehicle.
b. Using .gog file
i. In Platform initialization use the line
1. PlatformAttachedGOG ‘platform ID’ “gogfile.gog”
it. In.gog file

start

linecolor blue

points

11 38.9871949 -76.485415 0.0
11 38.9873490 -76.4852175 0.0
11 38.9875232 -76.4849973 0.0
11 38.9877459 -76.4847090 0.0
11 38.987895 -76.4845174 0.0
end

iii. 1l command uses lat and long as arguments,
iv. xy command uses yards as distance arguments
v. ref command can be used to set a reference point (LLA), then xy used
from this reference point

4. Sensor Projection
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a. Use beams
1. Initialize beam

1. Must contain BeamID, VertBW (in degrees), HorzBW (in degrees)

if (0}

B Initiali i

; Es_lmtfn;;a Ilza l?g 2 2013 PlatformID beam
fpr%ntfif%dwr'?ea?BH 201 172 Eéﬁ ! attached to then

printf (ficwy, Wer *"EH Beam UniquelD

fprintf (fidw, 'Hor=BW 201 17&8.64%n'
fprintf(fidw, 'Beamwbesc 201 "EM Jam
fprintfifidmw, "'

end

ii. Data input for beam

1. Must contain BeamOnOffCmd and BeamData

sPrint Eeam Data

ifi0)

fprintfifidy, 'BeamOnoffCmd %d $d 1vn', 201, data(2,2)): %Turn Beam on at start of simulation data
fprintf (fidw, 'BeamData %d %d %s :d %d 3d\n', 201, dat=a(Z,2), 'green', 0.0, 1.54, 100):

end

2. BeamOnOffCmd must contain
a. Beam unique ID
b. Time to start
c. Beam state (0:0ff, 1:0n)
3. BeamData must contain
a. Beam unique ID
b. Time to start
c. Color (string or hex number)
4. Optional for BeamData
a. Azimuth (rad or degrees, CW from N)

b. Elevation (rad of degrees, + above horizon)
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c. Range (meters from host platform)

d. Can also track an assigned “target”

i. See Appendix A for more details

b. Use .gog file
1. In Platform initialization use the line

1. PlatformAttachedGOG ‘platform ID’ “gogfile.gog”
ii. In.gog file

start

circle

linecolor red

3d follow c

center xy 0 0 -100

radius 1760
end

iii.  ‘3d follow ¢’ makes the gog object follow the attached platform’s course
iv. ‘center xy’ — x and y values in feet, z value in yards
v. ‘radius’ value in yards

5. Edit Preference Rules

a. Used to edit the display properties of the Platforms

b. Tools-> Preference Rules



| Preference Rules g@

Entity Type Filter:

[v Platforms

[ Beams

[V Gates

Cateqory Data Filters:

-I¥ all Categories

=¥ Platform Type

¥ Urlisted vz
¥ Mo value
¥ Unknown
¥ Surface Sk
¥ Submarine
IV aircraft
¥ satelite
¥ Helicopter
¥ Missile
V¥ Decoy
¥ Buoy
¥ Reference
V¥ Land Vehic
V¥ Land Site
¥ Torpedo
¥ Contact

I —
Mame Expression Filter:

-
Viewing l Labe! | Local Grid| | ] —
Appearance Settings:
® [ Draw
Mode Settings:
r ™
Color Settings:
#® [~ Use Override Color @ [~ Override C

=
4 | »

Add | ForceAppIy| | | Load... |

Rule Name

| Rule Value | MName Expression | Entity Ty

1

Close

c. Save updated preference file

d. Load in .asi file using RuleFile keyword

1.

6. Edit Views

RuleFile “my rule

s.rul”

a. Create a viewport (picture in picture)

1.
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Click the viewport button and draw a box that will be your future viewport
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REEEE o o I A 21 A K= [ i i7a

Create Viewport Button

b. Save eye positions

Fie Tee Vew Eye DataMaisge Meds Ovelis Took Depley Map  Pgen Took

L

‘Save cument eve positon, Hotley: Cirl+KteE s @) 7| w11 @ 2SS HFE 1203 i
M"‘_ﬂ'ﬁf\_ﬁ:w?@_” Qo | B)siro, | Tsew. | G | Bo. | oo, | @sros m1 MELTEOSMOD & 1w

c. Save view

1. View -> Views
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|| Fle Tme View Eye DamManager Media Overlays Tools D|5|:|Ian-I Ma|:| PIug—mTooIs

[ZHHYOPE S w AQRO 5T o a4 2

View Port Name | Movement| Attributes Eve Posiﬁons]

MainView EyePos1_UAV1
ViewPort1

Mode |
Centered |
Watching |

Locked |
Most Recent
|Eyeros1_uav

| el e

Duration: Fast —_F———— Slow

Focus‘ HEnamE | DElEtE

_'Sa\re Fi.I;] Load Fi|E“]

ii. View Port Name shows all view ports cretated, and current active view
port

iii. Movement, Attributes, Eye Positions options covered in 7.3.1 in the
SIMDIS manual

iv. Mainly, select the viewport on the left, the eye position on the right, save

and then save the view file with the “Save File” button
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6. Data Analysis Scripts

6.1. matlabScript_V2.m

%%

% Fille Name matlabScript V2.m

% Authors = W. Selby

% Date > 08-Sep-2008

% Description : Plots output of Java .m/.txt file, stores data in text
% File

%

% Inputs: : data text file

% Outputs: : plots

% Requirements : mvsimout.txt, plot output directory at end

% Revisions : Improved Cost function - linearized convoy penalization,

% computed avergae steering commands
%

%% Initialize
clear; close all; format compact; clc; format long;

%Print Header of .csv file

fidw = fopen(“"Scenario_data output File.csv", "w");

fprintF(fidw, "%s,%s,%s,%s,%s,%s,%s,%s\n", "Trial ", "Mu®,"Alpha®,"Eta”, "Ro", "%0u
t of Range®,"%Too Close”","%Max u®);

%% Load Files

for(f=1:82)
Ffilename = sprintf("scenario3 %d simulation data.txt",f);
data = load (filename);

%% Reassign Data to variables

%File directory
dir = cd;
dir_plot = sprintf("%s\\plots”,dir);

% Time
base time = data(2,2);

% Number of Vehicles
n=2;

%Distance Tolerances
r_min = .031068; %miles = 50 meters
r_ max = 1; %mile

%Paramters

alpha = data(l1,2);
mu = data(l1,1);
eta = data(l1,3);
ro = data(l1,4);

Winitialize variables



i=1;w=1;x=0;y=1;z=1;violatec=0;violatev=0;totalc=0;totalv=0;
percentagec=0;percentagev=0;V1=0;violatectot=0;

u_tot=0; u_max=60*pi/180; % corresponds to 60deg max rudder angle
count=1;

%% Vehicle Positions
for(j=2:size(data,l))
if(data(j,1)== 4)

X = X+1;

V1(x,1) = data(j,2)-base_time; %elapsed time
V1i(x,2) = data(j,3); %lat

V1(x,3) = data(j,4); %lon

a(x,1) = sin((V1(x,2) - V1(x,2))/2)"2 +
cos(V1(x,2))*cos(V1(x,2))*sin((V1(x,3) - V1(x,3))/2)"2;

end

if(data(j,1)== 2)
V2(y,1) = data(j,2)-base_time; %elapsed time
V2(y,2) = data(j,3); %lat
V2(y,3) = data(j,4); %lon

if(vi ~= 0)
a(y,2) = sin((V2(y,2) - V1(x,2))/2)"2 +
cos(V1(x,2))*cos(V2(y,2))*sin((V2(y,3) - V1(x,3))/2)"2;

y = y+l;
end
end
if(data(j,1)== 3)
V3(z,1) = data(j,2)-base_time; %elapsed time
V3(z,2) = data(j,3); %lat
V3(z,3) = data(j,4); %lon
if(Vl ~= 0)

a(z,3) = sin((V3(z,2) - V1(x,2))/2)"2 +
cos(V1(x,2))*cos(V3(z,2))*sin((V3(z,3) - V1(x,3))/2)"2;

z = z+1;
end
end
if(data(j,1)== 1)
va(w,1) data(j,2)-base_time; %elapsed time

va(w,2) = data(j,3); %lat
V4(w,3) = data(j,4); %lon
if(Vl ~= 0)
a(w,4) = sin((vd(w,2) - V1(x,2))/2)"2 +
cos(V1(x,2))*cos(V4(w,2))*sin((V4(w,3) - V1(x,3))/2)"2;
w = w+l;
end
end
J = 3+1;
end

%% Calculate average steering command u from vehicle positions

%Vv2(i,1) =elapsed time
%Vv2(i1,2) =lattitude
%Vv2(i,3) =longitude

%Vl is the convoy vehicle
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%Calculate u per time step for UAV 1
for(i=10:10:size(V2,1)-30) %one calc per second

vectorl 2a = sin((V2(i+10,2) - V2(i,2))/2)"2 +

cos(V2(i,2))*cos(V2(i+10,2))*sin((V2(i+10,3) - V2(i,3))/2)"2;
vectorl 2c = 2*atan2(sqrt(vectorl_2a),sqrt(l-vectorl_2a));
a_u = 3956*vectorl 2c*1609.344;

vector2_3a = sin((V2(i+20,2) - V2(i+10,2))/2)"2 +
cos(V2(i+10,2))*cos(V2(i+20,2))*sin((V2(i+20,3) - V2(i+10,3))/2)"2;
vector2_3c = 2*atan2(sqgrt(vector2_3a),sqrt(l-vector2 3a));

b u = 3956*vector2_3c*1609.344;

vectorl 3a = sin((V2(i+20,2) - V2(i,2))/2)"2 +

cos(V2(i,2))*cos(V2(i+20,2))*sin((V2(i+20,3) - V2(i,3))/2)"2;
vectorl 3c = 2*atan2(sqrt(vectorl 3a),sqrt(l-vectorl 3a));
C_u = 3956*vectorl 3c*1609.344;

s =(a_u+b_u+c_u)/2;

if(a u~-=0 && b u~=0 && c_u~=0 && s-c_u>0)
k2 = (4*sqrt(s*(s-a_uw)*(s-b_u)*(s-c_u)))/(a_u*b_u*c_u);
u2(i,1l)=k2*a_u;
end
end

%Calculate u per time step for UAV 2
for(i=10:10:size(V3,1)-30) %one calc per second

vectorl 2a = sin((V3(i+10,2) - V3(i,2))/2)"2 +

cos(V3(i,2))*cos(V3(i+10,2))*sin((V3(i+10,3) - V3(i,3))/2)"2;
vectorl 2c = 2*atan2(sqrt(vectorl 2a),sqrt(l-vectorl 2a));
a u = 3956*vectorl 2c*1609.344;

vector2 3a = sin((V3(i+20,2) - V3(i+10,2))/2)"2 +
cos(V3(i+10,2))*cos(V3(i+20,2))*sin((V3(i+20,3) - V3(i+10,3))/2)"2;
vector2_3c = 2*atan2(sqrt(vector2_3a),sqrt(l-vector2_3a));

b u = 3956*vector2_3c*1609.344;

vectorl 3a = sin((V3(i+20,2) - V3(i,2))/2)"2 +

cos(V3(i,2))*cos(V3(i+20,2))*sin((V3(i+20,3) - V3(i,3))/2)"2;
vectorl 3c = 2*atan2(sqrt(vectorl _3a),sqrt(l-vectorl 3a));
C_u = 3956*vectorl 3c*1609.344;

s =(a_u+b_u+c_u)/2;

if(a u~=0 && b _u~=0 && c_u~=0 && s-c_u>0)
k3 = (4*sqrt(s*(s-a_u)*(s-b_u)*(s-c_u)))/(a _u*b_u*c u);
u3(i,1)=k3*a_u;
end
end

%Use 2 norm to get average u per time step
for(i=1l:min([size(u2,1),size(u3,1)]D))
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if(i<=size(u3,1))
u_tot(i,1)=100*sqre(((u2(i,1)/u_max)"2+(u3(i,1)/u_max)"2)/2);
end
end

%Calculate average steering command
for(i=1l:size(u_tot,1))
iT(u_tot(i,1)>0)
count=count+1;
end
end
u_avg = sum(u_tot)/count;

%% Log Vehicle Separation Distances
for(J=1:size(V2,1))

b(,1)= sin((vV2(.2) - V3(.,2))/2)"2 +

cos(V3(j,2))*cos(V2(J,2))*sin((V2(,3) - V3(,3))/2)"2;%dist from 2-3
%b(J,2)= sin((V2(.,2) - V4(g.,2))/2)"2 +

cos(V4( ,2))*cos(V2(J ,2))*sin((V2(,3) - v4(,3))/2)"2;%dist from 2-4
%b(J,3)= sin((V3((.,2) - V4(g,2))/2)"2 +

cos(V4(j,2))*cos(V3(J,2))*sin((V3(,3) - v4(,3))/2)"2;%dist from 3-4

end
for(g=1:size(V2,1))
if(n>2)
for(i=1:n)
rsep(j,i)= 3956*2*atan2(sqrt(b(j,i)),sqart(1-b(,i)));
end
else
rsep(J,1)= 3956*2*atan2(sqrt(b(j,1)),sqrt(1-b(,1)));
end
end

%% Fill Distance to convoy array
for(i=1l:size(V2,1)) %time step
for(g=1:(n+1)) %vehicle distance%
c(i,j) = 2*atan2(sqrt(a(i,j)),sqrt(l-a(i,j)));
d(i,j) = 3956*c(i,j);
end
end

%% Data Analysis

%Plot Distance to Convoy if convoy is vehicle 1
iT(0)
plotname = sprintf("Scenario#3 Plot %d linear dist Blend",f);
h = figure(1);
subplot(3,1,1);
ylabel ("Distance (miles)");
hold on; grid on;
xhim(JO size(V2,1)/10])
line([O0,size(V2,1)],[r_max,r_max],"Color®,"r");
for(J=2:(n+1))
plot(V2(:,1),d(:,j));
for(i=1:size(V2,1))
if d(i,j)>r_max
violatec = 1;
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end
if d(i,j)<r_min
violatec = 0;
end
it (d@,j)<r_max && d(i,j)>r_min)
violatec = (d(i,j)-r_min)/(r_max-r_min);
end
violatectot = violatectot+violatec;
totalc = totalc+l;
end
end
legend(["Max Distance ", num2str(r_max),"” mile(s)"],"UAV 1" ..., "UAV
27 ,"UAV 3*
);

percentagec = 100*(violatectot/totalc);
title({["Vehicle Separation Distances - ", num2str(percentagec), "%

range from convoy violation®];[" \alpha = ", num2str(alpha),”, \mu = ",
num2str(mu), ", \eta = ", num2str(eta), ", ro = °, num2str(ro)]});

%Plot Intra-vehicle distance
subplot(3,1,2)
ylabel ("Distance (miles)");
hold on; grid on;
xhim(JO size(V2,1)/10])
line([O0,size(V2,1)],[r_min,r_min],"Color”,"r");
for(J=1:(n-1)) %2 vehicles n-1, 3 vehicles n
plot(V2(:,1),rsep(:,j));
for(i=1:size(V2,1))
if rsep(i,j)<r_min
violatev = violatev+1;
end
totalv = totalv+1;
end
end
legend(["Min Distance ", num2str(r_min)," miles/50 meters"], "UAV 1-
2" _...,"UAV 1-3","UAV 2-3*
)
percentagev = 100*(violatev/totalv);
title(["Vehicle Separation Distances - ", num2str(percentagev), "%
intra-vehicle disance violaion®]);

%Plot steering command

subplot(3,1,3)

xlabel ("Time (seconds)®);

ylabel ("Percentage”);

xhim(JO size(V2,1)/10])

hold on; grid on;

plot(V2(1:size(u_tot,1),1),u tot)

title(["Average Steering Command (u) °, num2str(u_avg), % of maximum
steering command "7]);

%Save Plot

cd(dir_plot) %0Open plot folder
saveas(h,plotname);

cd(".."); %Return to active directory
close (h);



end

%% Write data to .csv File

%Distance to Convoy Violation
for(J=2:(n+1))
for(i=1:size(V2,1))
if d(i,j)>r_max
violatec = 1;
end
if d(i,j)<r_min
violatec = 0;
end
if (d(i,j)<r_max && d(i,j)>r_min)
violatec = (d(i,j)-r_min)/(r_max-r_min);
end
violatectot = violatectot+violatec;
totalc = totalc+1;
end
end
percentagec = 100*(violatectot/totalc);

%Distance between Vehicles Violation
for(J=1:(n-1)) %2 vehicles n-1, 3 vehicles n
for(i=1l:size(V2,1))
if rsep(i,j)<r_min
violatev = violatev+1;
end
totalv = totalv+l;
end
end
percentagev = 100*(violatev/totalv);

%Print Data line to file
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fprintf(Fidw, "%d,%s,%s ,%s,%s,%s,%s,%s\n" ,F,num2str(mu) ,num2str(alpha) ,num2str
(eta) ,num2str(ro),num2str(percentagec) ,num2str(percentagev) ,num2str(u_avg));

end

%%

%
%
%
%
%
%
%
%
%
%

6.2. Compute_Average_v2.m

File Name : Compute_Average_v2.m
Authors - W. Selby

Date > 26-Sep-2008
Description : Computes cost function
Inputs: : data text file
Outputs: - data text file
Requirements : ParamDistData per IP
Revisions > None

%%

Initialize

clear; close all; format compact; clc; format short;

%% Declare variables

n

8; %number of trials



rho = .25; % performance weighting value

%% Load Files

Ffidw = fopen("Results Avg S1 Routel.csv®,"w");

fprintf(Fidw, "%s,%s,%s,%s,%s,%s,%s,%s,%s\n", "Trial ", "Mu", "Alpha", "Eta”, "Ro
(scaled) ", "Convoy*,"Collision®,"E_u~, "Performance Average-®);

%% Compute 1 norm for convoy distance and steering control inf-norm for
%% collisions
for(J=1:16)
Ffilename = sprintf("ParamDistData v2 %d.csv”,j);
data = load(filename);
for(i=1l:size(data,l))
ifg==1)
x(i+1,5:7)=0;
end
gx(i,1) = data(i,6);
collide(i,j)=data(i,7);
gx(i,2) = data(i,8);
x(i,5) =
x(i,6)= max(collide(i,:));
x(,7) = x@,7) + gx(i,2)/n; %Final average of u/u_max %"s
end
end

%% Store Paramater values
for(i=1l:size(data,l))

x(i,1) = data(i,2); %mu

x(i,2) = data(i,3); %alpha
x(i,3) = data(i,4); Y%eta

x(i,4) = data(i,5)/100; %ro (scaled)

end

%% Combine all 3 into one performance metric
% fx(mu, alpha, eta, ro scaled, convoy distance, collide, steering)

for(i=1l:size(data,l))
gx(i1,1)= 2*fx(1,5)+6*Fx(i,6)+2*Fx(i,7);

x(i,5) + gx(i,1)/n; %fFinal average of convoy distance %"
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fprintf(Fidw, "%d,%s,%s,%s,%s,%s,%s,%s,%s\n", i ,num2str (Fx(i,1)),num2str(fx(i,2
), num2str(fx(i,3)),num2str (Fx(i,4)) ,num2str(fx(i,5)),num2str(fx(i,6)),num2st

r(fx(i,7)),num2str(gx(i,1)));
end

6.3. Minimum_Sensitivity.m

%%
% File Name

% Authors

% Date

% Description
%

% Inputs:

% Outputs:

Minimum_Sensitiviy.m

W. Selby

26-Sep-2008

Computes cost function and varies weights

data text file
data text file, plot



% Requirements
% Revisions

%
%% Initialize

clear; close all; format compact; clc; format short;

ParamDistData per IP
None

%% Declare variables
n = 1; %number of trials
rho = .25; % performance weighting value

%% Load Files

fidw = fopen("Min_Sens_scenario.csv®,"w");

fprintF(fidw, "%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s\n", "Trial ", "Mu®, “"Alpha“, "
a","Ro (scaled)","Convoy”,“Collision®,"E _u”,"Performance Average®, “"Weight
1", "Weight 27, "Weight 37);

%% Compute 1 norm for convoy distance and steering control inf-norm for
%% collisions
J=1;
filename = "Scenario3 output data.csv”;

data = load(filename);

for(i=1l:size(data,l))

ifg==1)
x(i+1,5:7)=0;

end
gx(i,1) = data(i,6);
collide(i,j)=data(i,7);
gx(i,2) = data(i,8);
x(i,5) = x(i,5) + gx(i,1)/n; %Final average of convoy distance %"
x(1,6)= max(collide(i,:));
>x(,7) = =&x@,7) + gx(i1,2)/n; %Final average of u/u_max %"s
end

%% Store Paramater values
for(i=1l:size(data,l))

x(i,1) = data(i,2); %mu

x(1,2) = data(i,3); %alpha
x(i,3) = data(i,4); Y%eta

x(i,4) = data(i,5)/100; %ro (scaled)

end

%% Combine all 3 into one performance metric
% fx(mu, alpha, eta, ro scaled, convoy distance, collide, steering)

for(wl=.1:.1:1)
for(w2=.1:.1:(-91-wl))
w3=1-(wl+w2);
for(i=1l:size(data,l))
gx(i,1)= wi*fx(i,5)+w2*fx(i,6)+w3*fx(i,7);
[min_par place] = min(gx(:,1));
end
H = figure(l);
title("Sensitivity of the Test Matrix as Cost Function Weighting is
Changed (Route 1)%);

162

Et

S



82]);

fprintf(Fidw, "%d,%s,%s ,%s ,%s ,%s ,%s ,%s ,%s ,%s ,%s ,%s\n" ,place ,num2str(fx(place, 1
), num2str(fx(place, 2)) ,num2str(fx(place, 3)),num2str(fx(place,4)) ,num2str (fx(
place,5)),num2str(fx(place,b6)),num2str(fx(place, 7)) ,num2str(gx(place, 1)) ,num2
str(wl),num2str(w2) ,num2str(w3));

end

end
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xlabel ("Parameter Set"); ylabel("Performance Percentage®); xlim([1

sort(gx,1);

if(wl==.1)

plot(sort(gx(:,1),1),"blue”); hold on; grid on;
end

if(wl==.2)

plot(sort(gx(:,1),1),"red"); hold on; grid on;
end

if(wl<=.31 && wl>=_29)
plot(sort(gx(:,1),1), "Color",[0 .5 0]); hold on; grid on;
end

if(wl==.4)

plot(sort(gx(:,1),1),"cyan”); hold on; grid on;
end

itf(wl==.5)

plot(sort(gx(:,1),1),"green”); hold on; grid on;
end

if(wl==.6)

plot(sort(gx(:,1),1), "magenta”); hold on; grid on;
end

if(wl==.7)

plot(sort(gx(:,1),1), "yellow"); hold on; grid on;
end

if(wl==.8)

plot(sort(gx(:,1),1),"black®); hold on; grid on;
end
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7. GPS Filtering

%%
% File Name

% Authors

% Date

% Description
%

% Inputs:

% Outputs:

% Requirements
% Revisions

%
%% Initialize

clear; close all; format compact; clc; format long;

GPS_filter.m

W. Selby
20-Sep-2008
Filters GPS routes

data text file
filtered track file
track.csv

None

%% Declare variables
count = 1906;

speed 40/(60*60); %mph->miles per second
date = "8/7/2008";

alt = 0;

delay = O;

N = 0;

time_diff=0;

%% Load Files

fid = fopen("NRL_to USNA 40mph.csv®);

[latd, lond, time] =

textread("NRL_to USNA 40mph.csv®, "%*fuFfi*fu%*skhs®, "delimiter®,",");
fidw = fopen("to USNA Time Mod.csv®,"w");

%% Degrees to radians conversion
for(i=1l:size(latd,l))
lat(i,1) latd(i,1)*pi/180;
lon(i,1) lond(i,1)*pi/180;

end

%% Parse time string

% for(i=l:size(time,l))

% [h(i,1), m(i,1), s(i,1)] = strread(time{i,1}, "%d%d%d-",
"delimiter®, ":%);

% end

h(1,1) = 8;
m(1,1) = 29;
s(1,1) = 56;

%%Print Header
% fprintf(fidw, "%s\n", "No,Latitude,Longitude,Altitude,Date,Time");
% fprintf(Ffidw, "%d,%.6F,%.6F,%d,%s,%s\n",count, latd(1,1),lond(1,1),alt,
date,time{l1l,1});
%% Repeat Point for loitering
iT(0)
for(1=1:300)
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%current total number of seconds and subtracts delay

N = 86400*datenum(2008,9,21,h(1,1),m(1,1),s(1,1))+i;

%store updated time information

[Y, M, D, hour(i,1l), min(i,1l), sec(i,1l)] = datevec((N/86400));
%make new time string

time =sprintf("%d:%d:%2.2d" ,hour(i,1l),min(i,1l),int8(sec(i,l1l)));

sprintf("%d,%.6F,%.6F,%d,%s,%s\n",count, latd(i,1),lond(i,1),alt,date,time);
%print line of track file
fprintf(Fidw, "%d,%.6F,%.6F,%d,%s,%s\n",count, latd(i,1),lond(i,1),alt,date, tim

e);
end
end
for(i=1l:size(latd,1)-1)
a(i,1l) = sin((lat(i+1,1)-lat(i,1))/2)"2 +
cos(lat(i,1))*cos(lat(i+1,1))*sin((lon(i+1,1)-lon(i,1))/2)"2;
c(i,l) = 2*atan2(sgrt(a(i,l)),l-sqgrt(a(i,l)));
d(i,1l) = 3956*c(i,1); %convert to miles
time_diff = (d(i,1)/speed); %time to next waypoint
count = count+l; %line number
%current total number of seconds and add to make future time
N = 86400*datenum(2008,9,21,h(i,1),m(i,1),s(i,1))+time_diff;
%store updated time information
[Y, M, D, h(i+1,1), m(i+1,1), s(i+l,1)] = datevec((N/86400));
if(int8(s(i+1,1))==60)
m(i+1,1) = m(i+1,1)+1;
s(i+1,1)=0;
end
%make new time string
time = sprintf("%d:%d:%2.2d" ,h(i+1,1),m(i+1,1),int8(s(i+1,1)));

%print line of track file
fprintf(Fidw, "%d,%.6F,%.6F,%d,%s,%s\n",count, latd(i,1),lond(i,1),alt,date, tim
e);

end

fclose("all™);
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Definition of Terms

e « (alpha) — parameter that controls the equidistant spacing behavior
e 77 (eta) — parameter that control the baseline alignment behavior

e 4 (mu)— parameter that controls the heading alignment behavior

e U - output of the control law, a steering command for the vehicle
e I, - parameter that sets the desired vehicle spacing

e r_. -distance at which vehicles are assumed to have collided



