
U.S.N.A. --- Trident Scholar project report; no. 383 (2009)

Urban Convoy Escort Utilizing a Swarm of UAVs

by

Midshipman 1/c William C. Selby
United States Naval Academy

Annapolis, Maryland

(signature)

Certification of Advisers Approval

Associate Professor Matthew G. Feemster

Weapons and Systems Engineering Department

(signature)

(date)

Mr. Roger S. Cortesi
Research Engineer, Naval Research Laboratory

(signature)

(date)

Acceptance for the Trident Scholar Committee

Professor Carl E. Wick
Associate Director of Midshipman Research

(signature)

(date)

USNA-1531-2

 1

1. Abstract

How will we keep our troops secure in a hostile and unpredictable environment? Unmanned

Aerial Vehicle (UAV) surveillance has wide ranging applications in military convoy operations,

as well as other areas of robotics. This project, in conjunction with the Naval Research Lab

(NRL), evaluated and modified a current UAV control algorithm to perform a security role for

military convoys in urban terrain. The desired end state was to provide the simulated military

convoy with constant UAV sensor coverage as the convoy navigated an urban environment.

This research used the NRL multi-vehicle simulator to asses the behavior of the control

algorithm under real world conditions. This included using improved vehicle dynamics and real

world GPS tracks for convoy routes. The control algorithm was evaluated using performance

metrics including the distance between UAVs, distance from each UAV to the convoy, and UAV

fuel consumption. The control algorithm was tested in simulation on three scenarios involving a

UAV swarm following a military ground convoy. The Basic Navigation scenario simulated a

mechanized convoy while the Foot Patrol scenario simulated soldiers on a foot patrol. Lastly, the

Obstacles en Route scenario simulated a practical convoy route with constant speed fluctuations.

Based on the data taken from simulations, the control algorithm was modified to provide

effective sensor coverage of the convoy in the scenarios. Also, several blending strategies were

created to transition between rectilinear and circular control. Specifically, one involving the

bearing rate of the convoy relative to the UAVs provides a more secure and low tech form of

control than traditional methods. This research identified the limitations of the UMD control

algorithm, provided vital data necessary for further development of the controller for field tests,

and developed a cumulative design process for future NRL control algorithm investigations.

 2

Keywords: Urban terrain, Unmanned Aerial Vehicles, Swarm, Control algorithm, Military

convoy

 3

2. Acknowledgements

 I would like to thank primarily my advisors, Prof. Feemster and Mr. Cortesi for their time

and efforts devoted to helping me receive this opportunity and their constant guidance. Without

their support, I would still be trying to teach myself the fundamentals of coding and controls

design. I would also like to thank Dr. Eric Justh for his advice concerning the data analysis and

his constant direction and guidance that influenced the path this research followed. I would also

like to thank Mr. Dan Robinson for his valuable JAVA knowledge and his continual efforts with

the simulator code. Lastly, I would like to thank the USNA faculty, staff and students that have

assisted me by answering my questions in their areas of expertise which improved the level of

research of this project.

 4

3. Table of Contents

1. Abstract .. 1
2. Acknowledgements ... 3
3. Table of Contents .. 4
4. List of Figures .. 6
5. Introduction ... 8

5.1. Current Research ... 10
5.2. Control Algorithm for Analysis ... 11
5.3. Problem Statement ... 13
5.4. Task Overview .. 13
5.5. Controller Investigation ... 15

6. Investigation of UMD Control Law ... 17
6.1. Algorithm Derivation ... 17
6.2. MATLAB Simulations ... 18

6.2.1. Rectilinear and Circular Control .. 18
6.2.2. Parameter Modification ... 21
6.2.3. Following Waypoints ... 23
6.2.4. Blended Control ... 25
6.2.5. Extension into JAVA ... 27

7. Migration and Implementation of the NRL Multi-Vehicle Simulator 30
7.1. Software Acquisition .. 30
7.2. SIMDIS Support .. 30
7.3. GPS Track Injection .. 31

8. Mechanized Convoy Scenario - Rectilinear Control Investigation 32
8.1. Data Analysis Plan ... 32
8.2. Test Matrix Development ... 36
8.3. GPS Track Data Manipulation ... 36
8.4. Initial Conditions ... 37
8.5. Data Analysis of the Simulation Results ... 39

8.5.1. 0r and Collision Avoidance ... 39
8.5.2. 0r and Convoy Range... 40
8.5.3. Steering Energy Analysis ... 41
8.5.4. Sensitivity of the Minimizing Parameter Set ... 42
8.5.5. Performance Around the Global Minimum .. 44
8.5.6. Comparison of 2 and 3 Vehicle Trials... 46
8.5.7. Comparison of Route 1 and Route 2 ... 48

9. Foot Patrol Scenario – Circular Control Investigation ... 52
9.1. Convoy Trajectory .. 52
9.2. Initial Conditions ... 54
9.3. Data Analysis.. 55

9.3.1. 0r and Collision Avoidance ... 55
9.3.2. 0r and Convoy Range... 56
9.3.3. Steering Energy .. 58
9.3.4. Sensitivity of the Minimizing Parameter Set ... 59
9.3.5. Performance Around the Global Minimum .. 61

 5

9.3.6. Comparison of 2 and 3 Vehicles .. 63
9.3.7. Comparison of Route 3 and Route 4 ... 65

10. Obstacles En Route - Blended Control Investigation .. 65
10.1. Developing Blending Functions .. 66

10.1.1. Linear Function ... 66
10.1.2. Exponential Function .. 67
10.1.3. Logarithmic Function .. 68
10.1.4. Hyperbolic Tangent Function ... 69

10.2. Speed Blending ... 70
10.3. Speed Limitation Investigation .. 70

10.3.1. Ideal Speed Blending ... 73
10.3.2. Practical Speed Blending ... 75
10.3.3. Analysis of Additional Routes ... 78

10.4. Distance Blending .. 82
10.4.1. Analysis of Additional Routes ... 86

10.5. Bearing Rate Blending... 95
10.5.1. Bearing Rate Calculation .. 95
10.5.2. Data Analysis for Additional Routes ... 98

11. Implementations of Research and Future Work ... 103
12. Endnotes... 108
13. Bibliography .. 110
14. Appendix .. 112

1. MATLAB Simulation Script .. 112
2. Parameter Modification Plots .. 118

2.1. Plot of Initial Conditions ... 118
2.2. η Modified ... 119
2.3. μ Modified ... 120
2.4. α Modified ... 121
2.5. 0r Modified ... 122

3. JAVA Simulation of UMD Control Algorithm ... 123
3.1. Vehicle.java .. 123
3.2. Swarm.java ... 124
3.3. waypointVector.java ... 124
3.4. Waypoint.java ... 125
3.5. Control.java .. 127
3.6. Log.java .. 130
3.7. Simulate.java .. 133

4. Naval Research Laboratory Multi-Vehicle Simulator Installation Procedure 134
5. SIMDIS User’s Guide .. 145
6. Data Analysis Scripts ... 155

6.1. matlabScript_V2.m ... 155
6.2. Compute_Average_v2.m .. 160
6.3. Minimum_Sensitivity.m ... 161

7. GPS Filtering ... 164
8. Definition of Terms .. 166

 6

4. List of Figures

Figure 1: Example Aerial Formations... 9
Figure 2: Ground Convoy in Urban Terrain [5] .. 10
Figure 3: Potential Field Behavior Illustration ... 12
Figure 4: Performance Metrics and their Tactical Significance ... 13
Figure 5: Algorithm Derivation Coordinate Frame [12] ... 17
Figure 6: MATLAB Code Flow Chart.. 18
Figure 7: Vehicle Positions ... 19
Figure 8: Vehicle Steering Control Output ... 19
Figure 9: Intra-Vehicle Separation Distances ... 20
Figure 10: Vehicle Trajectory Using Circular Control Law ... 21
Figure 11: Two Vehicles Responding to One Waypoint .. 24
Figure 12: Swarm Moving Between Waypoints Using Rectilinear Control 25
Figure 13: Swarm Response without Blending .. 26
Figure 14: Swarm Response with Blending.. 26
Figure 15: Comparison of MATLAB and JAVA Simulation Outputs ... 28
Figure 16: Swarm Response with Loiter Modification ... 29
Figure 17: Suburb to NRL .. 38
Figure 18: NRL to USNA ... 38
Figure 19: Scenario 1 Vehicle Starting Locations .. 39
Figure 20: USNA Foot Patrol ... 53
Figure 21: Annapolis Foot Patrol .. 54
Figure 22: Scenario 1 Initial Conditions ... 55
Figure 23: Prescribed 0r Values Compared to Experimental Values ... 57
Figure 24: Linear Blending Function .. 67
Figure 25: Exponential Blending Function ... 68
Figure 26: Logarithmic Blending Function .. 69
Figure 27: Hyperbolic Tangent Blending Function .. 70
Figure 28: Comparison of Circular and Rectilinear Control .. 72
Figure 29: Speed Blend Test Matrix ... 72
Figure 30: Summary of Ideal Speed Blending .. 74
Figure 31: Plot of Top Performing Speed Blending Functions .. 74
Figure 32: Summary of Suburb to USNA Speed Blending .. 76
Figure 33: Plot of Top Performing Speed Blending Functions .. 77
Figure 34: Summary of NRL to Van Ness Speed Blending ... 79
Figure 35: Plot of Top Performing Speed Blending Functions .. 79
Figure 36: Summary of Van Ness to USNA Speed Blending .. 80
Figure 37: Plot of Top Performing Speed Blending Functions .. 80
Figure 38: Distance Blending Test Matrix .. 83
Figure 39: Summary of Suburb to USNA Distance Blending .. 84
Figure 40: Simulation using Distance Blending ... 85
Figure 41: Simulation using only Speed Blending ... 86
Figure 42: Summary of Van Ness to USNA Distance Blending .. 87
Figure 43: Summary of NRL to Van Ness Distance Blending ... 88
Figure 44: Plot of Top Performing Distance Blending Functions .. 89

 7

Figure 45: Simulation using Speed Blending ... 91
Figure 46: Simulation using Distance Blending ... 92
Figure 47: Simulation using Speed Blending ... 93
Figure 48: Simulation using Distance Blending ... 94
Figure 49: Bearing Rate Blending Model ... 96
Figure 50: Plot of Bearing Rates ... 97
Figure 51: Bearing Rate Blending Test Matrix ... 97
Figure 52: Summary of Suburb to USNA Bearing Rate Blending ... 98
Figure 53: Summary of NRL to Van Ness Bearing Rate Blending .. 99
Figure 54: Summary of Van Ness to USNA Bearing Rate Blending ... 100

 8

5. Introduction

 Extensive research is currently being focused on swarm control, making it one of the most

exciting and active areas of robotics research. One of the primary reasons for utilizing a swarm

for an application is that a single member may not be sufficient to complete an assigned task. A

single aerial vehicle may carry all of the sensing equipment necessary for surveillance; however,

these vehicles are typically too large and expensive. While a single UAV can cover a specified

area using its onboard sensors, a swarm of the same UAVs is able to provide a much larger and

overlapping area of sensor coverage. Swarms also have the benefits of increased survivability,

reliability, and lower cost due to the ability to decentralize mission specific equipment [1].

Currently, these advantages have led the military to consider introducing aerial vehicle swarms

into active service. The Naval Research Laboratory (NRL) in Washington, DC is actively

conducting research to determine the effectiveness of unmanned aerial vehicle (UAV) swarms

for intelligence, surveillance, and reconnaissance (ISR) missions and particularly in an electronic

warfare role.

 By adopting a swarm of vehicles for an application, the supervisory control problem

becomes more complex. That is, how does one coordinate the efforts of these individualized

members in a way to achieve a collaborative objective? To address this problem, formation

control algorithms were developed that allow the swarm members to create specified formations

for more efficient movement, maneuvering, and target acquisition [1, 2, 3]. Examples of some

typical formations are shown in Figure 1.

 9

Figure 1: Example Aerial Formations

Select formations also allow individual swarm members to concentrate their sensors on specific

areas of responsibility.

Still, many of the existing swarm control algorithms have only been evaluated within

either ideal simulation settings (i.e., perfect sensor measurements) or in open experimental

environments (i.e., no obstacles). Therefore, it is the primary goal of this research to investigate

the ability of an aerial vehicle swarm control algorithm to be utilized within an urban setting

subject to real world disturbances. As military operations move into an urban environment, it

will be necessary for these aerial swarms to operate reliably in this environment as well. This

research looks directly at a convoy escort scenario within an urban terrain (Figure 2), utilizing a

swarm of fixed wing aerial vehicles to provide effective sensor coverage.

Line Formation Column Formation Wedge Formation

 10

Figure 2: Ground Convoy in Urban Terrain [5]

An urban environment is particularly hazardous to a military convoy because it offers

multiple locations for an enemy to hide as well as the presence of obstacles that can obstruct the

path of the convoy. The urban environment drastically limits the maneuvering potential of a

military convoy while forcing the convoy into close proximity with the enemy. This close

proximity severely limits the US military’s technological superiority and weapons capabilities.

NRL is especially interested in the ability of a swarm of UAVs to provide electronic jamming for

a region around the convoy. It is within this aggressive urban environment that a specific swarm

control strategy will be evaluated. Specifically, this research will analyze the ability of an aerial

swarm to provide sensor coverage of a military convoy as it moves through a virtual Washington

D.C/Annapolis region.

5.1. Current Research

Swarm control algorithms have been motivated to mathematically recreate the behavior

of groups of animals such as bees and ants [1, 2, 3, 4] and have been extended to accurately

modeling the muscle and behavioral systems of fish [2]. In these biologically inspired examples,

the general shape of the swarm is fluid and possesses no predetermined shape (flocking control).

 11

However, other research efforts strive to promote more predetermined configurations where

individual vehicles are given specific positions to maintain relative to a leader or neighbor [2, 3]

(formation control). Further research has developed control strategies for various objectives

including: obstacle avoidance [2, 3], local sensing to achieve group coverage [4], and potential

fields for route planning [2].

This proposed research project differs from current research in two key areas. First, this

project will investigate a fixed wing aerial swarm control algorithm for suitability within an

urban setting, and not focus on individual tasks of the swarm. While having these algorithms for

optimal task assignment and route planning are important, they are of little use if the swarm is

unable to operate effectively in urban terrain. Rather than focusing on behaviors of specific

vehicles in the swarm, this research will critically assess the behavior of the entire UAV swarm

using a specific control algorithm to determine if UAVs are even capable of performing urban

centric missions. Secondly, many of the algorithms proposed in the existing literature are

verified using ideal simulations. Factors such as weather, communications or sensor loss, and the

presence of obstacles are omitted. With the advanced capabilities of the NRL multi-vehicle

simulator, this research will introduce these realistic disturbances in the simulated environment

and observe how the control algorithm is able to handle the more realistic variables.

5.2. Control Algorithm for Analysis

Though many swarm control algorithms exist, the primary controller under consideration for

this research project was designed by Dr. Eric Justh and Dr. P.S. Krishnaprasad from the

University of Maryland [12] for control of a swarm of fixed wing UAVs. Specifically, this

control law was selected over others for two primary reasons: 1) the algorithms include such

aerial vehicle constraints as constant speed and 2) the ability of the control strategy to produce

 12

both transiting (rectilinear) and loitering swarm formations. However, the control algorithm of

[12] has only been simulated under ideal conditions. Currently, NRL is considering expending

much effort in the development of an experimental aerial swarm based around this control

strategy; thus, the algorithm must initially be evaluated in detail in order to be determined

effective (this evaluation represents one of the focus points of this project). Drs. Justh and

Krishnaprasad designed their algorithm to perform a few basic functions which make it

applicable to multiple scenarios. Specifically, their algorithm was biologically inspired. They

wished to model three basic characteristics of biological swarms: common orientation, cohesion,

and non-collision [12]. Their algorithm achieves these behaviors through the utilization of a

geometric framework which creates a simple and straightforward representation of the

constraints on the system. A weighted average of the three gains, μαη ,, , is utilized to control the

overall swarm formation depicted in Figure 3.

Figure 3: Potential Field Behavior Illustration

In addition to evaluating the control strategy of [12] within realistic settings, an investigation

to determine how to transition between rectilinear (rapid convoy movement) and loitering (slow

or stationary convoy) swarm movement will be performed. Currently, the controller of [12] does

 13

not state an explicit strategy for this transition. Therefore, a blending algorithm must be

developed that will allow the swarm formation to effectively transition between these linear and

circular formations.

5.3. Problem Statement

The primary objective of this research is to provide a comprehensive analysis and

modification of the UMD control algorithm [12] when applied to a swarm of unmanned aerial

vehicles for automated urban convoy escort. The performance of the UMD controller will be

evaluated against the following primary performance metrics (Figure 4):

Metric Tactical Significance

Distance between UAVs Too close => risk of collision
Too far => communication loss

Distance from Convoy Too far => jamming and sensors become
ineffective

Fuel Consumption More maneuvering = more fuel used = shorter
mission duration

 Figure 4: Performance Metrics and their Tactical Significance

In addition, a blending algorithm to augment the control design of [12] that will allow the

swarm to alter shape depending on such factors as convoy speed and organization will be

investigated. Also, modification of the algorithm to support a convoy if it splits into two distinct

groups will be investigated. These scenarios will be discussed with more detail in the following

sections.

5.4. Task Overview

This section provides a brief overview of the primary tasks that are necessary to successfully

research the convoy escort problem presented in the problem statement utilizing the UMD

control law.

 14

• Investigation of UMD Controller [12]

Prior to the implementation of this controller into the NRL multi-vehicle simulator, it is

necessary to acquire a solid understanding of the control strategy the authors used in designing

this controller. Specifically, I analyzed the controller’s design process and then implemented the

algorithm in MATLAB. This task familiarized me with all the required measurements,

calculations, and tunable control parameters involved.

• Generation of Convoy Trajectory

In an effort to make the simulation of a foot or mechanized convoy as realistic as possible, I

generated sample convoy trajectories throughout the Washington D.C. metropolitan area. GPS

receivers logged the trajectories of the convoy elements through the city. These trajectories

involved both walking (foot patrol) as well as street navigation in an automobile (mechanized

convoy) to simulate military convoy scenarios. In order to do this, I co-created a GPS route

module that was inserted into the NRL multi-vehicle simulator. This allowed me to inject the

routes I created by moving through the city.

• Implementation into the NRL Multi-Vehicle Simulator

This task involved modifying the existing coding of the UMD control law in the NRL multi-

vehicle simulator in order to support the parameter modification necessary for this project.

Parameter modification is the process of changing the values of 0,,, rμαη and analyzing the

resulting swarm behavior. This process allows insights to be drawn about the relative effects of

each of the parameters. It also required the creating of code in the simulator to export specific

vehicle data as well as the creation of a MATLAB script to post-process this data.

 15

• Evaluation of the UMD controller in the Urban Environment

The evaluation consisted of running the swarm through ever more complex scenarios and

observing the results based on the performance metrics. During these scenario simulations,

specific data was taken and the swarm’s performance was measured based on multiple initial

conditions. The objective was to determine in which scenarios, if any, the UMD controller was

effective and to identify the areas of the controller that need to be re-evaluated in order to be

successful in the future. The information collected allowed me to make specific

recommendations supported by realistic data.

• Development of Blending Algorithm:

This task consisted of formulating a blending strategy that allowed the swarm to smoothly

transition between two forms of the control law depending on such factors as convoy speed and

distance. While the ability for the swarm to create rectilinear and circular formations is already

proven, there was no current focus on how to transition between the formations and under what

circumstances. The rectilinear and circular control laws work well under ideal situations, but

adding the complexities of a real world mission with varying convoy speeds requires a method to

use varying amounts of the rectilinear and circular control outputs in order to improve swarm

performance.

5.5. Controller Investigation

This swarm controller was designed to replicate a formation of animals. The author’s primary

design objectives were to use automatic control to avoid collisions between vehicles, maintain

formation cohesiveness, be robust to loss of individuals, and scale favorably to large swarms

 16

[12]. Their equations are suitable for control of small UAVs for n number of vehicles. The

control equation is reproduced as follows:

jj xr =& , jjj uyx =& , jjj uxy −=&

∑ ≠ ⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
⋅+⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
•

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
⋅⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
⋅−=

jk jkj
jk

jk
j

jk

jk
j

jk

jk
j

r
n

u yxy
r

r
r

y
r

r
x

r

r
μαη

2

011
 [1]

where the following variables are defined as:

• kjjk rrr −= which is the distance between any two UAVs

• x is the unit tangent vector to the UAV trajectory

• y is the unit normal vector to the UAV trajectory

• u is the curvature or steering control

These equations above control the position and approximate orientation of the UAV. In

the steering control equation, the term involving μ (mu) aligns the heading directions of the

vehicles, the α (alpha) gain is used to control the distances between the UAVs as regulated by

the 0r distance, and the η (eta) term is used to keep the vehicles abreast of each other. Each of

these terms emulates a biologically plausible behavior. These specific gains are the primary

focus of this research. The gains effectively create a weighted average of the three behaviors to

produce a steering command for the vehicle based on its position and heading relative to all other

vehicles in the swarm. Based on the scenarios and performance metrics, these gains will be

modified extensively to create an algorithm tuned for specific objectives in an urban

environment.

 17

6. Investigation of UMD Control Law

6.1. Algorithm Derivation

The control algorithm can be given a mechanical interpretation by considering the motion of

a charged particle in a magnetic field. The equations of motion are derived by formulating a

Lagrangian using the kinetic and potential energies, from which Euler-Lagrange equations are

derived. The Lorentz force law for a charged particle in a magnetic field is given by

c
qK)(Br ×

=
&

 where q is the particle’s magnetic charge, B is the magnetic field and c is the

speed of light. Refer to Figure 6 for the coordinate system used.

Figure 5: Algorithm Derivation Coordinate Frame [12]

If
c

qmF)(Brr ×⋅
=⋅=

&
&& and the magnetic field B is perpendicular to the plane of motion

T
zB),0,0(=B then

mc
q)(Brr ×⋅

=
&

&& . If
mc
qB

u z−= and we define rx &= and ⊥= xy , then we

obtain yx u=& and xy u−=& . This simplifies into [] []yxyx ⎥
⎦

⎤
⎢
⎣

⎡ −
=

0
0
u

u
&& and the Planar

Frenet-Serret equations of motion are derived: xr =& , u⋅= yx& and u⋅−= xy& . As seen in Figure

 18

5, x is the unit tangent velocity vector, y is the unit normal velocity vector, and u is the curvature

of steering control which is calculated by the control algorithm. Equation 1, the control algorithm

is then used to determine u, the steering control input, based on the interaction between the

vehicles.

6.2. MATLAB Simulations

6.2.1. Rectilinear and Circular Control

From this basic understanding of the equations of motion and the control algorithm, I was

able to code a simple simulation in MATLAB. The basic flow of information is shown in Figure

6 where x and y are the vehicle’s position, θ is the heading of the vehicle, and u is the control law

output. This code can be seen in Appendix 1 where it is explained in further detail.

Figure 6: MATLAB Code Flow Chart

The simulation loop in the code calculates the total u for each vehicle and then exits the

loop. The control calculation is performed once per time step dt and the process continues until

the simulation time expires. This produced plots similar to Figures 7-9, based on initial

Initial
Conditions

Vehicle Dynamics and
Position Integration

Control Calculation
for UAV1

Control Calculation
for UAV2

Control Calculation
for UAV3

1 1 1x , y ,θ

2 2 2x , y ,θ

3 3 3x , y ,θ

1 2 3, ,u u u

x , yn n

 19

conditions. Figure 7 shows the trajectories of the vehicles from random initial positions and

headings and finish in close proximity travelling in a similar direction.

-50 0 50 100 150 200 250
-1000

-800

-600

-400

-200

0

200
Multi Vehicle Control

Distance

D
is

ta
nc

e

Figure 7: Vehicle Positions

0 100 200 300 400 500 600 700 800 900 1000
-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08
Steering Control Output

Time

S
te

er
in

g
C

on
tro

l

Figure 8: Vehicle Steering Control Output

 20

0 100 200 300 400 500 600 700 800 900 1000
0

10

20

30

40

50

60

70

80

90
Vehicle Seperation Distances

Time

D
is

ta
nc

e

Figure 9: Intra-Vehicle Separation Distances

Looking at the plot of the steering control u in Figure 8, it is clear that the vehicles had to

do a lot of maneuvering in the beginning to get aligned and headed in the right direction, but

once this was done, steering command values dropped to about 0 as no further adjustments were

needed. This is also seen on the vehicle separation plot, Figure 9. As time continues, the vehicles

find their steady state positions and the intra-vehicle distances remain generally constant and

approach 0r as indicated by the red line.

Next, the control law was modified in the code to support the circular control law and

similar plots were created. This was done simply by removing the μ term from the calculation

of the control. This creates the circling motion by forcing the vehicles to be equidistant as well as

perpendicular to the baseline between them and removing the behavior which controls heading

alignment. Implementing this form of the control law created the plot in Figure 10.

 21

-60 -40 -20 0 20 40 60 80
-60

-40

-20

0

20

40

60

80
Multi Vehicle Control - Alpha Change

Distance

D
is

ta
nc

e

Figure 10: Vehicle Trajectory Using Circular Control Law

6.2.2. Parameter Modification

Next, the code was modified to allow for mid-simulation parameter modification. This

was done by implementing an “if” statement inside the simulation loop that switched between

two different parameter values halfway through the simulation. This way, it was possible to run

the simulation and change individual gain values during the simulation to see the vehicles’

responses. Plots of these results can be seen in Appendix 2. The first plot is the simulation run

with base gain parameters and no mid-simulation modification (Appendix 2.1). At first, η was

changed as shown in Appendix 2.2. When η was made smaller by a factor of 10, its impact on

the behavior of the swarm was reduced and therefore the vehicles begin to converge. This is

because the heading alignment behavior and the separation distance behavior are primarily

controlling the vehicles. However, when η is made larger by a factor of 10, its behavior

dominates as seen in Appendix 2.2. Of note is the corkscrew that two vehicles perform right after

the switch. This may be due to the fact that these two vehicles were ahead of a vehicle in close

proximity. Thus, when the parameter was changed, they were forced to circle the vehicle behind

them, keeping all three vehicles abreast, and allowing the vehicle to catch up. Once this

 22

maneuver was done, these two vehicles continued in the general forward direction the same as

the rest of the vehicles.

 Plots in Appendix 2.3 depict the behavior ofμ , the heading alignment gain. In the first

plot, η is reduced by a factor of ten and it is clear that heading alignment is not being

maintained, visible by the oscillatory motion of a few of the central vehicles. However, when the

emphasis is placed onμ , the vehicles immediately find a common direction and their forward

paths appear to be perfectly parallel to each other. These plots clearly demonstrate the

importance ofμ . This information may be particularly useful when analyzing fuel consumption.

As the vehicles oscillate, they cover more distance and maneuver more often, both of which

consume more fuel. However, if μ is ramped up, it appears that all vehicles will take a straight

path, and thus conserve energy.

 Third, the α parameter was adjusted as shown in Appendix 2.4. This parameter controls

the ability of the vehicles to maintain a constant spacing, as defined by the fourth parameter, 0r .

As α is decreased, some vehicles move away from each other while some remain extremely

close. This is contrasted with the following plot, when α is increased. Here it is clear that all of

the vehicles begin to converge immediately and as the simulation continues, they approach a

very tight formation. Looking closer, 0r is set at 20 units and it appears that several vehicles are

closer than this minimum distance which could create collisions in the real world. Since the

control law is calculated based on each vehicle’s position relative to every other vehicle’s

position and not just the vehicle in closest proximity, it is possible that by increasing α

drastically, one can nearly eliminate any factor of safety designed by the 0r distance which could

lead to mid-air collisions.

 23

 Finally, 0r , the separation distance, was adjusted and the predicted behavioral response

was observed as shown in Appendix 2.5. As 0r is drastically decreased, the majority of vehicles

violently converge upon one another. As 0r is increased, the vehicles immediately begin to

spread out. This process of parameter modification was repeated on the circular law as well.

Similar results were seen as the parameters were modified but in a less clear manner due to the

fact that the effects of the parameters on the trajectories are more coupled. However, from

combining these results and analyzing the output, the influence of each parameter becomes

visually evident and serves as a strong foundation for further comprehension of the control

algorithm parameters.

6.2.3. Following Waypoints

In the scenarios, a vehicle representing the military convoy sends out its position via a

GPS unit that the vehicle swarm is able to receive. Therefore, the next step in the code

progression was to implement a “beacon” or waypoint for the vehicles to respond to. The

waypoint was initialized with an x and y position as vehicle number one. To prevent the

waypoint from moving, it was skipped over during the integration and position update loop in the

code as is done in NRL’s multi-vehicle simulator. This proved acceptable when the swarm was

kept to smaller numbers as seen in Figure 11.

 24

-400 -350 -300 -250 -200 -150 -100 -50 0 50
-350

-300

-250

-200

-150

-100

-50

0

50
Multi Vehicle Control - Waypoint

Figure 11: Two Vehicles Responding to One Waypoint

However, when the swarm was increased to three vehicles, the vehicles did not respond to

the waypoint and instead moved forward in a different direction. After analyzing this data, it was

evident that the there was an issue with weighting the control calculation from the vehicles to the

waypoint. Initially, this was solved by weighting the steering command between the vehicles and

the waypoint in order to give it a greater value over the intra-vehicle control calculations. As the

swarm size grew from three to six, the weighting amount grew exponentially. Instead, the code

was modified to include the ability for each vehicle to compute its individual heading direction

to the waypoint. This code is explained in further detail in Appendix 1

Also in Appendix 1 is the ability of the swarm to follow a set of waypoints. If one vehicle

gets within a certain distance of the waypoint, the current waypoint is removed and the next

waypoint is used for all future control calculations. The code was also modified so that the

 25

waypoint locations would update on a per vehicle basis, rather than for every vehicle at one time.

These modifications produced plots such as Figure 12.

-100 0 100 200 300 400 500 600 700 800 900
-100

-50

0

50

100

150

200
Multi Vehicle Control - Follow ing Waypoints

Figure 12: Swarm Moving Between Waypoints Using Rectilinear Control

6.2.4. Blended Control

To conclude the MATLAB initial analysis, a basic linear blending method was

established as well as the ability for the vehicles to loiter at specified waypoints. The final code

incorporating all of these changes can be seen in Appendix 1 along with a detailed explanation of

the code. The effects of this blending process can be seen when comparing the non-blended

control in Figure 13 with the blended control in Figure 14. For the non-blended control plot, the

vehicles initially start using pure rectilinear control, switch to pure circular after the first

waypoint, and then switch back to pure rectilinear after loitering at the second waypoint. This is

a hard switch and there was no combination of the rectilinear and circular control methods.

 26

-100 0 100 200 300 400 500
-100

-50

0

50

100

150

200
Multi Vehicle Control - Follow ing Waypoints

Distance

D
is

ta
nc

e

Figure 13: Swarm Response without Blending

-100 0 100 200 300 400 500
-100

-50

0

50

100

150

200
Multi Vehicle Control - Follow ing Waypoints

Distance

D
is

ta
nc

e

Figure 14: Swarm Response with Blending

 27

It is clear that the blending algorithm is a more efficient means of behavior control for the

swarm and results in much smoother movement between waypoints. Further research in the

multi-vehicle simulator was devoted to analyzing the effects of a non-linear progression as well

as what the cut off distances for the control transition.

6.2.5. Extension into JAVA

The NRL multi-vehicle simulator is a JAVA based program, so the next step of the

project involved converting the MATLAB code into working JAVA code in order to have a

better understanding of the complex code in the NRL simulator. Several JAVA classes were

created and can be seen in detail in Appendix 3. To analyze the data, a JAVA class was created

to write the position values of the vehicles into a text file and MATLAB was used to analyze the

data and produce plots. With the same initial conditions, both the MATLAB (top) and JAVA

(bottom) simulations produce the same results as seen in Figure 15.

 28

-20 0 20 40 60 80 100 120
-500

-400

-300

-200

-100

0

100
Multi Vehicle Control

Distance

D
is

ta
nc

e

-40 -20 0 20 40 60 80 100 120
-500

-400

-300

-200

-100

0

100
Multi Vehicle Control

Distance

D
is

ta
nc

e

Figure 15: Comparison of MATLAB and JAVA Simulation Outputs

 Using the unique style of object oriented coding that is characteristic of JAVA, the more

complex MATLAB functions were incorporated into the JAVA simulation package. Since the

control calculations were done in a separate class, modification was straightforward and the code

enabled the user to easily switch between circular, rectilinear, or blended control. The ability to

 29

calculate the heading from each vehicle to a specified waypoint was added as evident in the

calcWptControl method in Appendix 3.5. Since the rectilinear and circular control calculations

were done in separate methods (calcControlRect and calcControlCirc in Appendix 3.5), the

implementation of a blending control strategy was easily done. This can be seen in the

blendControl method in Appendix 3.5. Lastly, the waypoint class was modified to support

waypoint loitering on a Boolean logic basis or on a distinct time amount basis. This can be seen

in the checkAndSwitch method in Appendix 3.4. With this addition, simulations where the

vehicles loiter around certain waypoints for varying amounts of time were run Figure 16.

-100 0 100 200 300 400 500
-100

-50

0

50

100

150

200
Multi Vehicle Control

Distance

D
is

ta
nc

e

Figure 16: Swarm Response with Loiter Modification

 30

7. Migration and Implementation of the NRL Multi-Vehicle Simulator

7.1. Software Acquisition

One deliverable for this project was the migration of NRL’s multi-vehicle simulator to

the Systems Department at USNA for both student and faculty use in future research. The

simulator is a powerful tool that can be used to test control algorithms using vehicle models with

advanced and accurate kinematic models. To facilitate this process, a step-by-step installation

guide was developed (Appendix 4) for anyone to follow if they wish to set up a workstation with

the multi-vehicle simulator which contains more detail about the process.

 Specifically, several pieces of software were downloaded in order to acquire the

simulator source code. The code is stored in a central location at NRL and using a process called

subversion, multiple users are able to download copies of the code, modify the code, and upload

any changes that may be beneficial to the group. All changes are stored on the central computer

and the source code can be reverted to early version on a user by user basis.

 In order to work on the NRL code, a JAVA compiler and editor called Eclipse was

downloaded. The NRL multi-vehicle simulator also uses a CybelePro interface which supports

agent to agent message transfer that is helpful in applications such as swarm simulation.

CybelePro also limits the amount of information the UAV agents have access to by only

allowing their position to be broadcast on the message traffic at certain times. This resembles the

real world since no vehicle has real-time omnipotent knowledge of the properties of the other

UAV and convoy agents. Once CybelePro is installed, the user is free to run simulations.

7.2. SIMDIS Support

Another role for this project was to serve as a link between the research at USNA and at

NRL. To support this link, I have acted as the POC for questions concerning the use of NRL’s

 31

visualization software, SIMDIS. This tool allows USNA faculty and students to visualize their

data in three dimensions. To facilitate the use of SIMDIS, a MATLAB script was created that is

able to take a raw data file consisting of time and position data and convert it into the .asi file

format that is needed by SIMDIS (Appendix 5). This allows students and faculty to use

simulated or experimental data to create professional video files of their trials in a graphic rich

environment for use in presentations or post data analysis. A user’s guide was also created to

allow students or faculty unfamiliar with SIMDIS to utilize the software without extensive

knowledge or experience. This guide covers topics including creating presentation videos,

plotting waypoints or desired trajectories, and visualizing sensor ranges (Appendix 5)

7.3. GPS Track Injection

Next, it was necessary to create a JAVA class that could read in a GPS text file and inject

it into the simulator as convoy route. To get the GPS data, a Garmin handheld GPS receiver from

NRL was used to log the vehicle’s position every second. A program called GPSBabel was used

to extract the GPS waypoints that were logged by the GPS and convert it to a form that was more

convenient to work with. The final GPS track was saved in the form of a comma separated value

file which followed the pattern of “waypoint number, latitude in degrees, longitude in degrees,

altitude in feet, date, and time.” This data is extracted and converted from degrees to radians for

the simulator. Also the time stamps are converted from raw time to elapsed time.

The next step in the injection process is to broadcast this message to the other vehicles in

the simulation. The vehicles update their position every second which is limited by the logging

rate of the GPS receiver. To solve this issue, a timer is started when the simulation begins and

every time the elapsed time of the GPS waypoint equals the elapsed time of the simulation, the

GPS point is broadcast on a message channel using the CybelePro infrastructure. Also, the code

 32

was modified to support time stamps down to the millisecond, which was artificially created

through MATLAB scripts for use in several of the scenarios. This code was created and

debugged with the assistance of a software engineer at NRL.

8. Mechanized Convoy Scenario - Rectilinear Control Investigation

 The goal of this research was to find the set of gain values which provided the best

performance for the urban convoy scenario. To begin this research, only the rectilinear form of

the control algorithm was used and along with a GPS track that moved continuously at a constant

speed with no stops. The goal of this scenario was to establish a testing procedure that could be

applied to the other scenarios as well as find the set of parameter values that keep the vehicles

close to the convoy but at a safe distance from each other while minimizing steering energy.

8.1. Data Analysis Plan

In order to find the optimal set of parameter values for the Mechanized Convoy, Foot

Patrol, and Obstacles en Route scenarios, it was necessary to create a separate data analysis

script file to assimilate the data from each of the simulation runs and condense the information

into easily readable plots and tables. The majority of the data analysis was done by computing

the averages for the simulation runs, identifying the parameter values which repeatedly had the

best performance values, and locating any trends in the data by purely visual means. Thus, the

foundation of the data analysis was drawn from a cost function analysis. In order to get the initial

performance values from each simulation run, a MATLAB script was used to import the data

from the simulator and compute the performance metrics, print them to a text file, and produce

plots of the data (Appendix 6.1).

 33

In order to determine an overall performance value for each parameter set, a cost function

was used to combine the three main performance metrics into one value. First, the distance

between vehicles is calculated over the entire simulation run. The percentage of the time that the

intra-vehicle distance is below a user specified minimum value is reported for this performance

metric. This is a binary metric, meaning that the vehicle is either above the minimum distance or

below it.

The second metric is the distance of the vehicle away from the convoy. The performance

metric represented the percentage of the time that the vehicles were outside of a maximum

distance away from the convoy and was calculated in a linear method and not a binary method as

the collision metric was. When the vehicle is at or under a minimum distance, there is no penalty.

However, as the vehicle moves away from this minimum distance, the performance penalty

increases linearly until it reaches a value of one. At a value of one, the vehicle is at or beyond a

specified maximum distance from the convoy. This way the performance metric is a strong

representation of the distance between the UAVs and the convoy and penalized larger values of

0r .

Lastly, it was necessary to calculate a performance metric to determine the fuel efficiency

of the UAVs as well as a method of penalizing large gain values. As the gains increase, they

create larger and larger values of u, the output of the algorithm. However, due to the vehicle

kinematics, there are physical limitations on the size of u. For example, a UAV can not make a

90 degree turn; they have a certain turn radius which limits the steering control. To account for

this, u is set as to not exceed some specified value in the simulations. As the gains increase, u

increases until it is hitting its maximum value. At these points where u is saturated, the control

law desires the vehicle to turn at an angle more than allowed by the dynamics of the vehicle.

 34

This is called a slew rate limited condition and is a control problem. Since the vehicle is not

physically capable of turning in the desired direction, the control law loses effectiveness and

there exists a greater chance of collision with the other vehicles.

To prevent this case and to put a penalty on larger gain values, it was necessary to

compute the average steering command u for the vehicles and compare it to the maximum value.

This would result in a percentage of the amount of steering control being calculated out of the

maximum allowed value and also serve as a gauge to determine the relative fuel efficiency of the

system. The more the vehicles turn, the more fuel they burn. Therefore, smaller values of

steering are desired. To compute this value, Heron’s formula was used which states that for any

three points in a trajectory, the amount of curvature can be calculated as an inverse of the radius

of the unique circle through those three points. The exact formula is reproduced in Equation 2.

2
cbas ++

=

abc
csbsass

k
))()((

*4
−−−

= [2]

• a, b, and c are the length of the sides of the triangle.

By calculating the curvature this way, it is possible to get a good estimate of the steering

command u that is being calculated by the control algorithm. This calculation was done in the

post processing of the data instead of extracting the control value from the simulator for several

reasons. First, this specific performance metric was not added until after analyzing the first

c b

a

 35

complete set of data for the first scenario. It was added to penalize high parameter values and to

gain some insight on fuel consumption. Primarily, the simulator was coded to export vehicle

position and time data only. Due to the complex nature of the program, adding additional code to

capture the correct value of u would have been a time intensive process with limited JAVA

experience. Instead, it was decided to estimate u and include the calculations in the MATLAB

script that contained all of the other performance metric calculations. Lastly, for the purposes of

this metric, the exact value is not required. This metric shows how close the control law is to

maxing out the dynamics of the vehicle. As long as the same calculation is done on every

vehicle, the results can be analyzed effectively.

 Next, a script was written which would combine these three separate performance metrics

into one single value (Appendix 6.2). This was done using a weighted average of the three

values. The sum of the values added to 1, and the values ranged from 0.1 to0 .8 to create 36

permutations. In order to identify which parameters had specific effects on specific performance

metrics, a process of varying the weights for each metric was used. Each weight was varied from

0.1 to 0.8 such that all of the weights added up to 1 (Appendix 6.3). A final performance value

for each parameter set was created by summing the products of the individual weights and

performance metrics. After each set of parameters had a computed performance value, these

values could be combined based on initial conditions, route, number of vehicles, or even the

entire scenario. This way, it is simple to compare the results of the simulations as an average for

each set of parameters and determine the relationships, if any, to the performance metrics being

considered.

 36

8.2. Test Matrix Development

To begin the investigation, it was necessary to develop a test matrix which contained all the

values of the parameters that would make the initial search space. This consisted of locating

minimum and maximum values for all four parameters:α ,μ ,η , and 0r . Dr. Justh had done some

previous research to develop a basic mathematical formula used to calculate the maximum 0r

value based on the number of vehicles in the swarm (Equation 3)

1
2 2
sepr n

or −= [3]

where sepr is the separation distance between vehicles when circling and n is the number of

vehicles including the waypoint or convoy in this case. It was then suggested to make the

minimum values a factor of ten below the maximums. For the separation distance sepr , the

vehicle dynamics were used to find a minimum value. Since the GPS waypoint is updated only

once per second, the minimum separation distance of 50 length units was used since the

maximum speed of the UAV models is roughly 40 length units per second. This resulted in a

range of 0.05 to 0.5 forα , η and μ and a range of 50 to 1650 for 0r . These were interpolated to

produce four values per parameter. α , η and μ had the vales of 0.05, 0.15, 0.35, 0.5 and 0r

went from 50, 550, 1100, 1650. Thus each parameter had four different values resulting in 256

permutations in the test matrix for the rectilinear control law investigation.

8.3. GPS Track Data Manipulation

In order to get practical and meaningful results, the control algorithm had to be tested

under a variety of GPS routes, initial starting positions, and with a varying number of vehicles in

the swarm. For the routes, two different paths were logged. The first route was a GPS track taken

 37

from a suburb of Washington D.C. to NRL in Anacostia. The second track was a route from

NRL to USNA. In order to accurately analyze the effects of the different parameters on the

swarm’s behavior, it was necessary to modify the raw GPS data. For this first scenario, basic

simulations were run with the goal of testing the pure rectilinear form of the control law. This

meant that the GPS vehicle needed to move at a relatively constant and steady speed. However,

when these tracks were logged with the GPS in a vehicle, traffic, stoplights and other

obstructions forced the vehicle to stop or slow down significantly. To solve these issues, a

MATLAB script was created that would read the raw GPS data file and filter out any of these

areas where the vehicle was stopped. This process is explained in detail in Appendix 7. This code

was slightly modified to create timestamps for the latitude and longitude positions that make the

convoy travel at a constant speed. This was done by first calculating the distance between two

points and then dividing by a speed such as 40 mph, to get a time between the two points. This

time is added to the current time to get the next waypoint timestamp adjusted according to a

specific speed. The result is a GPS track that has a constant speed and no loitering points.

8.4. Initial Conditions

 For the first scenario, two separate routes were used. Refer to figures 17 for Route 3 and

Figure 18 for Route 4.

 38

Figure 17: Suburb to NRL

Figure 18: NRL to USNA

 39

From these routes, initial conditions were chosen. In order to prevent the occurrence of

discovering one set of parameters that works very well for only one specific case, it was

necessary to test the parameters over a variety of initial conditions. This way, an average

performance over the starting locations could be taken to improve the accuracy of any results

from data analysis. The set of initial condition is documented in the table in Figure 19.

Figure 19: Scenario 1 Vehicle Starting Locations

8.5. Data Analysis of the Simulation Results

Since there is a limitless supply of data possible for this project, it was necessary to decide

what type of conclusions would be drawn from the data. This would limit the time spent on a

specific scenario and allow time for the investigation of the other scenarios by directing the focus

of the analysis. The following conclusions were deemed the most appropriate for the goals of this

project.

8.5.1. 0r and Collision Avoidance

From the data averaged over all sixteen trials, it was clear that having a separation

distance equal to the minimum vehicle separation distance used to determine the collision metric

 40

greatly decreased the swarm’s performance. While several factors such as convoy speed and

direction play a role in the intra-vehicle separation, setting a vehicle separation distance equal to

the collision distance results in a large increase in chance of collisions, as expected. However, if

the separation distance is increased to twice the minimum collision distance, the risk of collisions

stays low and in most cases is zero. This parameter was the largest contributor of trials with poor

performance because of the significant increase in collision percentage when 0r was roughly

equal to minr (the minimum range between UAVs at which collisions occur). As 0r continued to

become greater than minr , the collision percentage dropped to 0 in the majority of cases. However,

once 0r became roughly twice minr , the 0r parameter played a less noticeable role in overall

performance of the swarm.

8.5.2. 0r and Convoy Range

One of the unexpected results from the data was the trend that the minimum value of 0r

did not result in the lowest convoy range percentages. On average, the parameter sets with 0r

equal to 550 had slightly lower convoy range percentages than the sets when 0r was equal to 50.

However, when 0r was greater than 550, convoy range did increase as expected. The one clear

difference between the parameter sets with 0r equal to 50 and the ones with 0r equal to 550 was

the collision percentage. Chances of collision were much higher when 0r was equal to 50. This

may have caused the sets with 0r equal to 550 to have a slightly lower convoy range percentage.

These vehicles were spaced far enough that they did not need to make any drastic maneuvers to

avoid collision and were thus able to focus more on their convoy separation distance. When 0r

was 50 and chance of collision was high, the vehicles had to spend more energy not crashing

which resulted in the vehicles not staying as close to the convoy as expected. Also, as discussed

 41

earlier, the control law is a sum of behaviors which does not result in precise and predictable

behavior. While the user may want the vehicles to be very close to the convoy, it does not appear

possible that the rectilinear form of the control law is able to support these desires. It appears that

there is a limitation on how close the vehicles are able to stay to each other while avoiding

collisions.

8.5.3. Steering Energy Analysis

Also of note was the apparent relationship between the separation distance 0r and the

amount of steering energy used during the simulation. As the separation distance increased, there

was a noticeable drop in the amount of steering energy used once 0r was no longer equal to the

minimum collision distance. The vehicles expended much more energy when 0r was 50 trying to

avoid collisions. As the distance between the vehicles decreases, the variable jkr in the control

law is also decreased causing the output of the control law, u, to grow. As the control law

demands steering commands with smaller magnitudes, the amount of steering energy needed is

also decreased. When 0r was increased and the chance of collisions was minimal, steering

energy remained more consistent as 0r increased.

After evaluating the data, it is evident that larger values of the parameters led to larger

values of steering energy. Specifically, high values of μ and α caused much larger values of

steering energy with relatively lower values ofη . Thus, when the control law is weighted so that

the vehicles are strongly driven perpendicular to a baseline (η is high) while their heading and

spacing behaviors are relatively weak, the resultant behavior utilizes small amounts of steering

energy. However, when μ and α are given larger values and the control law weights heading

and separation behavior high, the resultant behavior uses much more steering energy to ensure

 42

that these behaviors are met. Thus, if direction and vehicle separation are important behaviors for

a specific scenario, the result is a decrease in fuel efficiency as seen by the use of more steering

energy.

8.5.4. Sensitivity of the Minimizing Parameter Set

One of the conclusions drawn from this analysis was the apparent sensitivity of the global

minimum value with respect to the weights of the performance metric. It was necessary to

determine how the global minimum changed if the weights of the final cost function were

adjusted to place varying levels of emphasis on the individual metrics. This would show which

parameter sets performed better when different performance metrics were emphasized. It also

showed how well the global minimum parameter sets responded to changes in cost function

weighting. To determine this, a script file was used which located the global minimum parameter

set while varying the weights of the cost function. (Appendix 6.3)

From this data collected across all 16 initial conditions, there were two parameter sets

which were global minimums. Parameter set 21 (μ =0.2, α =0.2, η =0.05, 0r =50) appeared eight

times and parameter set 85 (μ =0.2, α =0.2, η =0.05, 0r =550) appeared 28 times. Performance

wise, parameter set 21 had lower convoy range percentage but had a very high collision

percentage. Parameter set 85 had a higher convoy range percentage but a zero collision

percentage. Both parameter sets had similar steering energy percentages. Parameter set 85 was

the global minimum for the majority of the cost function weights and set 21 only appeared when

collision was weighted very low and convoy range was weighted higher. Since only two trials

appeared as the global minimums as the cost function weights were manipulated, it can be

concluded that the parameter sets are not sensitive to the weighting of the performance metric.

The same few trials repeatedly outperform the other trials as the weights are changed and

 43

continue to result in strong performance. This shows that these two parameter sets are not only

the top sets for certain situations, but they create behavior that is ideal across all of the

performance metrics. Parameter set 85 would be a very strong choice of parameter values for use

in a purely rectilinear scenario.

Also of note were the parameter values that the global minimum trials were comprised of.

For these parameter sets, μ was 0.2, α was 0.2, η was 0.05 and 0r was 50 or 550. Clearly,

these gain values yielded very good swarm performance and the controller is very sensitive to

the values of the gains. Gain values were kept low which resulted in low steering energy

performance. In general, when the highest weight was given to α and μ equally and the lowest

weight given toη , the best performance was observed. However, because η was always .05 for

optimal trials, there were no parameter sets which contained every value strictly inside the test

matrix. Perpendicular alignment to the baseline has a very small influence on overall swarm

performance but the ability for the vehicles to maintain a constant separation distance is critical

to increasing the performance of the swarm. The η term probably has a larger influence in the

beginning of the simulations, moving the vehicles from initial conditions to steady state.

However, as the vehicles reach this steady state, they rely more on α and μ for improved

performance.

While parameter set 85 had a high convoy range percentage relative to set 21, it must be

taken into account that it had a higher 0r . Parameter set 85 had an 0r of 550 and a convoy range

of 52% which corresponds to an average distance of about 800 distance units. Parameter set 85

was able to maintain an average distance much closer to its 0r distance compared to parameter

set 21. The discrepancies between the convoy range percentage and 0r may be due to the

collision percentage as discussed earlier, or a relative speed difference between the convoy and

 44

the vehicles. There may be some portions of the convoy track where the vehicles simply can’t

keep up with the convoy and fall out of range. It should also be noted that while 0r changed for

these two parameter sets, the values of their gains did not change at all. It seems that these

specific values offer ideal performance regardless of the separation distance. The gain values and

0r are not dependent on each other. The gain values offer the best performance and the 0r value

dictates the convoy range, collision risk, and steering energy to be used.

8.5.5. Performance Around the Global Minimum

In order to get a stronger idea about the behavior of the swarm with respect to each of the

parameters, one parameter at a time was varied around the global minimum and the effects on

each of the metrics and the overall parameter performance was observed. Parameter set 85 was

chosen since it appeared most often as the top performing parameter set. Parameter set 85 had a

collision percentage of zero which made analysis of the parameter effects on collision avoidance

impossible. In order to examine the effects of the parameters on collision avoidance, set 21 was

used.

As μ became larger or smaller than 0.2, the convoy range percentage increased as well

the overall performance. The goal was to minimize the performance percentages; therefore an

increase in the performance percentages resulted in degraded swarm behavior. When μ was

less than or equal toη , steering energy was low. However, when μ was given the highest weight

in the set, steering energy increased. This shows that as a greater emphasis is placed on heading

alignment, more steering energy is needed. When μ was 0.35 or less, collision percentage was

unaffected. Only when μ was given the maximum value of 0.5 was there a significant decrease

in collision percentage. This shows that as the heading alignment term is given a stronger

weighting, the chance of collisions decreases.

 45

As α became larger or smaller than 0.2, the convoy range percentage and overall

performance values increased. As α increased from 0.05 to 0.5, the risk of collision decreased

while steering energy increased. As α gets a higher weight, there is a smaller chance of

collisions and more steering energy is used. The increase in steering energy could be a result of

both the desire of the swarm to maintain a certain distance as well as preventing collisions. The

increase in steering energy due to α is not as large as the increase due toη . This means more

steering energy is used aligning heading than maintaining proper separation distance.

As η decreased from the value of 0.5 to the minimum value of 0.05, convoy range

percentage and overall performance values decreased. As less emphasis was put on the

perpendicular baseline alignment, the vehicles were able to maintain closer distances to the

convoy. If this behavior is minimized by having a low parameter value, the vehicles are allowed

a greater range of motion. The swarm focuses on separation distance and heading rather than

being aligned with the convoy. This behavior allows the swarm to stay at a closer distance to the

convoy. Steering energy remained relatively unaffected while η was 0.05 to 0.35 and only

increased slightly when η was given the maximum value of 0.5. This shows that the η behavior

is not a large factor in determining the movements of the vehicles. Once the vehicles are in a

steady state formation, the α and μ parameters have much more control over the maneuvering

of the vehicles. There was no clear trend in the data for collision avoidance. It seems that this

behavior has little control over this performance metric when compared with the other

parameters.

Lastly, variations with respect to 0r were analyzed and trends similar to those mentioned

earlier were discovered. As 0r increased, the collision avoidance dropped drastically after

0r > minr and steering energy dropped as well. Convoy range percentage increased as 0r increased,

 46

which is expected. As one moved away from an 0r of 550 in either direction, overall

performance percentage increased. It was also shown that once 0r is greater than minr and the

collision percentage drops to zero, steering energy remains roughly the same. This shows that as

the size of the orbit increases, the increase in the amount of steering energy is not significant.

The α and μ parameters have a much greater effect on steering energy than 0r .

8.5.6. Comparison of 2 and 3 Vehicle Trials

One of the goals of this analysis was to determine if implementing a gain scheduling

process that modified the gains of the control law based on certain physical conditions of the

system was an efficient method to create consistent swarm performance. One case where this

could be beneficial is if the swarm size were decreased either due to a malfunction or a crash of

one of the vehicles. It may be possible that certain parameter sets offer better behavior for

different size swarms, and thus, the user would want to switch between parameter sets as the

swarm size changed.

When the performance averages for all trials where the swarm was 2 vehicles were

analyzed across varying weights of the cost function, parameter sets 21, 41, 85, and 106 were

identified as global minima. For these parameter sets, μ ranged from 0.2 to 0.35, α from 0.2 to

0.35, η ranged from 0.05 to 0.2 and 0r ranged from 50 to 550. These gain values are slightly

higher and have a larger range of values than the sets for all trials averaged together. This may be

due to the fact that since the swarm size is low, performance can be enhanced by using higher

gain values. There is less interaction between vehicles which results in less average steering

energy being used and also a smaller risk of collision. This leads to the conclusion that as the

swarm size increases, the values of the parameters are decreased. For all of the parameter sets, μ

and α were always equal. Also, η was always the smallest value. η only increased from 0.05 to

 47

0.2 when 0r increased from 50 to 550 and α and μ increased from 0.2 to 0.35. The increase in

0r had no effect on the α and μ parameters. Both parameter sets 21 and 85 appeared in both the

2 vehicle minimum parameter sets as well as the sets for all trials averaged together. Parameter

sets 41 and 106 were slightly more aggressive versions of sets 21 and 85.

Analysis of the 3 vehicles trials revealed results more in line with the averages of all 16

trials together. Parameter sets 21 and 85 were global minimum as the cost function weights were

varied with μ equal to 0.2, α equal to 0.2, η equal to 0.05, and 0r equal to 550 and 50. Both

parameter set 21 and 85 appeared in the 2 vehicle global minimum sets. All of the gains become

more sensitive when another vehicle is added. The addition of the extra vehicle resulted in a

decrease in the magnitude of the gains and an increase in 0r . This results in a decrease in collision

percentage when compared to the results from the 2 vehicle data sets. This is due to the fact that

the separation distance is always 550 in the 3 vehicle case and split between 50 and 550 in the 2

vehicle case. The vehicles are farther apart for the 3 vehicle minima which have a stronger

influence over the collision behavior than the value of the gains. This results in fewer collisions

for the global minima parameter sets, even though there are more vehicles. While the addition of

a vehicle may result in fewer collisions, it also drastically increases the average range from the

convoy and increases the average steering energy as well. The paths of the vehicles are less

flexible as more vehicles are added and in order to prevent collisions, range to the convoy is

sacrificed.

When the top performing parameter sets for 3 vehicles are evaluated in the 2 vehicle

conditions, they still perform well with set 85 in the top 5 parameter sets and set 21 in the top 25

depending on the cost function weights. However, when the 2 vehicle parameter sets are

analyzed for 3 vehicle scenarios, they perform poorly, roughly in the middle of the test matrix.

 48

Only parameter set 85 performs consistently well regardless of the number of vehicles in the

swarm. As the size of the swarm increases, the parameter sets begin to match those of the top

parameter sets for all of the trials. While there may be a slight increase in performance by

switching from the top parameter set to one specific for 2 vehicles, keeping the original

parameter set for 3 vehicles will result in very similar performance. Thus, it is not clear that gain

scheduling would be necessary for the case where the swarm is reduced in size from 3 to 2

vehicles based on this data. However, if the swarm is initially at 2 vehicles and parameter values

set for 2 vehicles are used and the swarm size increases, it would be beneficial to change the

parameter values to a set with better performance with a 3 vehicle sized swarm.

While moving from 2 to 3 vehicles results in some minor changes, what will happen as

more vehicles are added to the swarm? From this analysis, the trend appears that the 0r value

would increase to the largest value possible while the magnitude of the gains would decrease. As

vehicles are added, the parameter sets would approach the same values as those found in the

global minimum of the largest swarm size. Thus, if one took the global minimum for the largest

swarm and used those same values for swarms of smaller size, there should not be any

significant loss in performance. However, if the global minimum for a small vehicle case is

applied to a large swarm, there would be a significant and detrimental decrease in performance.

8.5.7. Comparison of Route 1 and Route 2

It was also necessary to compare the performance of the swarm over the different routes

that were used. If there were clear preferences for certain parameter sets based on the physical

attributes of the route, it is possible that certain gains could be selected based on these properties.

By examining the two routes, it is clear that Route 2 followed a straighter path and had less

extreme turns when compared to Route 1. Therefore, Route 1 caused the swarm to maneuver

 49

more which would lead to more collisions, more steering energy and possibly a further convoy

range percentage. The minimum parameter sets for the two routes were found as the performance

weights of the cost function were changed.

Route 1 had parameter set 85 as a minimum all 36 times. μ equaled 0.2, α was 0.2, η

was 0.05 and 0r was 550. This showed that the performance of all the parameter sets in relation

to Route 1 was extremely sensitive. For all cost function weighting, parameter set 85 performed

the best. This also means that parameter set 85 had the best performance in all three performance

metrics. It may be possible that this parameter set is highly flexible in the formations that it

creates which allows the swarm to be responsive to the changes on convoy direction.

Route 2 contained global minima parameter sets with more variability. Parameter set 1

appeared once, set 21 appeared eight times, set 41 appeared once, set 85 appeared twenty times

and parameter set 93 appeared 6 times. Here, μ ranged from 0.05 to 0.35, α from 0.05 to 0.35,

η was 0.05 and 0r ranged from 50 to 550. When the route requires less maneuvering, the control

law is able to use a wider variety of gain values. These sets also reflected the observation that the

best performance occurs when α and μ are equal and η is small. When 0r was 50, the μ and

α values ranged from 0.05 to 0.35. However, when 0r was 550, α and μ were 0.2. This shows

that when the vehicles are required to stay closer to each other and the convoy with a small 0r

value, which increases the risk of collisions, the parameter sets become relaxed to support a

wider range of swarm behaviors. This wider range allows the swarm to remain close to the

convoy while reducing the chances of collision along with steering control.

Only parameter set 85 appeared in both the Route 1 and Route 2 global minima. When all

sixteen trials are averaged together, set 85 is the global minimum a majority of times, but the

appearance of parameter set 21 may be due to its performance when the route is more direct.

 50

Parameter set 85, a global minimum for both routes, appeared when the convoy range percentage

weight was low and the steering performance was emphasized. The convoy range percentage

was around 46% for Route 1 and jumped to about 57% for Route 2 while steering energy

remained roughly the same. This prevented parameter set 85 from being the global minimum for

more sets in Route 2.

It appears that as the route becomes less complex, parameter set 85 actually has more

trouble following the convoy than when the route requires more maneuvering. This contrasts

with the other parameter sets. For sets 1, 21, 41, and 93 the convoy range percentage decreases

from Route 1 to Route 2. This is logical since Route 2 requires less maneuvering. This allows the

vehicles to get closer to the convoy without a large risk of collisions. Since the convoy path is

fairly linear, the vehicles can move into a steady state position and remain in that position

without much readjustment. This reduces the chance for collision and the overall steering energy

as well. While parameter set 85 improves performance when the route is more complex, the

majority of the other parameter sets have better performance when the route is more linear.

Parameter set 85 was able to keep the vehicles close to the convoy with minimal steering energy

and without the high chance of collisions that are common with parameter sets with a 0r equal to

50. The ability of parameter set 85 to adapt to a variety of routes is a primary reason that it

appeared as a global minimum when all of the trials were averaged together.

When comparing the performance metrics of the global minima for the two routes, there

are several trends. First, the average range to the convoy is higher for Route 2 when compared to

Route 1. By using a more linear route, relative speed differences are exaggerated, resulting in an

increased convoy range in Route 2. Since for both routes, the steering percentages are roughly

the same, the vehicles are not maneuvering more to respond to the convoy. If there is a large

 51

speed difference but the convoy maneuvers repeatedly, the vehicles are given time to catch up.

However, if the convoy follows a straight path, the vehicles have no chance to catch up and

continue to fall behind the convoy.

On average, collision slightly decreased for Route 2 when compared to Route 1. In Route

1, the vehicles are forced to maneuver more to stay headed in the same direction as the convoy,

resulting in an increased use of steering energy and leading to a higher risk for collision. If the

convoy path was straight in one direction, it would be expected that the steering energy would go

to 0 once all the vehicles had reached steady state positions and headings and therefore, the risk

of collisions would also go to 0. This seems to be similar to what happens in Route 2. However,

as the convoy is constantly changing direction in Route 1, the swarm is forced to respond. Thus,

Route 2’s lower level of complexity reduces collisions.

When comparing the parameter ranges for the global minima for the two routes, it is

evident that these ranges closely mimic those of the parameter sets that are local minima when

all 16 trials are averaged together. μ remains 0.2 for Route 1 and ranges from 0.05 to 0.35 in

Route 2. However, when 0r is 550 for Route 2, μ remains 0.2, which is the same when all trials

are averaged together. This contrasts with the analysis of the two versus three vehicle scenarios

where μ ranged from 0.2 to 0.35. It appears that μ is more sensitive to the number of vehicles

rather than the properties of the route of the convoy when 0r is 550. This could be due to the fact

that as more vehicles are added, there are more headings to align, and a greater weight is needed

on this behavior to produce effective performance from the swarm.

Lastly, the magnitude of 0r was varied between the routes. Where Route 1 had every

parameter set with a 0r equal to 550, Route 2 had 0r values split between 50 and 550. Since

Route 1 has more maneuvering, a higher separation distance was needed to prevent collisions

 52

and minimize steering energy as much as possible. This contrasted with Route 2 where the

vehicles could afford to be closer together with a smaller 0r since there were less turns and thus

fewer opportunities for collisions.

Overall, Route 2 was able to use a wider range of gain values and smaller 0r when

compared to the parameter values for Route 1. The flexibility of gain values allowed the

controller to decrease steering energy while bringing the vehicles closer to the convoy with a

smaller 0r . This was done at the expense of possibly increasing collisions between vehicles. This

was possible since Route 2 was less complex compared to Route 1 and the chance of collisions

was less likely.

9. Foot Patrol Scenario – Circular Control Investigation

The next scenario for analysis was designed to test the parameters of the circling form of

the control law. To transition to this form of the algorithm the heading alignment term μ is

dropped. If the user desires the vehicles to maintain a circular orbit, the vehicles should not have

their headings aligned. This prevents problems when vehicles are on opposite sides of the orbit

and facing opposite directions. By removing the alignment behavior, the control law is able to

support stable circling formations which are useful when tracking slow moving convoys or foot

patrols. Thus, convoy routes that mimicked foot patrols were created in order to isolate the

circular control law for analysis.

9.1. Convoy Trajectory

 For this scenario, the convoy needed move at a slow and steady pace simulating a foot

patrol. Having obstacles in the route of the convoy was no longer an issue. The convoy would be

moving at such a slow speed that obstacles would not have an affect on the swarm’s

 53

performance. To get the GPS data, a path walked around USNA was recorded and is shown in

Figure 20. Next, a route take at a running pace was logged in downtown Annapolis and is shown

in Figure 21.

Figure 20: USNA Foot Patrol

 54

Figure 21: Annapolis Foot Patrol

Specifically, a goal of this scenario was to determine at which convoy speed the circling

form of the control law began to lose stability. This was tested by using foot patrols at two

different speeds. This knowledge would prove useful when attempting to create a blending

algorithm based off of the convoy’s speed. It was also necessary to add a five minute delay to

give the vehicles time to maneuver into a stable orbit before the convoy started moving. This

resulted in the convoy remaining stationary for 5 minutes and then beginning the route. The code

used for this modification of the GPS tracks can be seen in Appendix 7.

9.2.Initial Conditions

 Similar to Scenario 1, this Scenario had a breakdown between 2 and 3 vehicles, the two

routes discussed above, and the four sets of initial starting locations for the vehicles to produce

16 total trials. The starting locations of all the vehicles are depicted in the table in Figure 22.

 55

Figure 22: Scenario 1 Initial Conditions

9.3.Data Analysis

 Since the circling form of the control law did not contain the μ gain, the data analysis

for this scenario was a simpler process and it was more clear which behaviors and performance

metrics were affected by changes in specific parameters.

9.3.1. 0r and Collision Avoidance

 Similar to the trend observed in the rectilinear control law, as the 0r , or separation

distance between the vehicles is decreased, there is an increase in the chance of collisions

reflected by an increase in the collision percentage. Overall, the circling form of the control law

established formations that had less chances of collision when compared to the rectilinear form

of the control law. This can be explained by the types of formations that the control law forms

produce. While neither form of the control law designates specific vehicles to occupy specific

locations, they do control the shape of the swarm through the implementation and weighting of

the behaviors that comprise the control law. For the rectilinear case, the resulting shape is a

constantly evolving formation that adapts to the locations of the vehicles and the convoy. The

circular form of the control law lends to swarm formations of a much more constant and stable

 56

shape. This formation is much less sensitive to any abrupt direction changes of the convoy when

compared to the rectilinear law. It also results in swarm behavior that once established, has zero

chances for collision if the steady state formation is able to be kept. The only real chance of

collision for this scenario occurs as the vehicles move from their initial positions into the steady

state circling formation. While 0r does have an affect on collision percentage due to the fact that

the closer the vehicles are supposed to be, the more likely they are to collide, the behavior

generated by the circling control law lends itself to collision free formations.

9.3.2. 0r and Convoy Range

 Also of note was the general relation between 0r and the average distance to convoy

percentage. Logically, as 0r is decreased, the radius of the circle that is created by the circling

form of the control law decreases, and the vehicles are able to remain in orbit at a closer distance

to the convoy. This was reflected in the data as well. When 0r was small, the vehicles maintained

extremely close ranges to the convoy. As 0r , increased so did the average distance to the convoy.

When 0r was about equal to the maximum sensor range of 1 mile, average distances were about

98% in range. This meant that the vehicles were maintaining an orbit right at the limitations of

the sensor. One observation from this scenario was the precision of the control law with respect

to orbiting distances. At smaller values of 0r , the actual orbit was larger than the prescribed 0r .

Only when 0r was the largest value in the test matrix, did the actual orbit radii match with the

prescribed 0r value. The table in Figure 23 summarizes the differences between the prescribed 0r

value and the resulting average orbit radius as well as the percent error difference.

 57

0r
(yards)

Average Convoy
Range Percentage (%)

Average Orbit
Radius (yards)

Percent
Error (%)

50 15.56234 273.8973 81.745
550 55.8735 983.373 44.07

1100 93.3624 1643.18 33.0566
1650 97.50476 1716.084 3.8508

Figure 23: Prescribed 0r Values Compared to Experimental Values

 When 0r is low, there is a large margin of error 0r and the actual separation distance

calculated from the simulations. Also at a low 0r level, there is a larger difference between the

average convoy range values between the parameter sets. Some range as low as 6% while others

are as high as 40%. However, as the size of 0r is increased, the percent error between the 0r

parameter and the range to convoy percentage decreases until at an 0r about equal to the

maximum range to convoy, the percent error is effectively 0. Also as 0r is increased, the

variation between the parameters decreases. This means that maintaining a very tight orbit as

prescribed by a low 0r value is much more sensitive to the gain values than the case when 0r is

large. As 0r is increased, the vehicles are given more room to maneuver with a larger orbit. Also,

as the convoy moves, the relative distance between the convoy and the vehicles is much larger

than the case when the vehicles keep a tight orbit. When a tight orbit is used, the vehicles must

respond faster and in a more energy demanding manner to keep the tight orbit around the convoy

and this increase in maneuver will rely on precise gain value. Thus, as 0r increases, the average

range to the convoy increases as expected, but the behavior is more representative of the

prescribed 0r , more consistent, and less dependent on the gain parameters.

 58

9.3.3. Steering Energy

 As seen in the first scenario, as the values of the gains increase, the amount of steering

control used increases as well. However, in the circling form of the control law, the steering

energy was much more closely related to the value of α as opposed toη . When the data was

sorted to locate those parameter sets with the lowest amounts of steering energy used, the best

performing parameters sets all had very low values of α (0.05 or 0.2), but η ranged from 0.05

to 0.5 in the top 10 parameter sets. This is most likely due to the fact that α controls the size of

the orbit that the vehicles form. While η may be important in getting the vehicles to the right

positions and equally spaced around the orbit, it is the α parameter which determines how tight

that orbit will be. This is directly related to steering energy since the tighter the orbit, the more

the vehicles will have to turn and the more energy they will use. This data appears to support

earlier conclusions that the η parameter is most effective when establishing the steady state

formation of the vehicles and loses relevance once this position is generally established.

 Also evident was a correlation between 0r and the amount of steering energy used. As

0r increases, the size of the orbit increases and the vehicles use less steering energy. This

combined with the weight of α were the most influential factors that caused either very high or

very low levels of steering energy to be used. Thus, to increase fuel efficiency, a user could

lower α which would result in an orbit larger than specified by 0r , or increase 0r directly.

However, it should be noted that increasing 0r has a much more predictable affect on the size of

the orbit than decreasingα .

 59

9.3.4. Sensitivity of the Minimizing Parameter Set

 The script in Appendix 6.3 was used to compute the global minimum parameter set for

all of the trials as was done before for the rectilinear control law. This produced parameter set 1

seven times, set 2 two times, set 6 thirteen times, and set 7 fourteen times. For these parameter

sets, α ranged from 0.05 to 0.2, η ranged from 0.05 to 0.35 and 0r was always 50. This was

initially surprising since the smallest value of 0r was consistently in the top performing

parameter set. It would be expected that the gains achieved by creating a very tight orbit around

the convoy and keeping the vehicles close would be offset by an increase in collision percentage

and steering energy. As discussed previously, the separation distance only affects collision

percentage as the vehicles are moving to their initial positions. In the top performing parameter

sets, only set 7 had a non-zero collision percentage and even this percentage was less than 0.5%.

It is evident that for the circular form of the control law, the initial conditions create the only

cause for collision concern as vehicles transition into the steady state orbit.

 These parameter sets also showed that swarm behavior was more closely related to 0r

while it was fairly insensitive to the sizes of α andμ . This shows that while steering energy

may have increased for the smaller 0r values, this increase was not as significant as the decrease

in convoy range. By using a small 0r and a smallα , the swarm was able to stay very close to the

convoy while still using relatively little steering energy. When 0r was 50, even the largest

convoy range was not as large as the smallest convoy range for the sets when 0r was 550.

However, certain values of α and μ used with an 0r of 50 got values of steering energy

comparable to the parameter sets with 0r equal to 550. The results also reinforced the concept

that as α decreased, steering energy decreased, but convoy range increased as a penalty. In

 60

general, it was evident that the benefits of using a small 0r value outweigh any steering penalty

associated with the tighter orbit. It may be possible to make 0r so small that collisions do occur

and steering control is maxed out, but this is not practical. Having 0r at the minimum collision

distance proved that this parameter has no real impact on collision and provides the best overall

performance.

 None of the top performing parameter contained all three gain values strictly inside the

test matrix. This was due to the fact that a small 0r was the strongest indicator of swarm

performance. This is not a large problem because researching parameter sets with an 0r less than

the collision distance is not practical. Any benefit in performance would not be worth an

increased chance of collision. Parameter sets 6 and 7 had values of α and η that were both

within the interior of the test matrix. These sets also made up the majority of the minima as the

cost function was varied. These parameter sets had extremely low convoy range percentages as

well as low collision and steering percentages. The performance for these two sets was about

equal in all areas. The only case when these sets were not the global minimum was when steering

control was explicitly emphasized, however, they were the top performers when all metrics were

weighted evenly or preference was given to collision or convoy range. These sets also reiterated

the trend that steering energy is most directly related to increases in α viceη . There were much

larger jumps in steering energy as α increased than compared to increases inη . Overall, the

circular law did not seem to be any more or less sensitive to cost function weighting than the

rectilinear law.

 61

9.3.5. Performance Around the Global Minimum

 Since none of the top performing parameter sets contained all gain values within the

test matrix, parameter sets 6 and 7 were used to evaluate the swarm performance around a global

minimum since they contained values of α and η which were inside the test matrix. To analyze

the swarm behavior on a per parameter basis, all parameters were held constant while only one

was varied and the changes in the performance metrics were observed.

 First, changes in α were observed. As witnessed before, steering energy increases in a

fairly regularly pattern as α increases. Since 0r for both of these parameter sets is 50, it would

be expected that the vehicles remain close to the convoy. When α is at its lowest value at 0.05,

convoy range is high at about 35%. When α increases to any larger value though, convoy range

drops to about 8%. For both parameter sets, convoy range is smallest when α equalsη . As

discussed previously, if α is given a small weight compared toη , the resulting behavior does

not create a stable orbit with a radius close to 0r . However, when α is increased to the same

level ofη , the behaviors are weighted equally, and the resulting orbit has a radius that is much

more reflective of the 0r specified. Also of note is the fact that once α and η are on the same

orders of magnitude, increasing α has no further impact on the convoy range.

 Similarly, if α is less than or equal toη , collision percentage is 0. Since there is no

heading alignment term in the circular control law, η is the only behavior which prevents the

vehicles from colliding. Since 0r is about equal to the collision distance, α acts to increase the

chance of collisions by bringing the vehicles closer to the collision distance and 0r . Therefore,

when α is given a higher weight thanη , the resulting behavior places a larger emphasis on

separation distance and there are collision risks.

 62

 Next, the response as η is modified was observed. As shown in the α observations,

the convoy range is minimal if α equalsη . However, where α had a large impact on convoy

range based on its relation toη , η seems to have a much smaller impact. As η moves, the

differences in convoy percentages changes by only about 6% in either direction. Also observed

was the relation betweenα , η and collisions distance. When η was given a larger value thanα ,

collision percentage dropped to zero. However, when α was greater than or equal toη , collision

percentage became a non zero number. Lastly, as η was changed, the values of steering energy

varied by less than one percent. As seen earlier, steering energy is most directly correlated to the

α gain and the size of η has no clear affect.

 Lastly, the swarm behavior with respect to 0r was observed. While it was not possible

to asses the performance trends when 0r decreased from the value of 50 which parameter sets 6

and 7 contained, it was not necessary since these values would not be practical in a real world

application. Again it was observed that as 0r increases, the convoy range increases as expected.

Also, it was noted that as the orbit becomes larger, there is less error between the radius of the

orbit measured by convoy range, and 0r . Also as 0r increased, the collision percentage decreased.

There was a noticeable effect on steering energy as 0r decreased similar to the effect α had on

convoy range. When 0r was 50, steering energy was around 11%. However, once 0r increased,

steering energy dropped to about 2% and stayed constant as 0r continued to increase. This shows

that when the vehicles maintain a small orbit, they must use significantly higher amounts of

steering energy. However, as 0r is increased beyond 50, the vehicles maintain a much wider

 63

orbit which requires minimal steering energy to maintain. Once 0r is greater than the minimum

collision distance, increasing α has a stronger affect on steering energy.

9.3.6. Comparison of 2 and 3 Vehicles

 The global minimums for the 2 and 3 vehicle cases were then analyzed to determine if a

form of gain scheduling would be appropriate when switching between these situations. For all

the 2 vehicle trials, parameter set 1 appeared 6 times, set 6 appeared nine times, seven appeared 3

times, 8 appeared 3 times, and 12 appeared 15 times. Parameter sets 1, 6, and 7 were all top

performing parameter sets for the 2 and 3 vehicle cases combined. Parameter set 12 was

dominant in the 2 vehicle trials even though it did not appear in the set for all trials. For all of the

2 vehicle trials, α ranged from 0.05-0.35, η ranged from 0.05 to 0.5, and 0r was always 50.

Overall, these gain values were more aggressive than those of the parameter sets for all trials

combined. With fewer vehicles than the 3 vehicle case, there is less chance of a collision and less

steering energy used so the gain values are able to fluctuate into higher regions. While the α and

η values were fairly insensitive, it was again seen that for the best performance, 0r of 50 was the

best choice. For all of these parameter sets, there was zero chance of collision. The trend that as

α increases, range to convoy decreases while steering energy increases was also apparent. It was

also noticed that when α was constant and η increased, there was an increase in convoy range.

This effect was not noticed when all the trials were averaged together, so it may show that η

plays a stronger role when only 2 vehicles are used compared to 3 vehicles.

 When the 3 vehicle trials were averaged together, parameter set 1 appeared ten times,

set 2 appeared twice, set 6 appeared 12 times, and set 7 appeared twelve times. α ranged from

0.05-0.2, η from 0.05-0.35, and 0r was 50. These values were also identical to the parameter

ranges for all sixteen trials averaged together. When compared to the 2 vehicle trials, the 3

 64

vehicle trials had a higher average convoy range and steering percentages and all but one

parameter set had zero collision percentage. As more vehicles are added, the stable orbit

increases in size and more steering energy is needed to maintain the orbit. This seems

contradictory to previous results that showed that as orbit size increases, steering energy

decreases. For the 3 vehicle cases, this is true. But when trials 6 and 7 were compared between

the 2 and 3 vehicle cases, their convoy range was about the same but for the 3 vehicle case, there

was a noticeable increase in steering energy. This may be due to the period of time for the

vehicles to get into position. As more vehicles are added to the swarm, more maneuvering is

necessary before the vehicles can find the steady state orbit.

 When determining if gain scheduling is necessary, parameter set 6 and 7 were

compared for the 2 and 3 vehicle case. These sets appeared in the 2 and 3 vehicle cases as well as

when all the trials are averaged together. Both perform well regardless of the number of vehicles

in the swarm and cost function weighting. While parameter set 12 appeared more for the 2

vehicle case, it did not appear at all in the 3 vehicle case. In the 3 vehicle trials, parameter set 12

was able to keep the vehicles close to the convoy, but at the cost of a noticeable increase in

steering energy which prevented it from appearing as a top trial for 3 vehicles. Parameter set 12

had very close performance to both parameter sets 6 and 7. While sets 6 and 7 may not be the

absolute best for every cost function weighting permutation, they still performed well. This fact,

combined with their performance in the 3 vehicle trials would conclude that choosing either of

these parameter sets would be safe for both the 2 vehicle and 3 vehicle case. These sets would

also still perform strongly if the swarm size was manipulated during the mission. Due to these

results, gain scheduling would not produce any noticeable benefits for the circling scenario.

 65

9.3.7. Comparison of Route 3 and Route 4

 The top performing parameter sets were then compared for the two separate routes to

see how the swarm responded to changes in direction and varying convoy speeds. Route 3 had

parameter set 1 six times, 2 three times, 6 fourteen times, and 7 thirteen times. When route 4 was

averaged together, parameter set 1 appeared 8 times, set 2 appeared once, set 6 appeared fourteen

times, and set 7 appeared thirteen times. α ranged from 0.05-0.2, η from 0.05-0.35, and 0r was

50. These were the same trials that were global minimums for all 16 trials averaged together and

had the same parameter ranges.

 From these results, it is evident that the amount of maneuvering the convoy performs

has no strong impact on the performance of the swarm. Both routes had the same parameter sets

showing that the swarm performance is insensitive to the convoy route. This is much different

than the rectilinear case where the route was a large factor in the ability of the swarm to follow

the convoy effectively. If a mission planner was preparing to use UAV swarms for an all foot

patrol mission, they would not have to worry about the complexity of the route if the loitering

formation was used.

10. Obstacles En Route - Blended Control Investigation

 In this scenario, the main objective was to create a more realistic convoy trajectory with

varying speeds which represented practical military convoy characteristics. In the real world,

military convoys do not always travel at a constant speed. When traveling in and urban

environment, especially in a conflict zone, unforeseen events may cause the convoy to slow

down or even stop progress. In these situations, the UAVs must still be able to provide accurate

and reliable security in the form of sensor coverage. If only the loitering form of the control law

 66

was used, the vehicles would quickly fall behind when the convoy moves at a high speed.

However, if only the rectilinear form of the control law was used, the vehicles would scatter and

move in a disorganized and inefficient fashion when the convoy speed slows significantly or

stops suddenly. To solve this control issue and in order to asses the ability of the control law to

operate in a more realistic convoy scenario, a blending of the rectilinear and loitering forms of

the control law was investigated. This blending was based on several factors including the speed

of the convoy, the distance between the vehicles and the convoy, and the turn bearing rate of the

convoy relative to the UAVs.

10.1. Developing Blending Functions

 In order to find the best blending method, several blending functions were used. These

varying functions determined how quickly or slowly the blending transition between loitering

and rectilinear occurred. Based on the speed of the convoy at each time step, a parameter called

trans was calculated. The final steering command was then calculated using Equation 4.

 u = trans*u_rect + (1-trans)*u_circ [4]

When pure rectilinear control is desired, the trans parameter is a value of one. A trans value of 0

is used for pure circular control. These values occur when the convoy speed is below the

minimum specified value or above the maximum specified value. In between these minimum and

maximum convoy speeds, several different functions were used to calculate the value of trans

and apply the blending.

10.1.1. Linear Function

 First, a linear interpolation between the minimum and maximum convoy speed values

was used. Since the value of trans varies between 0 and 1, the trans value for the linear function

was simply the percentage of the current convoy speed relative to the minimum and maximum

 67

specified speeds. This function looks like ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

=
speedspeed

speedspeedconvoytrans
min_max_

min__ and produced

the plot of trans values in Figure 24.

15 20 25 30 35 40 45 50 55
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Blending Algorithm Function

Convoy Speed

P
er

ce
nt

ag
e

R
ec

til
in

ea
r

Figure 24: Linear Blending Function

This function results in a linear blend between the minimum and maximum values which were

20 mph and 45 mph for this and subsequent examples unless otherwise stated. It is also clear that

varying the minimum and maximum values will change the slope of the line and therefore the

behavior of the swarm.

10.1.2. Exponential Function

 Next, an exponential function was used which created a function that resulted in a low

trans value as the speed increased to a point, then a drastic rise as the speed continued to increase

to the maximum user specified speed. The formula used was

10000

min_max_
min__

*10

94806722.20264657

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

=
speedspeed

speedspeedconvoy

etrans which resulted in the plot in Figure 25.

 68

15 20 25 30 35 40 45 50 55
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Blending Algorithm Function

Convoy Speed

P
er

ce
nt

ag
e

R
ec

til
in

ea
r

Figure 25: Exponential Blending Function

 The specific values used in the formula were chosen on a trial and error basis to enable

to function have a minimum value of 0 and a maximum value of 1 for the trans parameter. It is

evident that there is little change in the trans value between convoy speed of 20 mph and 35

mph. However, after the convoy speed surpasses 35 mph, the trans parameter increases

drastically and maximizes at a value of 1 at a convoy speed of 45 mph.

10.1.3. Logarithmic Function

 The next function tested was a logarithmic function that was essentially the inverse of

the exponential function. As the convoy speed increased, the trans parameter quickly increased

and then settled near 1 as the convoy speed approached the maximum blending speed. This

function would show how the behavior of the swarm would react when a greater emphasis is

placed on the rectilinear form of the control law. The function used for this was

606.4

303.2log min_max_
min__

*10 +⎥
⎦

⎤
⎢
⎣

⎡

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

speedspeed
speedspeedconvoy

trans and produced the plot in Figure 26.

 69

10 15 20 25 30 35 40 45 50 55
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Blending Algorithm Function

Convoy Speed

P
er

ce
nt

ag
e

R
ec

til
in

ea
r

Figure 26: Logarithmic Blending Function

As the convoy speed exceeds the minimum value of 20 mph, the trans parameter quickly

increases and eventually settles at a value of 1.

10.1.4. Hyperbolic Tangent Function

 Lastly, the hyperbolic tangent was used to effectively combine the effects of the

exponential and logarithmic functions. The hyperbolic tangent creates little variation in the trans

parameter near the maximum and minimum blending speeds. However, in the middle of the

speeds, the trans value quickly increases. The function

2

5.2
min_max_

min__5tanh1 ⎥
⎦

⎤
⎢
⎣

⎡
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−
−

++

=
speedspeed

speedspeedconvoy

trans was used to create the plot shown in

Figure 27.

 70

10 15 20 25 30 35 40 45 50 55
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Blending Algorithm Function

Convoy Speed

P
er

ce
nt

ag
e

R
ec

til
in

ea
r

Figure 27: Hyperbolic Tangent Blending Function

 This function would show if a symmetric function with a steep initial slope would

provide better swarm behavior in contrast to the skewed increases of the exponential and

logarithmic functions and the smooth transition of the linear function.

10.2. Speed Blending

 This first factor to be analyzed for the basis of blending was the speed of the convoy.

This has a very large impact on the effectiveness of the UAV swarm as shown in the previous

plot. This blending method assumes that the vehicles all begin in close range with the convoy.

10.3. Speed Limitation Investigation

 It would be expected that due to the circling nature of the formation, changes in route

direction would have little impact on the vehicles. What would have an impact on the stability of

the swarm loitering formation would be the convoy speed. If the convoy is moving too fast, the

swarm will not be able to loiter effectively around the convoy. This relationship becomes more

important as the size of the orbit decreases. When the orbit is small, the swarm has to respond

 71

quicker to changes in the convoy position. When the orbit is large, the relative position changes

of the convoy are small when compared to the size of the orbit. For these reasons, it was

necessary to find the limiting speeds of the circular and rectilinear form of the control law

 In order to evaluate the effectiveness of the blending schemes and their ability to

control the vehicles, a new convoy trajectory was created. This trajectory combined the GPS

points of two separate routes; the route from the suburbs to NRL and from NRL to USNA. This

longer track provided more time and distance to observe the UAV swarm’s behavior. The goal

for this trajectory was to have the convoy begin at a slow speed at which point the UAVs could

use the pure loitering form of the control law. As the convoy moved along the trajectory, the

convoy speed was incrementally increased until the convoy speed reached a point where only

pure rectilinear control would allow the swarm to cover the convoy effectively. Thus, a track was

made which began with a convoy speed of 10 mph and ended with a convoy speed of 55 mph

using Appendix 7. The UAVs were simulated on this track using only pure loitering and then

only pure rectilinear control laws. As shown in Figure 28 of the outputs of these two trials, it is

evident that at slower speeds, loitering is more effective, and rectilinear becomes more effective

as speed increases.

 72

0 1000 2000 3000 4000 5000 6000 7000
0

0.5

1

1.5

2

2.5

3

D
is

ta
nc

e
(m

ile
s)

Time (sec)

Vehicle Separation Distances - 21.9228% range from convoy violation
 α = 0.2, η = 0.05, ro = 550

Max Distance 1 mile(s)
UAV 1 (loitering)
UAV 2 (loitering)
UAV 1 (rectilinear)
UAV 2 (rectilinear)

 Figure 28: Comparison of Circular and Rectilinear Control

 There is a point where both the rectilinear and loitering forms of the control law

provide roughly equal quality of performance based on the distance to convoy metric. Using this

plot, the minimum and maximum speeds between which the blending would take place were

estimated. From this plot, it would be most efficient to transition from circular to blended control

once the convoy speed meets 20 mph and for blending to end and transition to rectilinear control

once the convoy speed has passed 45 mph. Using these guidelines, a test matrix was created

using the values shown in the table in Figure 29. The delta is the value that the speeds were

incremented to get a range of values between the respective minimum and maximum speeds.

Circular
Saturation

Speed (mph)

Rectilinear
Saturation Speed

(mph)
Min 10 35
Max 30 55
delta 2.5 2.5

Figure 29: Speed Blend Test Matrix

 73

For all of the simulations, the gain values were chosen from the best performing parameter sets

found in the previous scenarios. For rectilinear control, μ was 0.2, α was 0.2, η was 0.05, and

0r was 550. For loitering control, α and η was 0.2 and 0r was 50.

10.3.1. Ideal Speed Blending

 Data was collected first using the GPS route which had incremental speed increases. In

theory, this should allow for the smoothest blending possible and should be the ideal case for

each of the blending functions. The data confirmed the assumption that a blending algorithm

would perform better than a pure rectilinear or circular algorithm and would be more widely

applicable to real world GPS routes. Using pure circular control, the swarm had an average

convoy distance of about 22% and this distance increased to 95% when pure rectilinear control

was used. However, the majority of the blending algorithms resulted in convoy range

percentages averaging around 18%. Clearly, the blending algorithm allowed the swarm to

maintain a closer proximity with respect to the convoy as the convoy’s speed varied along the

route. In this ideal speed varying situation, the convoy’s speed changed in equal increments

which meant that the blending functions were not perfectly smooth curves.

 After collecting the data, a MATLAB script (Appendix 6.3) was used to locate the

simulations runs which resulted in the lowest final performance metric as the weights of the cost

function were manipulated. The chart (Figure 30) summarizes the important characteristics of the

top performing blending functions as the weights of the cost function are manipulated.

 74

Pre-Blended
Scenario

Blending Function Trial

Times a
Global

Min
Min Speed

(mph)
Max Speed

(mph)
Convoy

%
Collision

%
Steering

%
Linear 72 12 27.5 55 14.3627 0 8.902
 24 10 15 47.5 14.6895 0 8.2901
 8 12 10 52.5 15.7229 0 7.5854
 2 2 10 37.5 20.9863 0 6.8227
Exponential 10 1 12.5 35 22.907 0.20862 7.4179
 3 35 10 40 20.6665 0 7.7638
Hyperbolic Tangent 4 3 10 42.5 17.8603 0 7.8989
 5 3 10 45 16.7781 0 8.1091
 34 30 17.5 50 14.1925 0 8.855
Logarithmic 9 3 10 55 26.3548 0 6.4765
 51 1 22.5 47.5 18.1701 0 7.9007
 70 12 27.5 50 15.2661 0 8.4941
 80 20 30 52.5 15.0388 0 8.6858
Averages 16.3461538 46.9230769 17.9227 0.01604 7.938615
Pure Rectilinear 95.208 0 9.7309
Pure Circular 21.9228 1.102 9.814
Overall Top
Performer 34 17.5 50 14.1925 0 8.855

Figure 30: Summary of Ideal Speed Blending

When plotted, these functions produce the plot in Figure 31.

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Top Performing Blending Functions

Convoy Speed

P
er

ce
nt

ag
e

R
ec

til
in

ea
r

Figure 31: Plot of Top Performing Speed Blending Functions

 75

 From these results, it is possible to make several basic conclusions about the best

possible method of blending. Most notably is the clear performance advantage that speed

blending gives to the behavior of the swarm when convoy speed is non-constant compared to

pure rectilinear or circular control. While it appears that pure circular control is sufficient, the

UAV swarm begins to quickly fall behind the convoy as the convoy speed increases at the end of

the simulation run. Thus, having a blending function that takes this acceleration of the convoy

into account and transitions to a more rectilinear based control allows the UAV swarm to keep

pace with the convoy as its speed varies.

 Of the blending functions, it appears that with the right minimum and maximum speeds

set, similar performance appears. Overall, the performance across all range of speed limits did

not change drastically and it is not evident that the blending algorithms are extremely sensitive to

these bounds. This is also evident when analyzing the plot of the top performing blending

functions plotted together. There are no clear trends or distinct overlaps and all seem to fit into a

fairly wide band. It may be seen that as the minimum speed limit of the function increases, the

initial slope of the blending function increases as well. This suggests that when the minimum

speed is set low, the functions allow a gradual transition to rectilinear control. However, when

the minimum speed is set high, the blending algorithm must quickly transition from pure circular

control to a blend that is more influenced by rectilinear control in order to keep up with the

already fast moving convoy. What is clear is that speed blending is an important method to

improve the behavior of the swarm and is simple to do computationally.

10.3.2. Practical Speed Blending

 For this simulation run, the raw version of the ideal GPS track was used that began in a

DC suburb and ended at NRL. This version did not contain any filtering of stop points or speed

 76

modification by manipulating GPS timestamps. This is a more practical and realistic case

compared to the ideal situation where the convoy speed steadily increased and the blending could

occur smoothly. For this track, the control algorithm would have to adapt to a constantly

changing convoy speed and still provide effective convoy security. The same test matrix and

blending functions were used for this set of simulations. The data was analyzed by identifying

the top performing speed permutations for each blending function as the weights of the cost

function were modified. The results are displayed in the table and plot in Figure 32 and 33

respectively.

Suburb-USNA

Blending Function Trial
Times a

Global Min

Min
Speed
(mph)

Max Speed
(mph)

Convoy
%

Collision
%

Steering
%

Linear 6 3 10 47.5 42.554 0 6.8804
 11 25 12.5 37.5 41.002 0.15438 7.4131
 13 6 12.5 42.5 42.946 0 6.7657
 21 2 15 40 42.177 0 7.0468
Exponential 57 2 25 40 58.157 1.245 6.7781
 58 32 25 42.5 57.411 1.245 6.9283
 62 2 25 52.5 58.353 1.4442 6.6645
Hyperbolic
Tangent 2 36 10 37.5 41.611 0 6.9887
Logarithmic 3 3 10 40 43.365 0 7.4421
 6 3 10 47.5 46.332 0 6.8463
 35 30 17.5 52.5 42.486 0.15438 7.4482
Averages 15.681818 43.636363 46.945 0.3857 7.01838
Pure Rectilinear 62.955 0 3.7714
Pure Circular 58.284 1.4143 6.9093
Overall Top
Performer 11 12.5 37.5 41.002 0.15438 7.4131

 Figure 32: Summary of Suburb to USNA Speed Blending

 77

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Top Performing Blending Functions

Convoy Speed

P
er

ce
nt

ag
e

R
ec

til
in

ea
r

Figure 33: Plot of Top Performing Speed Blending Functions

 As is evident from the plot of the top performing blending functions, the practical

simulations resulted in a fairly narrow range of top performing blending functions with the

exception of the exponential function. The band of top performing blending sets appears slightly

narrower in this route when compared with the pre-blended route used before. Since this

simulated route is a purely raw track, these top performing blending trials may be better suited

for raw GPS routes. Also, the blending for this raw track began on average at a lower speed and

the blending ended on average at a lower speed compared to the ideal case. The blending needed

to transition to rectilinear earlier and reach pure rectilinear control faster in order to keep up with

the convoy accurately. Ultimately, the performance across the various blending functions was

very close which supports the previous conclusion that swarm performance is not sensitive to the

specific function and the speed limitations of the blend.

 Performance wise, the practical simulation had significantly higher performance

percentages compared to the ideal situation which is to be expected. The methodical blending

used in the first simulation allows for a smooth transition between circular and rectilinear control

 78

whereas the raw track causes much more abrupt transitions between circular and rectilinear.

Also, in the pre-blended track, the convoy moves at a slow speed compared to the UAV max

speed for the majority of the simulation. This is not the case in the raw track, since the convoy’s

speed varies constantly and erratically. Lastly, it is of note that with this more realistic GPS

route, the speed blend still outperformed the pure rectilinear and pure circular control. This is

more evidence to suggest that blending is an effective control method that should be pursued. It

is believed that as long as some form of blending is used with appropriate speed limitations, the

result will be improved swarm performance.

10.3.3. Analysis of Additional Routes

 In order to gain a broader perspective on the performance of the speed blending method,

two additional real world GPS tracks were used to analyze the performance of the speed

blending method. The first track comprised of a route from NRL to a house in Northern DC on

Van Ness Street. The second track is a route from the house in Northern DC back to USNA. The

results for speed blending in the route from NRL to Van Ness are depicted in Figure 34 and

Figure 35.

 79

NRL to VN

Blending Function Trial
Times a

Global Min
Min Speed

(mph)
Max Speed

(mph)
Convoy

%
Collision

%
Steering

%
Linear 1 4 10 35 44.946 0.28937 6.0557
 4 17 10 42.5 44.677 0.08064 6.4549
 13 3 12.5 42.5 46.777 0.14706 5.328
 14 12 12.5 45 45.923 0 5.5749
Exponential 1 1 10 35 53.451 1.9165 5.8103
 7 35 10 50 51.912 1.518 6.1378
Hyperbolic
Tangent 1 34 10 35 43.084 0 6.393
 2 1 10 37.5 46.202 0.0948 5.878
 5 1 10 45 50.830 0.0948 5.295
Logarithmic 18 2 12.5 55 45.892 0 5.4253
 19 34 15 35 39.770 0 6.3923
Averages 11.136363 41.5909090
Pure Rectilinear 63.474 0 3.8508
Pure Circular 55.798 5.2989 6.4702
Overall Top
Performer 19 15 35 39.770 0 6.3923

Figure 34: Summary of NRL to Van Ness Speed Blending

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Top Performing Blending Functions

Convoy Speed

P
er

ce
nt

ag
e

R
ec

til
in

ea
r

Figure 35: Plot of Top Performing Speed Blending Functions

Again, the performance numbers for the blending functions are all relatively similar and

all out perform the pure rectilinear and circular control methods. For this route, the linear

function had relatively good performance, but one logarithmic function ended up being the best

 80

overall performer for this route. The results from the Van Ness Street to USNA track are shown

in Figure 36 and Figure 37.

VN to USNA
Blending
Function Trial

Times a
Global Min

Min Speed
(mph)

Max Speed
(mph)

Convoy
%

Collision
%

Steering
%

Linear 10 4 12.5 35 23.1941 0 9.2997
 19 7 15 35 23.0779 0 9.3311
 20 24 15 37.5 22.8733 0 9.4391
 44 1 20 52.5 24.9572 0.09498 9.0418
Exponential 6 4 10 47.5 23.4565 0.86673 10.0246
 10 26 12.5 35 24.0986 0 9.3807
 15 6 12.5 47.5 23.6872 0.27011 9.7838
Hyperbolic
Tangent 1 12 10 35 23.3103 0 9.2734
 3 4 10 40 22.826 0 9.4143
 10 18 12.5 35 22.826 0 9.4143
Logarithmic 33 8 17.5 47.5 22.6126 0 9.346
 35 27 17.5 52.5 22.2784 0 9.4917
 45 1 20 55 23.8679 0.08607 9.153
Averages 14.2307692 42.6923076 23.3127 0.10137 9.414885
Pure Rectilinear 60.1059 0 4.8993
Pure Circular 24.1143 0.48679 9.8864
Overall Top
Performer 35 17.5 52.5 22.2784 0 9.4917

 Figure 36: Summary of Van Ness to USNA Speed Blending

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Top Performing Blending Functions

Convoy Speed

P
er

ce
nt

ag
e

R
ec

til
in

ea
r

Figure 37: Plot of Top Performing Speed Blending Functions

 81

 These results repeated the trends seen throughout the speed blend data. All of the blends

have very close performance metrics, showing that the type of blending function is generally

irrelevant in determining the resulting behavior of the swarm. In the Van Ness to USNA track,

the pure circular control is very close to the blending performance. This is due to the slow

convoy speed for this route which results in the blending function relying mostly on pure circular

control.

For these two additional routes, the top performer ended up being a logarithmic function.

However, since all of the performance metrics are so similar, there is no strong evidence to

conclude that a logarithmic blend is better than the other functions. Thus, there was no specific

blending function that performed better over the range of routes throughout the speed blending

simulations. Still, the simulation results suggest that an exponential blending function is a poor

blending method. Even the top performing exponential blends had noticeably poor performance

compared to the other blending methods. Examining the plots of the blending functions shows

that the exponential function is typically displaced from the other functions. While the linear,

hyperbolic tangent and logarithmic functions are not in a very precise band, they are all in the

same relative position when plotted. The exponential function may blend at the same relatively

low convoy speeds like the other functions, but it takes longer for the impact of increased convoy

speed to have a noticeable effect on the transition to rectilinear control. When the slope does

increase, the convoy speed is typically at a higher speed relative to the other blends which means

the UAVs are falling behind the convoy as they transition to rectilinear. This results in increased

convoy range percentage and poorer performance. For GPS routes where the convoy moves at

quicker speeds such as in the Suburb to USNA track and the NRL to Van Ness Street track, this

 82

effect is more pronounced and can be seen when comparing the convoy range percentages of the

exponential blends and the other blending functions.

Also, looking at the average minimum and maximum speeds that determine the blending

limits, the minimum speeds tend to be towards the lower end of the speed range while the

maximum speeds are more towards the middle of the speed range. There also seems to be a slight

correlation between the convoy range percentage and the average transitions speeds. The higher

the average distance to convoy percentage, the lower the average minimum and maximum

speeds of the blending limits are. The routes that have lower convoy range percentages tend to

have convoys that move at generally lower speeds. By looking at the average convoy range

percentage for the pure circular and the overall top performer case, one can tell how slow the

convoy was moving. The closer these percentages are, the more the speed blend was using

circular control, and thus the slower the convoy was moving. The NRL to Van Ness track begins

with a fast highway section that leaves the UAVs behind. Eventually, the convoy hits traffic in

the city, slows down, and the UAVs catch up. It seems logical then that as the convoy moves

faster, the blend would want to transition to rectilinear control faster, hence the blends with

lower speeds cut offs appear as top performers. These lower transition speeds allow the UAVs to

reach maximum speed with the rectilinear control faster, and thus enable the UAVs to reach the

convoy in a faster manner.

10.4. Distance Blending

 Speed blending proved to be an effective technique for improving the behavior of the

swarm as the vehicles followed a convoy of constantly fluctuating speed. However, the blending

function had one assumption which is not always true on the battlefield. For the speed blending,

the UAVs all started relatively close to the convoy. In the real world, it may not be possible to

 83

launch the UAVs near the convoy. To support a wider variety of missions, a form of distance

blending was also implemented. For example, if the UAVs began several kilometers away and

were tasked with following a slow moving convoy using speed blending, they would use

predominantly circular control which would prevent the vehicles from reaching the convoy in a

timely manner. What would be desired in this case is for the vehicles to use rectilinear control to

quickly close the distance to the convoy then switch to speed blending once in the immediate

vicinity of the convoy.

 With this goal in mind, distance blending was implemented in to the control of the

UAV swarms. When the UAVs were outside a certain user specified distance, pure rectilinear

control was used. As the UAVs get closer to the convoy, the distance blending formula blends

rectilinear control with speed blending control. Once inside a certain distance, only speed

blending control is used. For this method, the values shown in Figure 38 were used.

Minimum
Blending

Distance (miles)

Maximum
Blending

Distance (miles)
Min 0.1 0.8
Max 0.5 1.2
delta 0.5 0.5

Figure 38: Distance Blending Test Matrix

This blended control method produced the chart in Figure 39 depicting the top performing blends

for each blending function, as well as the results for pure rectilinear, pure circular, and pure

speed based control for comparison purposes.

 84

Suburb-USNA
Blending
Function Trial

Times a
Global Min

Max Dist
(miles)

Min Dist
(miles)

Convoy
%

Collision
%

Steering
%

Linear 28 14 1.05 0.1 34.893 0 7.286
 59 12 0.9 0.3 34.2899 0 7.8222
 74 10 0.8 0.15 34.407 0 7.6214
Exponential 6 11 1.2 0.35 34.9779 0 7.7169
 28 17 1.1 0.5 35.0984 0 7.5635
 43 4 1 0.4 34.8936 0 8.1246
 47 4 0.95 0.15 35.6369 0 7.4367
Hyperbolic
Tangent 39 2 1 0.2 35.1561 0 7.218
 74 34 0.8 0.1 33.8266 0 7.4091
Logarithmic 1 4 1.2 0.1 48.9129 0 3.7878
 68 12 0.85 0.3 34.2013 0 7.4872
 70 20 0.85 0.4 34.2696 0 7.3663
Averages 0.975 0.25416666 35.8802 0 7.236642
Pure
Rectilinear 62.9555 0 3.7714
Pure Circular 58.285 1.4143 6.9233
Pure Speed
Blend 41.0029 0.15438 7.4131
Top Overall
Performer 74 34 33.8266 0 7.4091

 Figure 39: Summary of Suburb to USNA Distance Blending

From the chart in Figure 39, it is clear that adding this distance condition to the blend

created swarm behavior that is much more desirable. The vehicles stay significantly closer to the

convoy with this addition. All of the top performing distance blending trials, vice one

logarithmic trial, have lower convoy range percentages than speed control and pure circular and

rectilinear control. Again, all of the performance metrics are very similar leading to the

conclusion that the type of blending function is fairly irrelevant for distance blending as well.

A comparison of a simulation run with distance blending and then a plot of the same run

without distance blending is depicted in Figures 40 and 41. Here it is evident that the distance

blending brings the UAVs closer to the convoy faster when the UAVs are placed at a distance of

over a mile away from the convoy. In these simulations, the swarm using distance blending gets

under the red line, meaning that the vehicles are now in sensor range of the convoy, in about 300

 85

seconds. In the plot without the distance blending, the swarm takes almost twice as long, about

600 seconds, to get to within effective range of the convoy. Also from this plot, it is evident that

in cases where the convoy vehicle speeds up and the swarm falls behind, distance blending

forces the swarm to rely more on rectilinear control faster than pure speed blending. This can be

seen at the end of these simulation plots where the swarm without distance blending begins to

fall out of convoy range compared to the swarm with distance blending which remains in convoy

range.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.5

1

1.5

2

D
is

ta
nc

e
(m

ile
s)

Vehicle Separation Distances - 31.8893% range from convoy violation
 α = 0.2, μ = 0.2, η = 0.05, ro = 550

Max Distance 1 mile(s)
UAV 1

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

1

2

3

D
is

ta
nc

e
(m

ile
s)

Vehicle Separation Distances - 0% intra-vehicle disance violaion

Min Distance 0.031068 miles/50 meters
UAV 1-2

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.02

0.04

0.06

0.08

0.1

Time (seconds)

P
er

ce
nt

ag
e

Average Steering Command (u) 0.0097326% of maximum steering command

Figure 40: Simulation using Distance Blending

 86

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.5

1

1.5

2

D
is

ta
nc

e
(m

ile
s)

Vehicle Separation Distances - 56.6272% range from convoy violation
 α = 0.2, μ = 0.2, η = 0.05, ro = 550

Max Distance 1 mile(s)
UAV 1

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

1

2

3

D
is

ta
nc

e
(m

ile
s)

Vehicle Separation Distances - 3.4213% intra-vehicle disance violaion

Min Distance 0.031068 miles/50 meters
UAV 1-2

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

10

20

30

40

50

Time (seconds)

P
er

ce
nt

ag
e

Average Steering Command (u) 7.9058% of maximum steering command

Figure 41: Simulation using only Speed Blending

10.4.1. Analysis of Additional Routes

A similar method of analysis was applied to the data for the use of distance blending on

the additional GPS routes. The final data tables for the Van Ness to USNA route and the NRL to

Van Ness route are shown in Figure 42 and Figure 43.

 87

VN to USNA

Blending Function Trial
Times a

Global Min
Max Dist
(miles)

Min Dist
(miles)

Convoy
%

Collision
%

Steering
%

Linear 3 1 1.2 0.2 28.459 0.09795 8.9426
 43 29 1 0.4 27.295 0.01238 9.2865
 63 1 0.9 0.5 27.580 0 9.5668
 64 1 0.85 0.1 29.189 0 8.8015
 65 4 0.85 0.15 30.257 0.07123 8.5114
Exponential 30 2 1.05 0.2 29.867 0.12763 8.8786
 61 5 0.9 0.4 29.197 0.02077 9.0383
 64 9 0.85 0.1 28.972 0.07123 9.2611
 66 1 0.85 0.2 28.280 0 9.4615
 78 19 0.8 0.35 28.159 0 9.5657
Hyperbolic
Tangent 64 29 0.85 0.1 28.36 0 8.8357
 65 7 0.85 0.15 27.963 0.13951 9.5784
Logarithmic 10 3 1.15 0.1 49.415 0.07717 4.3425
 14 5 1.15 0.3 28.702 0 8.8901
 17 15 1.15 0.45 27.952 0.18106 9.2773
 39 3 1 0.2 34.684 0 7.1241
 72 10 0.85 0.5 28.214 0.10686 9.055
Averages 0.9558823 0.2588235 30.118 0.0567 8.7304
Pure Rectilinear 60.105 0 4.8993
Pure Circular 24.114 0.48679 9.8864
Pure Speed Blend 22.278 0 9.4917
Top Overall
Performer 43 29 27.295 0.07123 9.2865

Figure 42: Summary of Van Ness to USNA Distance Blending

 88

NRL to VN
Blending
Function Trial

Times a
Global Min

Max Dist
(miles)

Min Dist
(miles)

Convoy
%

Collision
%

Steering
%

Linear 10 1 1.15 0.1 46.232 0 6.3648
 28 5 1.05 0.1 46.999 0 6.0781
 49 27 0.95 0.25 44.0568 0 7.2996
 65 3 0.85 0.15 48.655 0 5.7482
Exponential 48 2 0.95 0.2 48.0894 0 6.8069
 51 9 0.95 0.35 47.7143 0 7.1933
 54 19 0.95 0.5 47.8355 0 6.906
 60 3 0.9 0.35 49.1802 0 6.4894
 67 3 0.85 0.25 51.3239 0 6.0872
Hyperbolic
Tangent 1 13 1.2 0.1 46.3949 0 7.3876
 28 4 1.05 0.1 47.4667 0.10436 6.5976
 31 15 1.05 0.25 46.6485 0 6.9942
 35 4 1.05 0.45 50.1234 0 6.12
Logarithmic 20 5 1.1 0.15 54.1215 0 4.3697
 22 30 1.1 0.25 44.6926 0 6.9292
 40 1 1 0.25 48.2714 0 5.8656
Averages 1.009375 0.2375 47.9878 0.0065 6.4523
Pure Rectilinear 63.4749 0 3.8508
Pure Circular 55.7989 5.2989 6.4702
Pure Speed
Blend 39.7704 0 6.3923
Top Overall
Performer 49 27 44.0568 0 7.2996

Figure 43: Summary of NRL to Van Ness Distance Blending

In these blends, the exponential function is still displaced from the other top performing

blending functions as seen in Figure 44 of the top performing functions for the suburb to NRL

route.

 89

0 0.2 0.4 0.6 0.8 1 1.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Top Performing Blending Functions

Convoy Speed

P
er

ce
nt

ag
e

R
ec

til
in

ea
r

Figure 44: Plot of Top Performing Distance Blending Functions

However, unlike in speed blending, this displacement does not appear to have such an

adverse affect on the performance of the swarm. One reason for this is the speed of change of the

variable being measured. In speed blending, the blend is based off the convoy’s speed which can

change from the minimum blending speed of 10 mph to the maximum of 55 mph in a matter of

seconds. However, in distance blending, the vehicle dynamics prevent the UAVs from closing

the distance to the convoy at such a comparatively quick rate. Thus, in speed blending, the delay

in transition to rectilinear control caused by the exponential function is intensified. In distance

blending, the convoy to UAV distance variable can not change as fast as the convoy speed, and

the detrimental effects of the exponential function are not as apparent. Lastly, similar to the

results of the speed blending, the specific function does not seem to have a large impact on the

final behavior of the swarm, as evident by the relatively similar performance numbers for the top

performing distance blending trials.

 90

In distance blending, there also appeared to be a correlation between convoy speed, as

measured by the average convoy range percentage, and the distance minimum and maximums

that appeared in the top performing blending trials. As average convoy range percentage

increased, the minimum distance value decreased and the maximum distance value increased.

When the convoy was moving at a faster speed, the blending functions which started blending

sooner, and therefore had larger maximum distance values, performed better. Also, the minimum

distance was made smaller, which meant that the blend favored rectilinear control to get the

UAVs closer to the convoy before transitioning to full speed control. A faster moving convoy

resulted in a wider range between the minimum and maximum distances to allow more

rectilinear control in the final steering command which resulted in the UAVs being able to

maintain a closer distance to the convoy. At slower speeds, the opposite happened. The transition

to speed blending happened when the vehicles were closer to the convoy and transitioned to

speed control faster as well. The range was smaller which allowed the UAVs to transition to

speed control faster and at a farther distance since the convoy was moving at a slower speed and

was unlikely to take off suddenly. When the convoy is moving slow, speed control is a more

accurate and effective form of blending as the UAVs get closer to the convoy.

A comparison of the results for the top performing distance and speed blends also

revealed some important information about the implementation of distance blending. In order to

get the most effective distance blend possible, the parameters for the best speed blending on each

track were utilized so that the distance blend would transition from rectilinear to top performing

speed blend control. As evident in the tables in Figure 42 and Figure 43, for two out of the three

routes, the speed blend outperformed the distance blend. There are several reasons for this. First,

in these scenarios, the UAVs were not placed at an extreme distance away from the convoy. This

 91

limited the advantages that distance blending would have in such a situation. Also, if the convoy

begins the route moving near the maximum blending speed, the speed control will result in pure

rectilinear control and have the same effect as the distance controller outside of the maximum

distance range. If the vehicles are placed at a significant range and the convoy is moving at a

moderately slow pace, the effect of the distance blending is clearly evident. In the plots in

Figures 45 and 46, the UAVs were placed about 6 miles away from the convoy initially, and the

convoy moved at a slow pace throughout the simulation. Comparing the two plots, it is evident

that the distance component brings the UAVs very close to the convoy before transitioning to

speed control. When pure speed control is used, the only variable is the convoy speed and since

the convoy is moving fairly slow, circular control is mostly used. This results in noticeably poor

performance.

0 500 1000 1500 2000 2500 3000
0

2

4

6

8

D
is

ta
nc

e
(m

ile
s)

Vehicle Separation Distances - 93.0675% range from convoy violation
 α = 0.2, μ = 0.2, η = 0.05, ro = 550

Max Distance 1 mile(s)
UAV 1

0 500 1000 1500 2000 2500 3000
0

5

10

15

D
is

ta
nc

e
(m

ile
s)

Vehicle Separation Distances - 0.056397% intra-vehicle disance violaion

Min Distance 0.031068 miles/50 meters
UAV 1-2

0 500 1000 1500 2000 2500 3000
0

5

10

15

20

Time (seconds)

P
er

ce
nt

ag
e

Average Steering Command (u) 2.0805% of maximum steering command

Figure 45: Simulation using Speed Blending

 92

0 500 1000 1500 2000 2500 3000
0

2

4

6

8

D
is

ta
nc

e
(m

ile
s)

Vehicle Separation Distances - 40.8827% range from convoy violation
 α = 0.2, μ = 0.2, η = 0.05, ro = 550

Max Distance 1 mile(s)
UAV 1

0 500 1000 1500 2000 2500 3000
0

5

10

15

D
is

ta
nc

e
(m

ile
s)

Vehicle Separation Distances - 0.044524% intra-vehicle disance violaion

Min Distance 0.031068 miles/50 meters
UAV 1-2

0 500 1000 1500 2000 2500 3000
0

20

40

60

Time (seconds)

P
er

ce
nt

ag
e

Average Steering Command (u) 8.7605% of maximum steering command

Figure 46: Simulation using Distance Blending

If the vehicles are launched fairly close to the convoy, the advantages of the distance

blend are negligible. Part of the reason is that when the vehicles using pure speed control begin

to move towards the convoy, they start to converge into a large circular orbit. This, in effect,

brings them to the convoy in a fairly straight manner similar to rectilinear control, and allows

them to establish a stable circular orbit as they approach the UAV which benefits the

performance if the convoy is moving slow and circular control is utilized. However, one way to

improve the performance of the distance blending method is to increase the minimum and

maximum distances of the blending function. This was done on the route from NRL to Van Ness

Street.

 93

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.5

1

1.5

2

2.5

D
is

ta
nc

e
(m

ile
s)

Vehicle Separation Distances - 39.7704% range from convoy violation
 α = 0.2, μ = 0.2, η = 0.05, ro = 550

Max Distance 1 mile(s)
UAV 1

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

1

2

3

4

D
is

ta
nc

e
(m

ile
s)

Vehicle Separation Distances - 0% intra-vehicle disance violaion

Min Distance 0.031068 miles/50 meters
UAV 1-2

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

10

20

30

40

Time (seconds)

P
er

ce
nt

ag
e

Average Steering Command (u) 6.452% of maximum steering command

Figure 47: Simulation using Speed Blending

 94

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.5

1

1.5

2

2.5

D
is

ta
nc

e
(m

ile
s)

Vehicle Separation Distances - 40.4861% range from convoy violation
 α = 0.2, μ = 0.2, η = 0.05, ro = 550

Max Distance 1 mile(s)
UAV 1

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

1

2

3

4

D
is

ta
nc

e
(m

ile
s)

Vehicle Separation Distances - 0% intra-vehicle disance violaion

Min Distance 0.031068 miles/50 meters
UAV 1-2

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

20

40

60

Time (seconds)

P
er

ce
nt

ag
e

Average Steering Command (u) 7.7956% of maximum steering command

Figure 48: Simulation using Distance Blending

By increasing the blending distances, in effect putting a larger influence on speed

blending, performance was increased from the previous top performing distance blending

function. Previously, the top performing blending function had a convoy range percentage of

44.0568%, collision percentage of 0%, and a steering energy of 7.2996%. The performance was

improved to 40.4861% convoy range, 0% collision, and 7.7956% of maximum steering energy.

While further refinement and testing would need to be done to identify the appropriate limits for

the new top performing distance values, it is evident that when the UAVs are placed near the

convoy, speed or distance blending result in similar performance and the distance blending can

be refined for improved behavior if necessary.

 95

10.5. Bearing Rate Blending

The intent behind this form of bended control was to create a method that was effective,

but also more robust and requiring less technology to implement. With an electronic warfare

defensive mind frame, it is evident that having the military convoy broadcast its GPS position

constantly is not operationally secure. The GPS signal can be jammed or degraded by enemy

forces, reducing the effectiveness of the swarm. Worse still, the enemy could intercept the GPS

signal and have an accurate idea of the position of our troops in a potentially hostile area.

Alternate methods of distance calculation can be used between the UAVs and the convoy to

determine the straight line distance between the vehicles. This could include, but is not limited

to, using an electromagnetic signal and measuring the transfer time between the convoy and the

UAV to determine the distance between the vehicles. This would provide the distance

measurement without transmitting exact GPS coordinates.

10.5.1. Bearing Rate Calculation

In an attempt to remedy the electronic attack hazard, the method of calculating the

relative bearing rate of the convoy to each UAV was developed to blend the circular and

rectilinear control laws. This form of blending requires the UAVs to be outfitted with some sort

of visual device such as a camera or IR sensor. These are usually available on modern UAVs and

do not require any additional hardware to implement this method. The convoy only needs to

wear some sort of IR flasher or other visual identification mark for the UAVs to recognize. Most

convoys already carry this sort of equipment to prevent blue on blue targeting, so there is no

additional hardware needed on that end either. Using these devices, the UAVs are able to locate

the relative position of the convoy and determine the rate at which the convoy is moving. This, in

effect, combines the distance and speed variables used in previous methods into one simple

 96

calculation. To understand how this works, imagine a ship on the ocean coming into harbor. If

one was on the bridge, a lighthouse far in the distance may be seen. This position doesn’t change

when the ship is far away. However, as the ship maneuvers closer and begins to pass the

lighthouse to either side, the relative position of the lighthouse moves and it does so at an

increasing rate. In our scenario, the only difference is that the lighthouse is a military convoy

which is not stationary, but capable of moving. Still, the concept is the same and the calculation

is shown in Equation 5.

Figure 49: Bearing Rate Blending Model

cvrel VVV −=

 2r
Vr rel

rel
⋅

=
⊥

θ& [5]

This formula was applied to the Suburb to NRL route and the bearing rate for the vehicles

was recorded. This data is represented in Figure 50 showing the bearing rate for a single vehicle

in a two vehicle swarm.

UAV
Convoy

r

vV
relV

cV

 97

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 104

0

2

4

6

8

10

12

14

16

18
Plot of Bearing Rate for Suburb to NRL Route

B
ea

rin
g

R
at

e
(d

eg
/s

ec
)

Time (sec)

Figure 50: Plot of Bearing Rates

By comparing this plot, it was possible to determine some general bearing rate numbers

for loitering and rectilinear control. In the beginning of the plot, the bearing rate is low so

rectilinear control would want to be used for bearing rates below about 3 degrees per second.

Between 2 and 4105.3 ⋅ seconds, the bearing rate oscillates which corresponds to the UAVs

loitering around the convoy. Therefore, circular control should occur between 4 and 6 degrees

per second of bearing rate. With these general guidelines, a test matrix was made (Figure 51).

Minimum Blending

Bearing rate (deg/sec)
Maximum Blending

Bearing Rate (deg/sec)
Min 1 3.25
Max 3 5.25
delta 0.25 0.25

Figure 51: Bearing Rate Blending Test Matrix

 98

10.5.2. Data Analysis for Additional Routes

 The bearing rate method was used on the same three routes as the previous blending

methods. The results for the top performing bearing rate blending functions are summarized in

the table in Figure 52 as well as the performance of speed control, distance control, pure circular

control and pure rectilinear control for comparison purposes.

Suburb-USNA

Blending Function Trial
Times a

Global Min

Max
Bearing

Rate
(deg/sec)

Min
Bearing

Rate
(deg/sec)

Convoy
%

Collision
%

Steering
%

Linear 10 3 3.5 1 36.9241 0 5.8003
 12 33 3.5 1.5 36.6335 0.13944 5.6101
Exponential 9 36 3.25 3 44.6305 0 5.2335
Hyperbolic
Tangent 9 36 3.25 3 44.6385 0 5.2415
Logarithmic 6 36 3.25 2.25 31.2597 0 2.3004
Averages 3.35 2.15 38.81726 0.027888 4.83716
Pure Rectilinear 62.9555 0 3.7714
Pure Circular 58.285 1.4143 6.9233
Pure Speed Blend 41.0029 0.15438 7.4131
Pure Distance
Blend 33.8266 0 7.4091
Top Overall
Performer 6 36 3.25 2.25 31.2597 0 2.3004

Figure 52: Summary of Suburb to USNA Bearing Rate Blending

 It is evident from these results that the bearing rate blending function used had a much

larger impact on the resulting swarm performance. Also, for the suburb to USNA track, there

was much less variability between the top performing blends for each individual function. Only

the linear function had two different trials appear as top performers and even then, trial 10 only

appeared three times. Overall, the bearing blend outperformed the pure rectilinear and circular

control methods significantly and managed to produce better performance than the speed or

distance blending on the same route for the bearing rate blend using a logarithmic function.

 99

 The results of the bearing rate blending simulations on the NRL to Van Ness Street

route are summarized in the table in Figure 53.

NRL to VN

Blending
Function Trial

Times a
Global Min

Max
Bearing

Rate
(deg/sec)

Min
Bearing

Rate
(deg/sec)

Convoy
%

Collision
%

Steering
%

Linear 10 6 3.5 1 47.4418 0.08538 4.9672
 31 6 4 1.75 47.4987 0 4.8906
 56 24 4.75 1.25 47.7825 0 4.3766
Exponential 2 6 3.25 1.25 50.0774 0 4.6643
 6 5 3.25 2.25 51.1619 0 4.3647
 12 25 3.5 1.5 49.5532 0.20398 4.7159
Hyperbolic
Tangent 5 2 3.25 2 51.0638 0.16129 4.2498
 16 15 3.5 2.5 49.2736 0 4.8567
 29 18 4 1.25 49.4683 0 4.6054
 39 1 4.25 1.5 51.1784 0 4.2904
Logarithmic 1 2 3.25 1 45.1924 0.8112 5.5458
 2 2 3.25 1.25 45.0795 1.1717 5.6976
 10 12 3.5 1 45.4565 0 5.3983
 26 3 3.75 2.75 50.5995 0 4.2735
 38 17 4.25 1.25 45.6648 0 5.1444
Averages 3.68333333 1.56666666 48.4328 0.16223 4.80274
Pure
Rectilinear 63.4749 0 3.8508
Pure Circular 55.7989 5.2989 6.4702
Pure Speed
Blend 39.7704 0 6.3923
Pure Distance
Blend 44.0568 0 7.2996
Top Overall
Performer 10 12 3.5 1 45.4565 0 5.3983
 38 17 4.25 1.25 45.6648 0 5.1444

Figure 53: Summary of NRL to Van Ness Bearing Rate Blending

 For this route, the top performing parameter sets were more varied. All of the functions

appeared to produce similar results, but the logarithmic function routinely produced swarm

behavior that maintained the UAVs closer to the convoy while sacrificing a minimal amount of

steering energy. All of the top performing sets out performed the pure rectilinear and circular

 100

control, however, the top performing speed and distance blends surpassed the performance of the

bearing rate blending method for this GPS route.

 The results of the bearing rate blending simulations on the Van Ness Street to USNA

route are summarized in the table in Figure 54.

VN to USNA

Blending Function Trial
Times a

Global Min

Max
Bearing

Rate
(deg/sec)

Min
Bearing

Rate
(deg/sec)

Convoy
%

Collision
%

Steering
%

Linear 1 27 3.25 1 35.8175 0 6.3673
 10 8 3.5 1 36.1076 0 6.2503
 75 1 5.25 1.5 48.3833 0 4.5704
Exponential 10 36 3.5 1 44.3247 0.15138 5.5879
Hyperbolic
Tangent 4 35 3.25 1.75 36.8506 0 6.2523
 52 1 4.5 2.5 45.7361 0.24933 5.0738
Logarithmic 1 32 4 2 26.3571 0 6.717
 64 3 3.25 1.5 29.3231 0.18997 5.8553
 74 1 3.25 1 34.4203 0 5.2418
Averages 3.75 1.47222222 37.4800 0.06563 5.76845
Pure Rectilinear 60.1059 0 4.8993
Pure Circular 24.1143 0.48679 9.8864
Pure Speed Blend 22.2784 0 9.4917
Pure Distance
Blend 27.295 0.071238 9.2865
Top Overall
Performer 32 1 4 2 26.3571 0 6.717

 Figure 54: Summary of Van Ness to USNA Bearing Rate Blending

 This route had multiple bearing rate blends as top performers for each function, but was

not as widely distributed as the NRL to VN route. The performance even between the same

function also varied considerably more than in the speed or distance blending results. This

reinforces the idea that bearing rate blending method is much more sensitive to the blending

function and the saturation limits imposed on the function. Unlike in the distance or speed

blending methods, there doesn’t appear to be any correlation to determine the best saturation

limits for the bearing rate functions. The minimum and maximum bearing rates don’t appear to

 101

have been effected by variables in the route such as convoy speed or initial positions. Also, there

does not appear to be any correlation between these limits and the specific functions. It seems

that these values can vary greatly and this blending method is not sensitive to certain ranges of

the saturation limits. This may be due to the somewhat crude nature of the bearing rate variable

itself, which is also reflected in the wide range of performance across the different bearing rate

blending functions.

 For this route, the bearing rate blend outperformed pure rectilinear control as well as

pure distance blending, but it failed to outperform pure circular or the speed blending top

performance on the same route. This is most likely due to the fact that in this route, the convoy

moves at a much slower pace, which results in pure circular control being highly effective. Also,

measuring the speed of the convoy is a much more accurate variable to determine how to

transition between the two forms of control. Bearing rate blending attempts to combine speed

and distance into a single measurement, but it is not as strong a measurement as the convoy

speed. While the bearing rate is not as precise a measurement as convoy speed or range, this

variable proves to be an effective way to blend the two forms of the control law when the convoy

is progressing at a slow rate.

 For all three of the routes, the logarithmic bearing rate was the top performing blend. In

most cases, the several logarithmic trials that were the top performing logarithmic blends out

performed the other bearing rate blending functions. Based on this evidence, a logarithmic

function appears to be the most effective bearing rate blending function. The logarithmic

function has an initially fast transition to rectilinear control, but then levels out to full rectilinear

control. This performs well for bearing rate blending because the bearing rate also rapidly

changes from low to high, as seen in the bearing rate plot above. Thus, the logarithmic function

 102

compliments the characteristics of the blending rate variable. As the bearing rate suddenly spikes

as the UAVs approach and pass the convoy, the logarithmic function is able to quickly transition

between rectilinear and circular control in an almost binary manner. This quick transition speed,

which proved to be ineffective in speed blending, is beneficial to handle the spikes in bearing

rate.

 From this limited data, it is not possible to determine which of the three blending

methods is superior. As shown in this analysis, adding additional variables to base the control

law transition off of could increase swarm performance. When limitations were seen in the speed

blending, a distance component was added that in effect created a blending of a blending when it

combined speed blending with pure rectilinear control. While adding multiple layers of blending

with additional variables might increase swarm performance, there is no indication that this

increase would be significant when compared to the results from this research. What is clear, is

that each blending method as its own unique mission which it would be well suited. If the

convoy is going to be moving at a slow pace and the UAVs are going to start at a close distance,

less than two miles, speed blending would be appropriate. However, if the convoy is going to be

varying speeds widely and the UAVs start out a significant distance from the convoy, distance

blending is most effective. Lastly, if operational security is the priority for the mission, and

performance can be slightly sacrificed, bearing rate blending should be utilized. Specifically, a

blending function appears to perform routinely well, and this form of blending can still give

reasonable performance and keep the UAVs well within sensor range. If the mission requires the

UAVs to be as close as possible to the convoy though, a distance or speed blending method

might be preferred.

 103

11. Implementations of Research and Future Work

 This research served as the crucial link between the development and mathematical

proof of the UMD control algorithm and potential implementation of this algorithm in field tests.

While the control law had been proven to converge in mathematical proofs as well as basic

MATLAB simulations, there was no previous research concerning the effects of the specific

parameters on overall swarm behavior. This research analyzed the algorithm using realistic

convoy routes and more advanced vehicle dynamics to study the effectiveness of using UAV

swarms to provide urban convoy escort. For the pure rectilinear and circular forms of the control

law, a strong understanding of the relationship between the magnitudes of the parameters and

their effect on the swarm’s performance was determined. This allowed for improved

performance of the pure control forms when simulated in their respective ideal scenarios.

 From the pure control form analysis came the development of several blending

methods. At first, a blending method based on the speed of the convoy was evaluated. This

method proved to be very effective when compared to the pure forms of the control law.

However, this method assumed that the UAV’s initial locations were relatively close (less than 2

miles) to the convoy’s initial location. To improve upon the blending strategy, a method was

examined in which the range of each UAV to the convoy was also included as a variable. For the

distance blending method, the UAVs would use pure rectilinear control when outside of a certain

user specified range. The blending function would then combine rectilinear control with speed

blending control as the UAVs approached the convoy. When the UAVs were within a certain

user specified minimum distance from the convoy, only speed blending control was used. With

the addition of the UAV to convoy range component, the blending was improved. Swarm

performance was no longer dependant on initial conditions. An unexpected benefit of the

 104

distance variable addition was the ability to dampen sudden convoy accelerations. The distance

blending combined pure rectilinear control with speed blending control. Contained in the speed

blending was a portion of pure rectilinear control as well. Thus, distance blending utilized an

increased amount of rectilinear control, which allowed the UAV swarm to respond faster to

changes in convoy acceleration. As the convoy speed increased, not only would speed blending

utilize more rectilinear control, but as the range between the UAVs and the convoy increased, the

distance blending would utilize more pure rectilinear control as well.

 Speed and distance blending methods used very accurate variables as a basis for

transitioning between the two forms of swarm control supported by the UMD algorithm. This

resulted in improved swarm performance when compared to the pure control forms and is a

practical control strategy. However, these strategies rely on the exact convoy location expressed

in a GPS string that is transmitted by the convoy. While this results in strong swarm

performance, it is also a security risk in today’s operations. Thus, a blending method which

would not rely on GPS positions transmitted by the convoy was evaluated. By computing the

relative bearing rate of the convoy from each UAV, it was possible to blend rectilinear and

circular control to produce swarm behavior which generally improved upon simulations using

only one of the pure control forms. Since the bearing rate calculation was not as precise as

convoy speed and range, the bearing rate method was not as effective as the speed and distance

blending strategies used earlier. Nevertheless, bearing rate blending proved to be a secure

strategy for swarm control.

 While these results help further the implementation of the UMD control law into real

UAVs for future field tests, the process which has been used to evaluate the algorithm can be

beneficial to operators in theatre right now. By using the blending strategies analyzed in this

 105

research in conjunction with the parameter values that are most effective for the convoy escort

scenario, operators can simulate their own convoy missions. They have the ability to “plug in”

the convoy GPS coordinates as well as variables specific to their UAV platforms such as sensor

range, speed, and fuel load in order to analyze an accurate representation of their convoy

missions. This will allow them to asses the amount of coverage their UAV swarm will be able to

provide to the convoy and the amount of time the UAVs will be available based on fuel

limitations. If the mission requires more security than the UAVs are simulated to provide, there

could be justification for altering the mission or, more likely, getting a more capable UAV

platform for the swarm. If there are specific locations where the mission planner deems it

essential to have UAV coverage, these waypoints can be loaded into the simulator and the UAVs

can ignore the convoy and process only to these specified waypoints. This reduces overall fuel

consumption and increases the accuracy of the UAV coverage. Lastly, based on this research, the

mission planner has a foundation of knowledge for the effects of the swarm size on the parameter

sets used for the control. This research concluded that changing these gain values does not

increase overall swarm performance drastically when the convoy reduces in size. However, if the

convoy size increases due to the late launch of a UAV, the mission planner has justification that

the parameter values for the control law should be modified to improve swarm performance.

 This research not only progressed the investigation of the UMD control algorithm

through realistic simulations, it also made the tools available for similar analysis available at

USNA. SIMDIS along with the multi-vehicle simulator is installed and set up on multiple

machines at USNA along with a detailed guide for basic set-up and operation of these tools.

MATLAB scripts are available to convert basic vehicle data into the .asi file that is used by

SIMDIS. A Garmin GPS is also available for students to capture position data for

 106

implementation into the simulator. These tools are already being used in current Systems

Department design projects. Lastly, a cumulative analysis process has been developed for USNA

and NRL to utilize for future investigation of multi-vehicle control algorithms. This will allow

for a more efficient and directed analysis of potential control algorithms which will expedite the

time it takes for the control laws to go from mathematical proofs to implementation in real

vehicles.

 Future work on the UMD control law can now be focused on the implementation of the

algorithm in real vehicles. This research identified the limitations and strengths of the algorithm

so that future researchers have a basic understanding of the performance of a swarm utilizing this

control law. While the control law is ultimately limited by the dynamics of the UAV platform,

the control law is also sensitive to the parameter values. Increasing a specific parameter such as

α will result in the vehicles maneuvering closer to each other and the convoy, but at the cost of

increased collisions and potentially higher amounts of steering energy. This research identifies

these relationships and limitations so that future researchers have an accurate idea about the

effects of the specific behaviors the algorithm attempts to model. In the future, less work will

need to be focused on the specific parameter values and more will be done with the

implementation of the algorithm into real vehicles. This will be the true test of performance for

the control law. Also, evaluating the effects of communications degradation between the UAVs

and convoy as well as GPS drop out may be beneficial. With the role of electronic attack in

mind, limiting the communications between vehicles is important for security purposes.

Identifying the frequency of communications necessary to maintain swarm performance would

be an important area of research.

 107

 In conclusion, this research provided a strong foundation of data and conclusions to

support further investigation and implementation of the UMD algorithm. Depending on the

scenario, distance or bearing rate blending is shown to be an effective way to maintain sensor

coverage around the convoy with a UAV swarm. Future investigations can delve even farther by

simulating communications degradation and GPS dropout and evaluating their effects on swarm

performance. Identifying the minimum communications frequency that still enables acceptable

swarm performance is also an important area of research for defense from electronic attack.

Lastly, this research organized a cumulative evaluation process for future algorithms and enables

the tools for this research to be implemented at USNA for future research projects.

 108

12. Endnotes

[1] J. Cheng, W. Cheng, Nagpal, “Robust and Self-repairing Formation Control For Swarms Of

Mobile Agents,” National Conference on Artificial Intelligence (AAAI '05), July 2005.

[2] L. Barnes, W. Alvis, M. Fields, K. Valavanis, W. Moreno, “Heterogeneous Swarm

Formation Control Using Bivariate Normal Functions to Generate Potential Fields,” IEEE

Workshop on Distributed Intelligent Systems: Collective Intelligence and Its Applications,

pp. 85-94, 15-16 June 2006.

[3] Z. Cao, M. Tan, S. Wang, Y. Fan, B. Zhang, “The optimization research of formation control

for multiple mobile robots," Proceedings of the 4th World Congress on Intelligent Control

and Automation,, vol.2, pp. 1270-1274, 2002.

[4] S. Zelinski, T.J. Koo, S. Sastry, “Optimization-based formation reconfiguration planning for

autonomous vehicles,” IEEE International Conference on Robotics and Automation, vol.3,

pp. 3758-3763, September 2003.

[5] “February Iraqi Election Photos,” CFLCC Today, USARCENT, Feb. 2005. [Website],

Available: http://www.arcent.army.mil/cflcc_today/2005/february. [Accessed: Feb 2, 2008].

[6] H.V.D. Paranak, “Go to the ant: Engineering principles from natural multi-agent systems”,

Annals of Operations Research, 1997.

[7] C. Reynolds, “Flocks, herds and schools: A distributed behavioral Model,” Computer

Graphics, vol. 21, no. 4, pp.25-34, July 1987.

[8] W. Justh, V. Kowtha, “Biologically inspired models for swarming,” Evolutionary and Bio-

inspired Computation: Theory and Applications, vol. 6563, April 2007.

[9] X. Tu and D. Terzopoulos, “Artificial fishes: Physics, locomotion, perception, behavior,”

Proc. SIGGRAPH 94 Conf. Orlando, FL, pp. 43-50, July 1994.

 109

[10] P. K. C. Wang, “Navigation strategies for multiple autonomous robots moving in

formation,” J. Robot. Syst., vol. 8, no. 2, pp. 177-195, 1991

[11] M. Mataric, “Designing emergent behaviors: From local interactions to collective

intelligence,” Proc. Int. Conf. Simulation of Adaptive Behavior: From Animals to Animats 2,

pp. 432-441, 1992.

[12] E.W. Justh, P.S. Krishnaprasad, “Equilibria and steering laws for planar formations”

Systems and Control Letters, vol. 52, no. 1, pp. 25-38, 2004.

[13] D. W. Gage, “Command control for many-robot systems,” Unmanned Syst. Mag., vol.

10, no. 4, pp. 28-34, 1992.

[14] C. J. McCook, J.M. Esposito, “Flocking for Heterogeneous Robot Swarms: A Military

Convoy Scenario,” Thirty-Ninth Southeastern Symposium on System Theory, pp.26-31,

March 2007.

 110

13. Bibliography

C. J. McCook, J.M. Esposito, “Flocking for Heterogeneous Robot Swarms: A Military Convoy

Scenario,” Thirty-Ninth Southeastern Symposium on System Theory, pp.26-31, March 2007.

C. Reynolds, “Flocks, herds and schools: A distributed behavioral Model,” Computer Graphics,
vol. 21, no. 4, pp.25-34, July 1987.

D. W. Gage, “Command control for many-robot systems,” Unmanned Syst. Mag., vol. 10, no. 4,

pp. 28-34, 1992.

E.W. Justh, P.S. Krishnaprasad, “Equilibria and steering laws for planar formations” Systems

and Control Letters, vol. 52, no. 1, pp. 25-38, 2004.

“February Iraqi Election Photos,” CFLCC Today, USARCENT, Feb. 2005. [Website],

Available: http://www.arcent.army.mil/cflcc_today/2005/february. [Accessed: Feb 2, 2008].

H.V.D. Paranak, “Go to the ant: Engineering principles from natural multi-agent systems”,

Annals of Operations Research, 1997.

J. Cheng, W. Cheng, Nagpal, “Robust and Self-repairing Formation Control For Swarms Of

Mobile Agents,” National Conference on Artificial Intelligence (AAAI '05), July 2005.

L. Barnes, W. Alvis, M. Fields, K. Valavanis, W. Moreno, “Heterogeneous Swarm Formation

Control Using Bivariate Normal Functions to Generate Potential Fields,” IEEE Workshop on

Distributed Intelligent Systems: Collective Intelligence and Its Applications, pp. 85-94, 15-

16 June 2006.

M. Mataric, “Designing emergent behaviors: From local interactions to collective intelligence,”

Proc. Int. Conf. Simulation of Adaptive Behavior: From Animals to Animats 2, pp. 432-441,

1992.

P. K. C. Wang, “Navigation strategies for multiple autonomous robots moving in formation,” J.

Robot. Syst., vol. 8, no. 2, pp. 177-195, 1991

 111

S. Zelinski, T.J. Koo, S. Sastry, “Optimization-based formation reconfiguration planning for

autonomous vehicles,” IEEE International Conference on Robotics and Automation, vol.3,

pp. 3758-3763, September 2003.

W. Justh, V. Kowtha, “Biologically inspired models for swarming,” Evolutionary and Bio-
inspired Computation: Theory and Applications, vol. 6563, April 2007.

X. Tu and D. Terzopoulos, “Artificial fishes: Physics, locomotion, perception, behavior,” Proc.

SIGGRAPH 94 Conf. Orlando, FL, pp. 43-50, July 1994.

Z. Cao, M. Tan, S. Wang, Y. Fan, B. Zhang, “The optimization research of formation control for
multiple mobile robots," Proceedings of the 4th World Congress on Intelligent Control and
Automation,, vol.2, pp. 1270-1274, 2002.

 112

14. Appendix

1. MATLAB Simulation Script
%==
% File Name : mvscript_wpt_blend_transition_pervcl.m
% Authors : W. Selby
% Date : 19-May-2008
% Description : Simulates UMD control algorithm and plots the output
 for vehicles following a set of waypoints moving based
on each vehicle's distance to the waypoint and
switching at a specific waypoint and blending from
rectilinear to circular.
% Inputs: : None
% Outputs: : None
% Requirements : None
% Revisions : None
% ===

%% Initialization
clc; clear all; close all;

tfin = 2000.0; %run time
dt = 0.1; %step time
index = 1.0; %index
n = 7; %number of vehicles, must be >1 b/c waypoint is a vehicle
vel = 1.0; %velocity
eta = 1/(n-1); %perpendicular to baseline
mu = 1/(n-1); %heading alignment
alpha = 1/(n-1); %equidistance
ro = 10.0; %minimum distance (meters)
rwpt = 10.0; %Proximity to waypoint distance
sumterm_rect = 0.0; %Sum of the control terms
sum_wpt_rect = 0.0; %steering command for waypoint
sumterm_circ = 0.0; %Sum of the control terms
sum_wpt_circ = 0.0; %steering command for waypoint
umax = 0.5; %Maximum steering command
trans = 0.0; %%Percentage of circular control to use 0<trans<1
tdmax = 300.0; %%Distance from waypoint to begin transition
tdmin = 100.0; %%Distance from waypoint to end transition

for(i=1:n) % Set all waypoints to first point
 place(i)=1;
 counter(i)=0;
end

%% Vehicle initial positions
if(1) %Input same positions for every simulation
 r(1,7)=-10;
 r(2,7)=-2;
 r(1,2)=20;
 r(2,2)=11;
 r(1,3)=0;
 r(2,3)=14;
 r(1,4)=-15;
 r(2,4)=-22;

 113

 r(1,5)=27;
 r(2,5)=0;
 r(1,6)=0;
 r(2,6)=27;
 theta(7)= 1.45;
 theta(2)= -pi;
 theta(3)= 2.1;
 theta(4)= 5.75;
 theta(5)= 3.3;
 theta(6)= 6.0;

 for(j=1:n) %Set all initial conditions to random numbers
 u(j)=0.0;
 for(i=1:n)
 rsep(j,i)=0.0;
 end
 end

else
 for(j=1:n) %Set all initial conditions to random numbers
 u(j)=0.0; %steering control
 r(1,j)=50*randn(1); %x values
 r(2,j)=50*randn(1); %y values
 theta(j)=randn(1); %thetas
 for(i=1:n)
 rsep(j,i)=0.0;
 end
 end
end

%% Simulation loop
for(t=0:dt:tfin)

 %% Waypoint vehicle
 wpt=[150, 100; %%Position of Waypoint 1
 450, -50; %%Position of Waypoint 2…
 200, -50;
 300, 0
 50, 150
 200, -50];

 %% Integration/vehicle dynamics

 for(j=2:n) %% Not for Waypoint
 theta(j) = theta(j)+u(j)*dt;
 r(1,j) = vel*cos(theta(j))*dt+r(1,j);
 r(2,j) = vel*sin(theta(j))*dt+r(2,j);
 end

 %% Control Per Vehicle
 for(j=1:n)
 xj= [cos(theta(j)); sin(theta(j))];
 yj_temp= cross([0 0 1], [xj(1,1) xj(2,1) 0]);
 yj = yj_temp(1:2);

 114

 if(place(j)==5) %%Use transition control
 for(k=1:n)
 if(k~=j)
 if(k==1) %%Computes waypoint properties

%% Make sure waypoint exists
 if(place(j)<=size(wpt,1))

 %% Update waypoint coordinates
 r(1,1)= wpt(place(j),1);
 r(2,1)= wpt(place(j),2);
 end
 rjk = [r(1,j)-r(1,1); r(2,j)-r(2,1)];
 rsep(j,k) = norm(rjk);

%% Direction to waypoint
 theta(1)=pi+atan2(rjk(2,1),rjk(1,1));
 xk= [cos(theta(1)); sin(theta(1))];
 runit = rjk/norm(rjk);

 %%Non-reduced waypoint control

sum_wpt_circ = -eta*[dot(runit,xj)]*[dot(runit,yj)]
-alpha*[1-(ro/norm(rjk))^2]*[dot(runit,yj)];

%%Non-reduced waypoint control
sum_wpt_rect = -eta*[dot(runit,xj)]*[dot(runit,yj)]
-alpha*[1-(ro/norm(rjk))^2]*[dot(runit,yj)]
+dot(mu*xk,yj);

%%Tells when to switch to next waypoint based on
distance

 if(norm(rjk)<=2*rwpt)

%% Time delay until waypoint switch
 counter(j) = counter(j)+1;
 end

%%Delay is over, switch to next waypoint
 if(counter(j)==3000)
 place(j)=place(j)+1;
 end

 %% Transition Parameter Calculation
 if(norm(rjk)>tdmax)
 trans=0;
 end
 if(norm(rjk)<tdmin)
 trans=1;
 end
 if(norm(rjk)<tdmax && norm(rjk)>tdmin)
 trans=1-(1/(tdmax-tdmin))*(norm(rjk)-tdmin);
 end
 end
 rjk = [r(1,j)-r(1,k); r(2,j)-r(2,k)];
 rsep(j,k) = norm(rjk);
 xk= [cos(theta(k)); sin(theta(k))];

 115

 runit = rjk/norm(rjk);

 sumterm_circ= -eta*[dot(runit,xj)]*[dot(runit,yj)]
 -alpha*[1-(ro/norm(rjk))^2]*[dot(runit,yj)];

 sumterm_rect= -eta*[dot(runit,xj)]*[dot(runit,yj)]
 -alpha*[1-(ro/norm(rjk))^2]*[dot(runit,yj)]...
 +dot(mu*xk,yj);

 %% Transition Control Calculation
 if(trans==0) %%Use rectilinear
 u(j)=(1/n)*(sumterm_rect+u(j))+sum_wpt_rect;
 end
 if(trans==1) %%Use circular
 u(j)=(1/n)*(sumterm_circ+u(j))+sum_wpt_circ;
 end
 if(trans<1 && trans>0) %%Blend Control

u(j)=(1/n)*[(1-trans)*sumterm_rect +
trans*sumterm_circ + u(j)] +(1-
trans)*sum_wpt_rect + trans*sum_wpt_circ;

 end
 if(u(j)>umax)
 u(j)=umax;
 elseif(u(j)<-umax)
 u(j)=-umax;
 end
 end
 end

 else %% Use rectilinear Control
 for(k=1:n)
 if(k~=j)
 if(k==1)
 %%Computes waypoint properties

%% Make sure waypoint exists

 if(place(j)<=size(wpt,1))
 %% Update waypoint coordinates
 r(1,1)= wpt(place(j),1);
 r(2,1)= wpt(place(j),2);
 end
 rjk = [r(1,j)-r(1,1); r(2,j)-r(2,1)];
 rsep(j,k) = norm(rjk);

%% Direction to waypoint
 theta(1)=pi+atan2(rjk(2,1),rjk(1,1));
 xk= [cos(theta(1)); sin(theta(1))];
 runit = rjk/norm(rjk);

%%Non-reduced waypoint control
sum_wpt_rect = -eta*[dot(runit,xj)]*[dot(runit,yj)]

 -alpha*[1-(ro/norm(rjk))^2]*[dot(runit,yj)]
 +dot(mu*xk,yj);

%%Tells when to switch to next waypoint based on
distance

 if(norm(rjk)<=2*rwpt)

 116

%% Move to next waypoint

 place(j)=place(j)+1;
 end
 end
 rjk = [r(1,j)-r(1,k); r(2,j)-r(2,k)];
 rsep(j,k) = norm(rjk);
 xk= [cos(theta(k)); sin(theta(k))];
 runit = rjk/norm(rjk);

 sumterm_rect= -eta*[dot(runit,xj)]*[dot(runit,yj)]
 -alpha*[1-(ro/norm(rjk))^2]*[dot(runit,yj)]
 +dot(mu*xk,yj);

 u(j)=(1/n)*(sumterm_rect+u(j))+sum_wpt_rect;
 if(u(j)>umax)
 u(j)=umax;
 elseif(u(j)<-umax)
 u(j)=-umax;
 end
 end
 end
 end
 end

 %% Logging
 for(j=1:n)
 LV_theta(index,j) = theta(j);
 LV_rx(index,j) = r(1,j);
 LV_ry(index,j) = r(2,j);
 LV_time(index) = t; %Logs time
 LV_u(index,j) = u(j); %Log Steering Control
 for(i=1:n)
 LV_rsep(index,j,i) = rsep(j,i);
 end
 end
 index=index+1;
end

%% Plotting
% Initialize the figure
if(isempty(findobj('UserData',gcb)))
 DIPFigure = figure('MenuBar','figure',...
 'NumberTitle','off','Resize','off','Name','Vehicle Control
Animation');
 set(DIPFigure,'UserData',gcb);
 set(DIPFigure,'DoubleBuffer','on');
 set(gca,'fontsize',8);
 grid on; hold on;
 title('Multi Vehicle Control - Following Waypoints');
 xlabel('Distance');
 ylabel('Distance');
end
if(1)
 %%Plot Path
 if(1)

 117

 for(j=2:n)
 plot(LV_rx(:,j),LV_ry(:,j),'b')
 vehicle(j) = rectangle('position',[LV_rx(size(LV_rx,1),j)
LV_ry(size(LV_rx,1),j)-.5*2 2 2],'curvature',...
 [1 1],'linewidth',.01,'facecolor','r');
 end
 for(j=1:n)
 vehicle(j) = rectangle('position',[LV_rx(size(LV_rx,1),j)
LV_ry(size(LV_rx,1),j)-.5*2 2 2],'curvature',...
 [1 1],'linewidth',.01,'facecolor','r');
 for(j=1:size(wpt,1))
 vehicle(j) = rectangle('position',[wpt(j,1) wpt(j,2)-.5*2 2
2],'curvature',...
 [1 1],'linewidth',.01,'facecolor','r');
 end
 end
 end
 %% Plot Steering Control u
 if(1)
 for(j=1:n)
 figure(2);
 title('Steering Control Output');
 xlabel('Time');
 ylabel('Steering Control');
 hold on; grid on;
 plot(LV_time,LV_u(:,j));
 end
 end
 %%Plot Vehicle Separation Distances
 if(1)
 figure(3);
 title('Vehicle Separation Distances');
 xlabel('Time');
 ylabel('Distance');
 hold on; grid on;
 line(0:tfin,ro,'Color','r');
 for(j=1:n)
 for(i=1:n)
 plot(LV_time,LV_rsep(:,j,i));
 end
 end
 end
else
%% Can see vehicles move
 for(h=1:n)
 vehicle(h) = rectangle('position',[r(1,j) r(2,j) .2
.2],'curvature',...
 [1 1],'linewidth',.01,'facecolor','r');
 end
 for(i=1:index-1)
 for(j=1:n)
 set(vehicle(j),'position',[LV_rx(i,j) LV_ry(i,j)-.5*.2 .2 .2]);
 plot(LV_rx(i,j), LV_ry(i,j),'b--','LineWidth',10);
 pause(.1*dt)
 end
 end
end

 118

2. Parameter Modification Plots

2.1. Plot of Initial Conditions

 Eta Mu Alpha Vel Ro Tfin dt n Filename
Initial 0.9 0.5 0.2 1 20 500 0.1 6 mvscript_gainmod.m
Final

-50 0 50 100 150 200 250 300 350 400
-400

-350

-300

-250

-200

-150

-100

-50

0

50
Multi Vehicle Control- Initial Conditions

Distance

D
is

ta
nc

e

 119

2.2. η Modified

 Eta Mu Alpha Vel Ro Tfin dt n Filename
Initial 0.9 0.5 0.2 1 20 500 0.1 6 mvscript_gainmod.m
Final 0.09

-50 0 50 100 150 200 250 300 350
-400

-350

-300

-250

-200

-150

-100

-50

0

50
Multi Vehicle Control- Eta Change

Distance

D
is

ta
nc

e

 Eta Mu Alpha Vel Ro Tfin dt n Filename

Initial 0.9 0.5 0.2 1 20 500 0.1 6 mvscript_gainmod.m
Final 9

-50 0 50 100 150 200 250 300 350 400 450
-400

-350

-300

-250

-200

-150

-100

-50

0

50
Multi Vehicle Control- Eta Change

Distance

D
is

ta
nc

e

 120

2.3. μ Modified

 Eta Mu Alpha Vel Ro Tfin dt n Filename
Initial 0.9 0.5 0.2 1 20 500 0.1 6 mvscript_gainmod.m
Final 0.05

-50 0 50 100 150 200 250 300 350 400
-400

-350

-300

-250

-200

-150

-100

-50

0

50
Multi Vehicle Control - Meu Change

Distance

D
is

ta
nc

e

 Eta Mu Alpha Vel Ro Tfin dt n Filename

Initial 0.9 0.5 0.2 1 20 500 0.1 6 mvscript_gainmod.m
Final 5

-50 0 50 100 150 200 250 300 350 400
-400

-350

-300

-250

-200

-150

-100

-50

0

50
Multi Vehicle Control - Meu Change

Distance

D
is

ta
nc

e

 121

2.4. α Modified

 Eta Mu Alpha Vel Ro Tfin dt n Filename
Initial 0.9 0.5 0.2 1 20 500 0.1 6 mvscript_gainmod.m
Final 0.02

-50 0 50 100 150 200 250 300 350 400 450
-400

-350

-300

-250

-200

-150

-100

-50

0

50
Multi Vehicle Control - Alpha Change

Distance

D
is

ta
nc

e

 Eta Mu Alpha Vel Ro Tfin dt n Filename

Initial 0.9 0.5 0.2 1 20 500 0.1 6 mvscript_gainmod.m
Final 2

-50 0 50 100 150 200 250 300 350
-400

-350

-300

-250

-200

-150

-100

-50

0

50
Multi Vehicle Control - Alpha Change

Distance

D
is

ta
nc

e

 122

2.5. 0r Modified

 Eta Mu Alpha Vel Ro Tfin dt n Filename

Initial 0.9 0.5 0.2 1 20 500 0.1 6 mvscript_gainmod.m
Final 0.2

-50 0 50 100 150 200 250 300 350 400
-400

-350

-300

-250

-200

-150

-100

-50

0

50
Multi Vehicle Control - Ro Change

Distance

D
is

ta
nc

e

 Eta Mu Alpha Vel Ro Tfin dt n Filename

Initial 0.9 0.5 0.2 1 20 500 0.1 6 mvscript_gainmod.m
Final 80

-50 0 50 100 150 200 250 300 350 400 450
-400

-350

-300

-250

-200

-150

-100

-50

0

50
Multi Vehicle Control - Ro Change

Distance

D
is

ta
nc

e

 123

3. JAVA Simulation of UMD Control Algorithm

3.1. Vehicle.java

package advancedControl;

public class Vehicle {

 //Simulation Paramters
 private double dt = 0.1;
 public static double vel = 1.0;

 //Vehicle Orientation
 public Vector Rxy = new Vector();
 public double theta;
 public double u;
 public Vector x = new Vector();
 public Vector y = new Vector();
 public Vector z = new Vector(0.0, 0.0, 1.0);

 public Vehicle() { } //Constructor

 public void newPosition() { //Integration and progression
 this.theta = theta + u * dt;
 this.Rxy.elem[0] = Rxy.elem[0] + vel * Math.cos(theta) *
 dt;
 this.Rxy.elem[1] = Rxy.elem[1] + vel * Math.sin(theta) *
 dt;
 this.setPosit(Rxy, theta);
 }

//Set position for Waypoints
 public void setPosit(double newRx, double newRy){
 this.Rxy.elem[0]= Rxy.elem[0];
 this.Rxy.elem[1]= Rxy.elem[1];
 }

 public void setPosit(Vector Rxy, double newTheta) { //Update
position and heading vectors
 this.Rxy.elem[0]= Rxy.elem[0];
 this.Rxy.elem[1]= Rxy.elem[1];
 this.theta =newTheta;

 this.x.elem[0] = Math.cos(theta);
 this.x.elem[1] = Math.sin(theta);
 this.x.elem[2] = 0;

 this.y.cross(z, x);
 }

 public void setU(double u_in) { //Set control limits
 if(u_in>.5)
 this.u = 0.5;
 if(u_in<-.5)
 this.u = -.5;
 if(u_in<=.5 && u_in>=-.5)
 this.u = u_in;

 124

 }

}

3.2. Swarm.java

package advancedControl;

public class Swarm {

 // Vehicle Numbers
 public static int n = 6;
 public static double num = n;

 //Creates n number of new vehicles
 public Vehicle[] vehicle = new Vehicle[n];

 // Vehicle Initial Positions
 public Vector R1 = new Vector(-10,-2,0);
 public Vector R2 = new Vector(20,11,0);
 public Vector R3 = new Vector(0,14,0);
 public Vector R4 = new Vector(-15,-22,0);
 public Vector R5 = new Vector(27,0,0);
 public Vector R6 = new Vector(0,27,0);

 //Data Logging Variables
 public Vector LV_rx = new Vector();
 public Vector LV_ry = new Vector();

 public Swarm() { // Constructor
 for (int i = 0; i < n; i++) {
 vehicle[i] = new Vehicle();
 }
 }
 //Set vehicle initial conditions (x,y,z) , theta
 public void initSwarm() {
 vehicle[0].setPosit(R1,1.45);
 vehicle[1].setPosit(R2, 0);
 vehicle[2].setPosit(R3, 2.1);
 vehicle[3].setPosit(R4, 5.75);
 vehicle[4].setPosit(R5, 3.3);
 vehicle[5].setPosit(R6, 6.0);
 }

 public void moveSwarm() {//Move all vehicles and update positions
 for (int i = 0; i < vehicle.length; i++) {
 vehicle[i].newPosition();
 }
 }

}

3.3. waypointVector.java

package advancedControl;

 125

public class waypointVector extends Vector {

 public int delay;

 public waypointVector(double x, double y, double z, int delay){
 elem[0] = x;
 elem[1] = y;
 elem[2] = z;
 this.delay = delay;
 }
}

3.4. Waypoint.java

package advancedControl;
import java.lang.Math;
import gpsModule.*;

public class Waypoint extends Vehicle {

 // Waypoint properties
 double dist = 10; // Minimum distance to waypoint
 int numpts = 6; // Number of waypoints
 public int place = 0; // Current Waypoint location
 public int count = 0;

 public static final double PI = 3.141592653589793;

 // Waypoint Locations (x,y,z,flag)
 public waypointVector wpt1 = new waypointVector(150, 100, 0, 10000);
 public waypointVector wpt2 = new waypointVector(450, -50, 0, 5000);
 public waypointVector wpt3 = new waypointVector(200, -50, 0, 0);
 public waypointVector wpt4 = new waypointVector(300, 0, 0, 5000);
 public waypointVector wpt5 = new waypointVector(50, 150, 0, 0);
 public waypointVector wpt6 = new waypointVector(200, -50, 0, 0);

 // Waypoint Locations in a List
 public waypointVector[] wptList = new waypointVector[numpts];

 public Waypoint() { // Constructor
 wptList[0] = wpt1;
 wptList[1] = wpt2;
 wptList[2] = wpt3;
 wptList[3] = wpt4;
 wptList[4] = wpt5;
 wptList[5] = wpt6;
 }

 public Vector getPosition() { // Update Waypoint Location
 return wptList[place];
 }

//Check distance to waypoint and move to next point

 126

 public void checkAndSwitch(Vector R) {
 Vector rsep = new Vector();
 double length;
 rsep.elem[0] = R.elem[0] - wptList[place].elem[0];
 rsep.elem[1] = R.elem[1] - wptList[place].elem[1];
 rsep.elem[2] = 0;
 length = rsep.norm();
 if (wptList[place].delay>=0) { // if true- should delay
 if (length <= dist) {
 wptList[place].delay--;
 if (wptList[place].delay == 0) {
 if (place < wptList.length - 1) {
 place++;
 }
 }
 }
 } else { //if false -move to next point
 if (length <= dist) {
 if (place < wptList.length - 1) {
 place++;
 }
 }
 }
 }
//Check distance to waypoint and move to next point
 public double distToWpt(Vector R) {
 Vector rsep = new Vector();
 double length;
 rsep.elem[0] = R.elem[0] - wptList[place].elem[0];
 rsep.elem[1] = R.elem[1] - wptList[place].elem[1];
 rsep.elem[2] = 0;
 length = rsep.norm();
 return length;
 }
// Calculate distance from Vehicle to waypoint
 public double dirToWpt(Vector R) {
 double newTheta;
 Vector rsep = new Vector();
 rsep.elem[0] = R.elem[0] - wptList[place].elem[0]; // x
 rsep.elem[1] = R.elem[1] - wptList[place].elem[1]; // y
 rsep.elem[2] = 0; // z
 rsep.divid(rsep.norm());
 newTheta = PI + Math.atan2(rsep.elem[1], rsep.elem[0]);
 return newTheta;
 }

 @Override
 public void newPosition() {
 } // Override movement of waypoints

}

 127

3.5. Control.java

package advancedControl;

public class Control {

 // Gain Paramaters
 private static double eta = 1/(Swarm.num-1);
 static double alpha =1/(Swarm.num-1);
 static double mu = 1/(Swarm.num-1);
 static double eta_circ = .9;
 static double alpha_circ = .2;
 public static double ro = 10.0;

 //Create Waypoint Object
 Waypoint wpts = new Waypoint();

 // Control Calculation Variables
 double u;
 double norm;
 double sumterm;
 public Vector rjk = new Vector();
 public int delay = 400;

 public Control(){} //Constructor

 public double calcControlRect(int vid, Swarm swarm) {
 //Rectilinear control
 double tempu=0;
 Vector tempkx = new Vector();
 for (int k = 0; k < swarm.vehicle.length; k++) {
 if (k != vid) {

this.rjk.elem[0] = swarm.vehicle[vid].Rxy.elem[0] -
swarm.vehicle[k].Rxy.elem[0];

this.rjk.elem[1] = swarm.vehicle[vid].Rxy.elem[1] -
swarm.vehicle[k].Rxy.elem[1];
 this.norm = rjk.norm();
 this.rjk.divid(rjk.norm());

tempkx.elem[0] = swarm.vehicle[k].x.elem[0] * mu;

tempkx.elem[1] = swarm.vehicle[k].x.elem[1] * mu;

tempkx.elem[2] = 0;

this.sumterm = -eta * Vector.dot(rjk, swarm.vehicle[vid].x)* Vector.dot(rjk,
swarm.vehicle[vid].y)- alpha* (1 - (ro / norm)*(ro / norm)) * Vector.dot(rjk,
swarm.vehicle[vid].y)+ Vector.dot(tempkx, swarm.vehicle[vid].y);

 128

 tempu = (1 / Swarm.num) * (sumterm + tempu);

 }
 }
 return tempu;
 }

 public double calcControlCirc(int vid, Swarm swarm) {
 //Circular Control
 double tempu=0;
 for (int k = 0; k < swarm.vehicle.length; k++) {
 if (k != vid) {

this.rjk.elem[0] = swarm.vehicle[vid].Rxy.elem[0] -
swarm.vehicle[k].Rxy.elem[0];

this.rjk.elem[1] = swarm.vehicle[vid].Rxy.elem[1] -
swarm.vehicle[k].Rxy.elem[1];
 this.norm = rjk.norm();
 this.rjk.divid(rjk.norm());

this.sumterm = -eta_circ * Vector.dot(rjk, swarm.vehicle[vid].x)*
Vector.dot(rjk, swarm.vehicle[vid].y)- alpha_circ * (1 - (ro / norm)*(ro /
norm)) * Vector.dot(rjk, swarm.vehicle[vid].y);

 tempu = (1 / Swarm.num) * (sumterm + tempu);

 }
 }
 return tempu;
 }

 public double calcWptControl(int vid, Swarm swarm) {
 //Waypoint Oriented Control
 double tempu = 0;
 Vector tempkx = new Vector();
 wpts.getPosition();
 wpts.checkAndSwitch(swarm.vehicle[vid].Rxy);

this.rjk.elem[0] = swarm.vehicle[vid].Rxy.elem[0]-
wpts.wptList[wpts.place].elem[0];

this.rjk.elem[1] = swarm.vehicle[vid].Rxy.elem[1]-
wpts.wptList[wpts.place].elem[1];

 this.norm = rjk.norm();
 this.rjk.divid(rjk.norm());

 if (true){
 // Heading Control

wpts.theta = wpts.dirToWpt(swarm.vehicle[vid].Rxy);

tempkx.elem[0] = Math.cos(wpts.dirToWpt(swarm.vehicle[vid].Rxy)) * mu;

 129

tempkx.elem[1] = Math.sin(wpts.dirToWpt(swarm.vehicle[vid].Rxy)) * mu;
 tempkx.elem[2] = 0;
 }
 else{
 //No heading control
tempkx.elem[0] = swarm.vehicle[vid].x.elem[0] * mu;

tempkx.elem[1] = swarm.vehicle[vid].x.elem[1] * mu;
 tempkx.elem[2] = 0;
 }

 this.sumterm = -eta * Vector.dot(rjk,
swarm.vehicle[vid].x)* Vector.dot(rjk, swarm.vehicle[vid].y) - alpha * (1
- (ro / norm) * (ro / norm))* Vector.dot(rjk, swarm.vehicle[vid].y)+
Vector.dot(tempkx, swarm.vehicle[vid].y);

 tempu = sumterm + tempu;
 return tempu;
 }

 public void pureControl(Swarm swarm){
 double totu;
 for(int i = 0; i<Swarm.num; i++){
 double rectu = calcControlRect(i, swarm);
 double circu = calcControlCirc(i, swarm);
 double wptu = calcWptControl(i, swarm);
 if(wpts.wptList[wpts.place].delay>0 &&
wpts.distToWpt(swarm.vehicle[i].Rxy)<=wpts.dist){
 //Circular Control
 totu = circu + wptu;
 }
 else{
 // Rectilinear Control
 totu = rectu + wptu;
 }
 swarm.vehicle[i].setU(totu);
 }
 }

 public void blendControl(double maxd, double mind, Swarm swarm){
 double totu=0;
 double trans=0;
 for(int i = 0; i<Swarm.num; i++){
 double rectu = calcControlRect(i, swarm);
 double circu = calcControlCirc(i, swarm);
 double wptu = calcWptControl(i, swarm);
 wpts.getPosition();
 this.rjk.elem[0] = swarm.vehicle[i].Rxy.elem[0]
 - wpts.wptList[wpts.place].elem[0];
 this.rjk.elem[1] = swarm.vehicle[i].Rxy.elem[1]
 - wpts.wptList[wpts.place].elem[1];
 this.norm = rjk.norm();
 if(norm>maxd){
 trans=0;
 }
 if(norm<mind){

 130

 trans=1;
 }
 if(norm<maxd && norm>mind){
 trans=1-(1/(maxd-mind))*(norm-mind);
 }
 if(trans==0){
 totu= rectu+ wptu;
 }
 if(trans==1){
 totu= circu+ wptu;
 }
 if(trans<1 && trans>0){

totu= ((1-trans)*rectu+trans*circu)+ wptu;
 }
 swarm.vehicle[i].setU(totu);
 }
 }

 public Matrix vehicDist(Swarm swarm){
 double norm = 0;
 Matrix sep = new Matrix((int)swarm.num, (int)swarm.num,
 norm);
 for(int i = 0; i<Swarm.num; i++){
 for (int k = 0; k < swarm.vehicle.length; k++) {
 if (k != i) {
this.rjk.elem[0] = swarm.vehicle[i].Rxy.elem[0] -
swarm.vehicle[k].Rxy.elem[0];

this.rjk.elem[1] = swarm.vehicle[i].Rxy.elem[1] -
swarm.vehicle[k].Rxy.elem[1];

 this.norm = rjk.norm();
 sep.elem[i][k]= rjk.norm();
 }
 }
 }
 return sep;
 }

}

3.6. Log.java

package advancedControl;

import java.io.File;
import java.io.FileWriter;
import java.io.IOException;
import java.io.PrintWriter;

public class Log {

 // Creates new waypoint object
 Waypoint wpts = new Waypoint();

 // File Variables
 private PrintWriter pw;

 131

 private PrintWriter pwt;
 private PrintWriter pwu;
 private PrintWriter pwd;

 public Log() {
 } // Constructor

 //Vehicle Positions Log
 public void openLog() { //Open Log for Vehicle Position Data
 try {
 File data = new File("data.m");
 FileWriter fw = new FileWriter(data);
 this.pw = new PrintWriter(fw);
 } catch (IOException e) {
 System.out.println(e);
 }
 }

//Log vehicle positions x,x,y,y
 public void dataLog(double numvehicles, Swarm swarm) {
 for (int j = 0; j <= numvehicles - 1; j++) {
 pw.print(swarm.vehicle[j].Rxy.elem[0]);
 pw.print(",");
 }
 for (int j = 0; j <= numvehicles - 1; j++) {
 pw.print(swarm.vehicle[j].Rxy.elem[1]);
 pw.print(",");
 if (j == numvehicles - 1) {
 pw.println("");
 }
 }
 }

 public void closeLog() {//Close Log for Vehicle Position Data
 pw.close();
 }

 //Steering Command u log
 public void openULog() {//Open Log for Vehicle Position Data
 try {
 File data = new File("u.m");
 FileWriter fw = new FileWriter(data);
 this.pwu = new PrintWriter(fw);
 } catch (IOException e) {
 System.out.println(e);
 }
 }

//Log vehicle positions x,x,y,y
 public void ULog(double numvehicles, Swarm swarm) {
 for (int j = 0; j <= numvehicles - 1; j++) {
 pwu.print(swarm.vehicle[j].u);
 pwu.print(",");
 if (j == numvehicles - 1) {
 pwu.println("");
 }
 }
 }

 132

 public void closeULog() {//Close Log for Vehicle Position Data
 pwu.close();
 }
 //Vehicle Separation Distance Log
 public void openDistLog() { //Open Log for Separation Distance
 try {
 File data = new File("sepdist.m");
 FileWriter fw = new FileWriter(data);
 this.pwd = new PrintWriter(fw);
 } catch (IOException e) {
 System.out.println(e);
 }
 }
 public void logDist(double numvehicles, Matrix rsep){
 for (int j = 0; j <= numvehicles - 1; j++) {
 for(int i = 0; i<= numvehicles-1; i++){
 pwd.print(rsep.elem[j][i]);
 pwd.print(",");
 }
 if (j == numvehicles - 1) {
 pwd.println("");
 }
 }
 }
 public void closedDistLog() { //Close Log for Vehicle Separation
 pwd.close();
 }
 //Waypoint Log

//Log waypoint positions x,x,y,y
 public void WptLog(double numvehicles, Waypoint wpts) {
 for (int j = 0; j <= numvehicles - 1; j++) {
 pwt.print(wpts.wptList[j].elem[0]); // X positions
 pwt.print(",");
 }
 for (int j = 0; j <= numvehicles - 1; j++) {
 pwt.print(wpts.wptList[j].elem[1]); // Y positions
 pwt.print(",");
 if (j == numvehicles - 1) {
 pwt.println("");
 }
 }
 }
 public void openWptLog() { //Open log for waypoint data
 try {
 File data = new File("wpts.m");
 FileWriter fw = new FileWriter(data);
 this.pwt = new PrintWriter(fw);
 } catch (IOException e) {
 System.out.println(e);
 }
 }

 public void closeWptLog() { //Close log for waypoint data
 pwt.close();
 }
}

 133

3.7. Simulate.java

package advancedControl;

public class Simulate {

 public static double dt;
 public static double tfin;
 public static double t;
 public static int n;
 public static double maxd;
 public static double mind;
 public static double count;

 public static void main(String[] args) {

 // Simulation Paramaters
 dt = 0.1;
 tfin = 2000;
 n = 6;
 maxd = 300;
 mind = 50;
 //Create objects for simulation
 Swarm myswarm = new Swarm();
 Waypoint waypoints = new Waypoint();
 Log data = new Log();
 Control control= new Control();
 data.openLog(); //Open vehicle position log
 data.openULog(); //Open steering command log
 data.openDistLog();//Open vehicle separation distance log
 myswarm.initSwarm(); //Initialize swarm

 for(double t=0; t<=tfin; t=t+dt){
 //Blended Control
 //control.blendControl(maxd, mind, myswarm);

//Pure Rectilinear or Circular control
 control.pureControl(myswarm);

//Move swarm and update position
 myswarm.moveSwarm();
 data.dataLog(n, myswarm); //Log vehicle positions
 data.ULog(n, myswarm); //Log steering command

//Logs vehicle separation distance matrix
 data.logDist(n, control.vehicDist(myswarm));
 }
 data.closeLog(); //Close vehicle position log
 data.closeULog(); //Close steering command log
 data.closedDistLog(); //Close vehicle separation log
 // Waypoint Position File
 data.openWptLog();
 data.WptLog(n, waypoints);
 data.closeWptLog();
 }
}

 134

4. Naval Research Laboratory Multi-Vehicle Simulator Installation Procedure

1. Java SE Development Kit (SDK)

a. http://java.sun.com/javase/downloads/index.jsp
b. Select Platform: Windows, Language: Multi Language, Continue
c. Under required files, click Windows Offline Installation, Download

2. Eclipse Classic
a. http://www.eclipse.org/downloads/
b. Click on Eclipse Classic 3.4 (or latest version)
c. Chose a mirror close to current location
d. Open with WinZip
e. Click on eclipse.exe
f. Set up a workspace location to store all your projects

3. TortiseSVN
a. http://tortoisesvn.net/downloads
b. Download the 32bit Installer
c. Next -> Install -> Finish -> Restart

 135

4. PuTTY
a. http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html
b. Latest Development Snapshot -> Windows Installer
c. Install

5. CybelePro
a. www.cybelepro.com/login/login.asp
b. Login using username and password
c. Download liscense.prop file (not on website)
d. Download latest version academic

6. Optional – Pin Putty, Pageant, TortoiseSVN, Eclipse to start menu
a. Start -> Programs -> Desired Program ->Right Click ->Pin to Start Menu

7. Obtain SSH key and pass phrase and store on relevant computers

8. Configure PuTTY

 136

a. Add the path to the PuTTY executable directory to the path environment variable.

i. Command prompt type “set PATH=C:\Program Files\ PuTTY

b. Test this by running PuTTY from the command line. If the path was added
successfully, then you should just be able to type “putty” at the command prompt
(i.e. the full path is not required).

c. Copy your private key to the mvsim repository to the local machine. I recommend
creating a directory called “ssh”.

d. Set up Pageant to take care of authentication by following these steps. First, if you
don't see the Pageant icon (a computer wearing a hat) in the system tray, you'll
need to start Pageant by going to Start - All Programs - PuTTY - Pageant. Then
right-click on the icon in the system tray and choose "add key". Browse to the
location where you saved your private key file. Then Pageant will ask you to enter
your passphrase associated with that key. Once you've entered this, Pageant will
take care of all authentication for the rest of that session (i.e. if you log out or
restart, you'll have to do this step again).

e. Tunneling
If you are connecting to the repository from off site you must use ssh (or PuTTY)
to tunnel in, to connect to the mvsim computer. You must have an active
connection to spg.nrl.navy.mil to read or write from the simulator repository.
Open Putty and enter the following:

Category Field Value

Session Host Name (or IP address) username@spg.nrl.navy.mil

Session Port 22

Session Saved Session <any name you want>

Connection ssh Auth Private key file for
authentication

<browse and select your
private key file>

Connection ssh Tunnels Source port 22

Connection ssh Tunnels Destination spgmvsim:22 <then press
add>

 Go back to the session screen in PuTTY and save the configuration.

 137

Step 1: configure for connecting to spg.nrl.navy.mil on port 22

 138

Step 2: Configure for private key authentication using your private key file.

 139

Step 3: Configure for tunneling to spgmvsim. Then press “Add”

Step 4: Save the configuration by going back to the screen in step 1 and pressing “Save”.

9. Configure Tortoise SVN (also see note below about optional install of Subclipse)
a. Go to the TortoiseSVN settings dialog box (right click and choose “settings” in

the TortoiseSVN menu).

b. In the general setting enter the following in the “Global ignore pattern:” field
“*.class .project .classpath *.metadata Thumbs.db *.log *.aux *.dvi .* *~”

c. In the network settings enter the following in the “SSH client:” field
“tortoiseplink –l <username>”

10. Check out a working copy from the repository:
a. Note: if you are using a roaming profile on the ENEWS domain (I.e. Rob

Lacefield set you up so that your Desktop, Preferences, and Documents get
imported to wherever you log-in on an ENEWS computer) then you probably
don't want to save a working copy of the repository code on your Desktop or in
your Documents folder because it will take a long time for the system to log in

 140

every time (the working copy is about 1.5GB and that will have to be transferred
over the network every time you log in.) Instead, you probably want to check out
the working copy to your space on the “Enewsfs” share drive, which will always
be accessible to you but won't have to be transferred across the network every
time you log in. However, you must ensure that you check “Save my password”
when you first browse to your space on the Enewsfs share drive; otherwise
Subversion won't be able to write to the folder and SVN updates will fail.

b. Right-click at the location where you want to save your working copy and go to
"SVN Checkout". In the URL box, you'll either type:

i. If your computer is located at NRL and on the ENEWS domain, type
"svn+ssh://spgmvsim/mvsim".

ii. If your computer is located at NRL and NOT on the ENEWS domain,
type "svn+ssh://spgmvsim.enews.nrl.navy.mil/mvsim"

iii. If your computer is NOT located at NRL type
“svn+shh://localhost/mvsim”, and see the section on Tunneling in the
Configuring PuTTY section..

c. Click OK; Tortoise should start adding the requested files to your working
directory. This may take a few minutes.

11. In Eclipse, create a new JAVA project:
a. File New Project…

b. Select “Java Project”

c. Select “create project from existing source”

d. Browse to “mvsim/code/java2/mil.navy.nrl.spg” and select OK

e. Name the project “mil.navy.nrl.spg”

f. Select “Next…”

g. Select the “Libraries” tab and click “Add External JARs”

h. Browse to the CybelePro install location. Usually: “C:\Program
Files\cybelepro\lib”

i. Select all and click “Open”

j. Click “Finish”

Note: Before running an application using the CybelePro framework. The Cybele-daemon must
be running. If the daemon is not running then the Cybele start up will hang at “Contacting
IAIDaemon …”

k. In Eclipse, if there are any files with errors that are not necessary

i. Right click -> Source path -> Exclude

l. Running a basic simulation in eclipse

 141

i. Locate the class with the main function you wish to run (for example

MultiBoatSimulation)

ii. Open and edit the simulation config.xml file and the boat initialization.xml

file

iii. Open and edit the track.csv file for the convoy waypoints

iv. Run the main class

v. Using the GUI, a typical simulation will run as:

1. “i” to initialize agents

2. “s” to begin simulation

vi. Output in the form of a .asi file

12. (Optional) Install Subclipse plug-in

a. Subclipse is a plug-in for the Eclipse IDE which allows you to interact with the
Subversion repository through the Eclipse interface. This is convenient because
you can update, commit, move, and delete versioned files without having to
bounce back and forth between Eclipse and a file explorer window. Also, it
prevents you from confusing Subversion by moving/deleting a versioned file in
the Eclipse package explorer (I.e. without doing the proper SVN move or SVN
delete).

b. Download the Subclipse plug-in (and necessary additional items that are
packaged with it) by clicking on “Help” in Eclipse and then selecting Software
Updates. On the Available Software tab, click on Add Site on the right hand side.
For the URL, put in http://subclipse.tigris.org/update_1.4.x. Click on the box next
to “Subclipse” and then click on Install. When it's complete, it will have you
restart Eclipse.

c. Find the Subversion configuration file C:\Documents and
Settings\<username>\Application Data\Subversion called “config”.

i. We need to modify this so that Subclipse will know how to use SSH.
Scroll down to the section entitled “tunnels”. Uncomment the “ssh” line
and replace it with: ssh = C:\\Program
Files\\TortoiseSVN\\bin\\TortoisePlink.exe -l
<put_your_username_here> (For some reason you have to put in the
double slashes).

ii. We also need to tell subclipse which files to ignore for versioning.
Uncomment the “global-ignores” line and make sure it reads as follows,
you will have to add some items to the list.
”global-ignores = *.class Thumbs.db *.log *.aux *.dvi *.o *.lo *.la
.*.rej *.rej .*~ *~ .* .DS_Store”

 142

d. Now, in Eclipse when you right click on a file you will find some new options.
The main one is a menu item called “Team” which has many of the typical
Subversion commands. Also, under Refactor you can do moves and deletes.
(Note: The black asterisks are equivalent to the red exclamation marks in
TortoiseSVN.)

13. SIMDIS
a. https://simdis.nrl.navy.mil/

b. Create an account and log in

c. Download latest version of SIMDIS

d. Register System to receive license number

e. To download extra terrain

i. Downloads -> Data -> Imagery and Terrain

ii. Download config text file

iii. Download all .db files stated in the config file

iv. Place .db files in corresponding folders in the SIMDIS folder tree

Location of latest version and link for Terrain downloads

v. In SIMDIS Map ->Imagery and Terrain-> Tool-> Load config file

vi. Also possible to make your own config file

1. Load all terrain and altitude files you want and hit save and name

the config file

 143

f. To run a simulation

i. Open the .asi file that is outputted by mvsim

14. Garmin GPSmap 60Cx

a. Download and install USB driver

i. http://www8.garmin.com/support/download_details.jsp?id=591

b. Update software version

i. http://www8.garmin.com/support/download_details.jsp?id=1225

c. Install Tracking and Route saving

i. http://www.gpsbabel.org/download.html

ii. Extract the ZIP file and run GPSBabelGUI.exe

1. In input, select Garmin serial/USB protocol

2. In output, select Universal csv with field structure in first line

15. Apache Logger

a. Download apache-log4j-1.2.15.zip

i. http://logging.apache.org/log4j/1.2/download.html

 144

b. Update referenced .jar library in Eclipse

i. In Eclipse, right click referenced libraries->add external JARs and find the

log4j-1.2.15.jar file

16. Automated simulation trials

a. Controls.JusthCalcParamFactory

i. Modify indexfilename and paramfilename with computers classpath

1. use “\\” vice “\” for folder separation

b. Add log4j-1.2.15.jar in Cybele/lib folder with Cybele .jar files

i. In Eclipse, right click referenced libraries->add external JARs and find the

log4j-1.2.15.jar file

c. Place log4j.properties in mil.navy.nrl.spg folder

d. batchrun.bat

i. add classpath in quotes “C:\....\mil.navy.nrl.spg”

ii. ad number of trials in the for loop

1. for %%i in (1…..20)

e. JusthCalcParamfactory.properties

i. make index =1 (or line number of the params.csv file you wish to read)

f. matlabAgent

i. change output file name if needed

g. params.csv file needed

h. sim_config.xml

i. make sure track file is correct for convoy

i. smallboat_init.xml

i. update all information for the vehicle agents

j. To run, double-click batchrun.bat in the source folder vice eclipse

 145

5. SIMDIS User’s Guide

This guide covers the following topics

• SIMDIS initialization

• Creating presentation videos

• Plot desired trajectories

• Sensor Projection

1. Use SIMDIS_Logger.m to convert data file to .asi file format

a. Both the Scenario Initialization and the Platform initialization are required

i. Scenario Initialization must contain a Version name, Ref LLA, and

Reference Coordinate System

ii. Platform Initialization must contain PlatformID, PlatformName and

PlatformIcon

iii. Optional keywords are explained on in the SIMDIS manual Appendix A

b. Editing input and output filenames

Change output filename

Change input filename

Change reference Latitude, Longitude and Altitude (LLA). This
allows the user to set a reference position on the earth which all of
the data will be based from. This is useful if the input data is not
in a latitude, longitude, altitude format but in an x ,y, z format

 146

c. Editing .asi file header information

i. Additional information can be removed/added at user’s preference.

ii. The addition of another vehicle would result in the following additional

code:

Edit Reference LLA
and the coordinate
system the reference
point is given in

Edit default
terrain file

Initialize
Vehicles

 147

iii. Depending on the format of the input data, PlatformCoordSystem may

need to be changed from LLA to ENU or others.

d. Data input for platform

i. PlatformData string must contain the following

1. Platform unique id

2. Time (set to -1 for static entities)

3. X position (meters, radians, degrees)

4. Y position (meters, radians, degrees)

5. Z position (meters)

ii. Optional

1. Yaw or Psi orientation (radians or degrees)

2. Pitch or Theta orientation (radians or degrees)

3. Roll or Phi orientation (radians or degrees)

4. Quantenion scalar and vector (q0,q1,q2,q3) if

PlatofrmUsesQuanternion is set in header

5. Speed or Velocity vector (Vx, Vy, Vz) (meters/sec)

iii. The following string formats are permitted:

 148

2. Recording video of simulation using Fraps

a. http://www.fraps.com/download.php

b. Configure

c. To capture video

i. Make sure Fraps is running and minimized

ii. When you want to begin recording, hit F9 (or assigned video hotkey)

iii. Press F9 (or assigned video hotkey) to end recording

1. Output file is .avi

d. Use video editing software for compression and editing

 149

3. Plot desired trajectories

a. Initialize as an object for plotting waypoints

i. Create unique PlatformID, PLatformName and PlatformIcon as any

normal vehicle.

ii. Data input for platform

1. Platform Unique ID

2. Time is -1

3. x, y, z position

iii. This method will treat waypoints as simulation objects and cause user to

have to cycle through all waypoints when trying to center on a vehicle.

b. Using .gog file

i. In Platform initialization use the line

1. PlatformAttachedGOG ‘platform_ID’ “gogfile.gog”

ii. In .gog file

start
linecolor blue
points
ll 38.9871949 -76.485415 0.0
ll 38.9873490 -76.4852175 0.0
ll 38.9875232 -76.4849973 0.0
ll 38.9877459 -76.4847090 0.0
ll 38.987895 -76.4845174 0.0
end

iii. ll command uses lat and long as arguments,

iv. xy command uses yards as distance arguments

v. ref command can be used to set a reference point (LLA), then xy used

from this reference point

4. Sensor Projection

 150

a. Use beams

i. Initialize beam

1. Must contain BeamID, VertBW (in degrees), HorzBW (in degrees)

ii. Data input for beam

1. Must contain BeamOnOffCmd and BeamData

2. BeamOnOffCmd must contain

a. Beam unique ID

b. Time to start

c. Beam state (0:off, 1:on)

3. BeamData must contain

a. Beam unique ID

b. Time to start

c. Color (string or hex number)

4. Optional for BeamData

a. Azimuth (rad or degrees, CW from N)

b. Elevation (rad of degrees, + above horizon)

PlatformID beam
attached to then
Beam UniqueID

 151

c. Range (meters from host platform)

d. Can also track an assigned “target”

i. See Appendix A for more details

b. Use .gog file

i. In Platform initialization use the line

1. PlatformAttachedGOG ‘platform_ID’ “gogfile.gog”

ii. In .gog file

start
circle
linecolor red
3d follow c
center xy 0 0 -100
radius 1760
end

iii. ‘3d follow c’ makes the gog object follow the attached platform’s course

iv. ‘center xy’ – x and y values in feet, z value in yards

v. ‘radius’ value in yards

5. Edit Preference Rules

a. Used to edit the display properties of the Platforms

b. Tools-> Preference Rules

 152

c. Save updated preference file

d. Load in .asi file using RuleFile keyword

i. RuleFile “my_rules.rul”

6. Edit Views

a. Create a viewport (picture in picture)

i. Click the viewport button and draw a box that will be your future viewport

 153

b. Save eye positions

c. Save view

i. View -> Views

Create Viewport Button

Create Eye Position Button

 154

ii. View Port Name shows all view ports cretated, and current active view

port

iii. Movement, Attributes, Eye Positions options covered in 7.3.1 in the

SIMDIS manual

iv. Mainly, select the viewport on the left, the eye position on the right, save

and then save the view file with the “Save File” button

 155

6. Data Analysis Scripts

6.1. matlabScript_V2.m

%%===
% File Name : matlabScript_V2.m
% Authors : W. Selby
% Date : 08-Sep-2008
% Description : Plots output of Java .m/.txt file, stores data in text
% file
%
% Inputs: : data text file
% Outputs: : plots
% Requirements : mvsimout.txt, plot output directory at end
% Revisions : Improved Cost function - linearized convoy penalization,
% computed avergae steering commands
%==

%% Initialize
clear; close all; format compact; clc; format long;

%Print Header of .csv file
fidw = fopen('Scenario_data_output_file.csv','w');
fprintf(fidw,'%s,%s,%s,%s,%s,%s,%s,%s\n','Trial','Mu','Alpha','Eta','Ro','%Ou
t of Range','%Too Close','%Max u');

%% Load Files
for(f=1:82)
 filename = sprintf('scenario3_%d_simulation_data.txt',f);
 data = load (filename);

%% Reassign Data to variables

 %File directory
 dir = cd;
 dir_plot = sprintf('%s\\plots',dir);

 % Time
 base_time = data(2,2);

 % Number of Vehicles
 n = 2;

 %Distance Tolerances
 r_min = .031068; %miles = 50 meters
 r_max = 1; %mile

 %Paramters
 alpha = data(1,2);
 mu = data(1,1);
 eta = data(1,3);
 ro = data(1,4);

 %Initialize variables

 156

 i=1;w=1;x=0;y=1;z=1;violatec=0;violatev=0;totalc=0;totalv=0;
 percentagec=0;percentagev=0;V1=0;violatectot=0;
 u_tot=0; u_max=60*pi/180; % corresponds to 60deg max rudder angle
 count=1;

%% Vehicle Positions
 for(j=2:size(data,1))
 if(data(j,1)== 4)
 x = x+1;
 V1(x,1) = data(j,2)-base_time; %elapsed time
 V1(x,2) = data(j,3); %lat
 V1(x,3) = data(j,4); %lon
 a(x,1) = sin((V1(x,2) - V1(x,2))/2)^2 +
cos(V1(x,2))*cos(V1(x,2))*sin((V1(x,3) - V1(x,3))/2)^2;
 end
 if(data(j,1)== 2)
 V2(y,1) = data(j,2)-base_time; %elapsed time
 V2(y,2) = data(j,3); %lat
 V2(y,3) = data(j,4); %lon

 if(V1 ~= 0)
 a(y,2) = sin((V2(y,2) - V1(x,2))/2)^2 +
cos(V1(x,2))*cos(V2(y,2))*sin((V2(y,3) - V1(x,3))/2)^2;
 y = y+1;
 end
 end
 if(data(j,1)== 3)
 V3(z,1) = data(j,2)-base_time; %elapsed time
 V3(z,2) = data(j,3); %lat
 V3(z,3) = data(j,4); %lon
 if(V1 ~= 0)
 a(z,3) = sin((V3(z,2) - V1(x,2))/2)^2 +
cos(V1(x,2))*cos(V3(z,2))*sin((V3(z,3) - V1(x,3))/2)^2;
 z = z+1;
 end
 end
 if(data(j,1)== 1)
 V4(w,1) = data(j,2)-base_time; %elapsed time
 V4(w,2) = data(j,3); %lat
 V4(w,3) = data(j,4); %lon
 if(V1 ~= 0)
 a(w,4) = sin((V4(w,2) - V1(x,2))/2)^2 +
cos(V1(x,2))*cos(V4(w,2))*sin((V4(w,3) - V1(x,3))/2)^2;
 w = w+1;
 end
 end
 j = j+1;
 end

%% Calculate average steering command u from vehicle positions

%V2(i,1) =elapsed time
%V2(i,2) =lattitude
%V2(i,3) =longitude
%V1 is the convoy vehicle

 157

%Calculate u per time step for UAV 1
for(i=10:10:size(V2,1)-30) %one calc per second

 vector1_2a = sin((V2(i+10,2) - V2(i,2))/2)^2 +
cos(V2(i,2))*cos(V2(i+10,2))*sin((V2(i+10,3) - V2(i,3))/2)^2;
 vector1_2c = 2*atan2(sqrt(vector1_2a),sqrt(1-vector1_2a));
 a_u = 3956*vector1_2c*1609.344;

 vector2_3a = sin((V2(i+20,2) - V2(i+10,2))/2)^2 +
cos(V2(i+10,2))*cos(V2(i+20,2))*sin((V2(i+20,3) - V2(i+10,3))/2)^2;
 vector2_3c = 2*atan2(sqrt(vector2_3a),sqrt(1-vector2_3a));
 b_u = 3956*vector2_3c*1609.344;

 vector1_3a = sin((V2(i+20,2) - V2(i,2))/2)^2 +
cos(V2(i,2))*cos(V2(i+20,2))*sin((V2(i+20,3) - V2(i,3))/2)^2;
 vector1_3c = 2*atan2(sqrt(vector1_3a),sqrt(1-vector1_3a));
 c_u = 3956*vector1_3c*1609.344;

 s =(a_u+b_u+c_u)/2;

 if(a_u~=0 && b_u~=0 && c_u~=0 && s-c_u>0)
 k2 = (4*sqrt(s*(s-a_u)*(s-b_u)*(s-c_u)))/(a_u*b_u*c_u);
 u2(i,1)=k2*a_u;
 end
end

%Calculate u per time step for UAV 2
for(i=10:10:size(V3,1)-30) %one calc per second

 vector1_2a = sin((V3(i+10,2) - V3(i,2))/2)^2 +
cos(V3(i,2))*cos(V3(i+10,2))*sin((V3(i+10,3) - V3(i,3))/2)^2;
 vector1_2c = 2*atan2(sqrt(vector1_2a),sqrt(1-vector1_2a));
 a_u = 3956*vector1_2c*1609.344;

 vector2_3a = sin((V3(i+20,2) - V3(i+10,2))/2)^2 +
cos(V3(i+10,2))*cos(V3(i+20,2))*sin((V3(i+20,3) - V3(i+10,3))/2)^2;
 vector2_3c = 2*atan2(sqrt(vector2_3a),sqrt(1-vector2_3a));
 b_u = 3956*vector2_3c*1609.344;

 vector1_3a = sin((V3(i+20,2) - V3(i,2))/2)^2 +
cos(V3(i,2))*cos(V3(i+20,2))*sin((V3(i+20,3) - V3(i,3))/2)^2;
 vector1_3c = 2*atan2(sqrt(vector1_3a),sqrt(1-vector1_3a));
 c_u = 3956*vector1_3c*1609.344;

 s =(a_u+b_u+c_u)/2;

 if(a_u~=0 && b_u~=0 && c_u~=0 && s-c_u>0)
 k3 = (4*sqrt(s*(s-a_u)*(s-b_u)*(s-c_u)))/(a_u*b_u*c_u);
 u3(i,1)=k3*a_u;
 end
end

%Use 2 norm to get average u per time step
for(i=1:min([size(u2,1),size(u3,1)]))

 158

 if(i<=size(u3,1))
 u_tot(i,1)=100*sqrt(((u2(i,1)/u_max)^2+(u3(i,1)/u_max)^2)/2);
 end
end

%Calculate average steering command
for(i=1:size(u_tot,1))
 if(u_tot(i,1)>0)
 count=count+1;
 end
end
u_avg = sum(u_tot)/count;

%% Log Vehicle Separation Distances
 for(j=1:size(V2,1))
 b(j,1)= sin((V2(j,2) - V3(j,2))/2)^2 +
cos(V3(j,2))*cos(V2(j,2))*sin((V2(j,3) - V3(j,3))/2)^2;%dist from 2-3
 %b(j,2)= sin((V2(j,2) - V4(j,2))/2)^2 +
cos(V4(j,2))*cos(V2(j,2))*sin((V2(j,3) - V4(j,3))/2)^2;%dist from 2-4
 %b(j,3)= sin((V3(j,2) - V4(j,2))/2)^2 +
cos(V4(j,2))*cos(V3(j,2))*sin((V3(j,3) - V4(j,3))/2)^2;%dist from 3-4
 end
 for(j=1:size(V2,1))
 if(n>2)
 for(i=1:n)
 rsep(j,i)= 3956*2*atan2(sqrt(b(j,i)),sqrt(1-b(j,i)));
 end
 else
 rsep(j,1)= 3956*2*atan2(sqrt(b(j,1)),sqrt(1-b(j,1)));
 end
 end

%% Fill Distance to convoy array
 for(i=1:size(V2,1)) %time step
 for(j=1:(n+1)) %vehicle distance%
 c(i,j) = 2*atan2(sqrt(a(i,j)),sqrt(1-a(i,j)));
 d(i,j) = 3956*c(i,j);
 end
 end

%% Data Analysis

 %Plot Distance to Convoy if convoy is vehicle 1
 if(0)
 plotname = sprintf('Scenario#3_Plot_%d_linear_dist_Blend',f);
 h = figure(1);
 subplot(3,1,1);
 ylabel('Distance (miles)');
 hold on; grid on;
 xlim([0 size(V2,1)/10])
 line([0,size(V2,1)],[r_max,r_max],'Color','r');
 for(j=2:(n+1))
 plot(V2(:,1),d(:,j));
 for(i=1:size(V2,1))
 if d(i,j)>r_max
 violatec = 1;

 159

 end
 if d(i,j)<r_min
 violatec = 0;
 end
 if (d(i,j)<r_max && d(i,j)>r_min)
 violatec = (d(i,j)-r_min)/(r_max-r_min);
 end
 violatectot = violatectot+violatec;
 totalc = totalc+1;
 end
 end
 legend(['Max Distance ', num2str(r_max),' mile(s)'],'UAV 1'...,'UAV
2','UAV 3'
);
 percentagec = 100*(violatectot/totalc);
 title({['Vehicle Separation Distances - ', num2str(percentagec),'%
range from convoy violation'];[' \alpha = ', num2str(alpha),', \mu = ',
num2str(mu), ', \eta = ', num2str(eta), ', ro = ', num2str(ro)]});

 %Plot Intra-vehicle distance
 subplot(3,1,2)
 ylabel('Distance (miles)');
 hold on; grid on;
 xlim([0 size(V2,1)/10])
 line([0,size(V2,1)],[r_min,r_min],'Color','r');
 for(j=1:(n-1)) %2 vehicles n-1, 3 vehicles n
 plot(V2(:,1),rsep(:,j));
 for(i=1:size(V2,1))
 if rsep(i,j)<r_min
 violatev = violatev+1;
 end
 totalv = totalv+1;
 end
 end
 legend(['Min Distance ', num2str(r_min),' miles/50 meters'],'UAV 1-
2'...,'UAV 1-3','UAV 2-3'
);
 percentagev = 100*(violatev/totalv);
 title(['Vehicle Separation Distances - ', num2str(percentagev),'%
intra-vehicle disance violaion']);

 %Plot steering command
 subplot(3,1,3)
 xlabel('Time (seconds)');
 ylabel('Percentage');
 xlim([0 size(V2,1)/10])
 hold on; grid on;
 plot(V2(1:size(u_tot,1),1),u_tot)
 title(['Average Steering Command (u) ', num2str(u_avg),'% of maximum
steering command ']);

 %Save Plot
 cd(dir_plot) %Open plot folder
 saveas(h,plotname);
 cd('..'); %Return to active directory
 close (h);

 160

 end
%% Write data to .csv file
 %Distance to Convoy Violation
 for(j=2:(n+1))
 for(i=1:size(V2,1))
 if d(i,j)>r_max
 violatec = 1;
 end
 if d(i,j)<r_min
 violatec = 0;
 end
 if (d(i,j)<r_max && d(i,j)>r_min)
 violatec = (d(i,j)-r_min)/(r_max-r_min);
 end
 violatectot = violatectot+violatec;
 totalc = totalc+1;
 end
 end
 percentagec = 100*(violatectot/totalc);

 %Distance between Vehicles Violation
 for(j=1:(n-1)) %2 vehicles n-1, 3 vehicles n
 for(i=1:size(V2,1))
 if rsep(i,j)<r_min
 violatev = violatev+1;
 end
 totalv = totalv+1;
 end
 end
 percentagev = 100*(violatev/totalv);

 %Print Data line to file

fprintf(fidw,'%d,%s,%s,%s,%s,%s,%s,%s\n',f,num2str(mu),num2str(alpha),num2str
(eta),num2str(ro),num2str(percentagec),num2str(percentagev),num2str(u_avg));
end

6.2. Compute_Average_v2.m

%%===
% File Name : Compute_Average_v2.m
% Authors : W. Selby
% Date : 26-Sep-2008
% Description : Computes cost function
%
% Inputs: : data text file
% Outputs: : data text file
% Requirements : ParamDistData per IP
% Revisions : None
%==
%% Initialize
clear; close all; format compact; clc; format short;

%% Declare variables
n = 8; %number of trials

 161

rho = .25; % performance weighting value

%% Load Files
fidw = fopen('Results_Avg_S1_Route1.csv','w');
fprintf(fidw,'%s,%s,%s,%s,%s,%s,%s,%s,%s\n','Trial','Mu','Alpha','Eta','Ro
(scaled)','Convoy','Collision','E_u','Performance Average');

%% Compute 1 norm for convoy distance and steering control inf-norm for
%% collisions
for(j=1:16)
 filename = sprintf('ParamDistData_v2_%d.csv',j);
 data = load(filename);
 for(i=1:size(data,1))
 if(j==1)
 fx(i+1,5:7)=0;
 end
 gx(i,1) = data(i,6);
 collide(i,j)=data(i,7);
 gx(i,2) = data(i,8);
 fx(i,5) = fx(i,5) + gx(i,1)/n; %final average of convoy distance %'s
 fx(i,6)= max(collide(i,:));
 fx(i,7) = fx(i,7) + gx(i,2)/n; %final average of u/u_max %'s
 end
end

%% Store Paramater values
for(i=1:size(data,1))
 fx(i,1) = data(i,2); %mu
 fx(i,2) = data(i,3); %alpha
 fx(i,3) = data(i,4); %eta
 fx(i,4) = data(i,5)/100; %ro (scaled)
end

%% Combine all 3 into one performance metric
% fx(mu, alpha, eta, ro scaled, convoy distance, collide, steering)

for(i=1:size(data,1))
 gx(i,1)= 2*fx(i,5)+6*fx(i,6)+2*fx(i,7);

fprintf(fidw,'%d,%s,%s,%s,%s,%s,%s,%s,%s\n',i,num2str(fx(i,1)),num2str(fx(i,2
)),num2str(fx(i,3)),num2str(fx(i,4)),num2str(fx(i,5)),num2str(fx(i,6)),num2st
r(fx(i,7)),num2str(gx(i,1)));
end

6.3. Minimum_Sensitivity.m

%%===
% File Name : Minimum_Sensitiviy.m
% Authors : W. Selby
% Date : 26-Sep-2008
% Description : Computes cost function and varies weights
%
% Inputs: : data text file
% Outputs: : data text file, plot

 162

% Requirements : ParamDistData per IP
% Revisions : None
%==
%% Initialize
clear; close all; format compact; clc; format short;

%% Declare variables
n = 1; %number of trials
rho = .25; % performance weighting value

%% Load Files
fidw = fopen('Min_Sens_scenario.csv','w');
fprintf(fidw,'%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s\n','Trial','Mu','Alpha','Et
a','Ro (scaled)','Convoy','Collision','E_u','Performance Average', 'Weight
1', 'Weight 2', 'Weight 3');

%% Compute 1 norm for convoy distance and steering control inf-norm for
%% collisions
j=1;
filename = 'Scenario3_output_data.csv';
 data = load(filename);
 for(i=1:size(data,1))
 if(j==1)
 fx(i+1,5:7)=0;
 end
 gx(i,1) = data(i,6);
 collide(i,j)=data(i,7);
 gx(i,2) = data(i,8);
 fx(i,5) = fx(i,5) + gx(i,1)/n; %final average of convoy distance %'s
 fx(i,6)= max(collide(i,:));
 fx(i,7) = fx(i,7) + gx(i,2)/n; %final average of u/u_max %'s
 end

%% Store Paramater values
for(i=1:size(data,1))
 fx(i,1) = data(i,2); %mu
 fx(i,2) = data(i,3); %alpha
 fx(i,3) = data(i,4); %eta
 fx(i,4) = data(i,5)/100; %ro (scaled)
end

%% Combine all 3 into one performance metric
% fx(mu, alpha, eta, ro scaled, convoy distance, collide, steering)

for(w1=.1:.1:1)
 for(w2=.1:.1:(.91-w1))
 w3=1-(w1+w2);
 for(i=1:size(data,1))
 gx(i,1)= w1*fx(i,5)+w2*fx(i,6)+w3*fx(i,7);
 [min_par place] = min(gx(:,1));
 end
 H = figure(1);
 title('Sensitivity of the Test Matrix as Cost Function Weighting is
Changed (Route 1)');

 163

 xlabel('Parameter Set'); ylabel('Performance Percentage'); xlim([1
82]);

fprintf(fidw,'%d,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s\n',place,num2str(fx(place,1
)),num2str(fx(place,2)),num2str(fx(place,3)),num2str(fx(place,4)),num2str(fx(
place,5)),num2str(fx(place,6)),num2str(fx(place,7)),num2str(gx(place,1)),num2
str(w1),num2str(w2),num2str(w3));
 sort(gx,1);
 if(w1==.1)
 plot(sort(gx(:,1),1),'blue'); hold on; grid on;
 end
 if(w1==.2)
 plot(sort(gx(:,1),1),'red'); hold on; grid on;
 end
 if(w1<=.31 && w1>=.29)
 plot(sort(gx(:,1),1),'Color',[0 .5 0]); hold on; grid on;
 end
 if(w1==.4)
 plot(sort(gx(:,1),1),'cyan'); hold on; grid on;
 end
 if(w1==.5)
 plot(sort(gx(:,1),1),'green'); hold on; grid on;
 end
 if(w1==.6)
 plot(sort(gx(:,1),1),'magenta'); hold on; grid on;
 end
 if(w1==.7)
 plot(sort(gx(:,1),1),'yellow'); hold on; grid on;
 end
 if(w1==.8)
 plot(sort(gx(:,1),1),'black'); hold on; grid on;
 end

 end

end

 164

7. GPS Filtering

%%===
% File Name : GPS_filter.m
% Authors : W. Selby
% Date : 20-Sep-2008
% Description : Filters GPS routes
%
% Inputs: : data text file
% Outputs: : filtered track file
% Requirements : track.csv
% Revisions : None
%==
%% Initialize
clear; close all; format compact; clc; format long;

%% Declare variables
count = 1906;
speed = 40/(60*60); %mph->miles per second
date = '8/7/2008';
alt = 0;
delay = 0;
N = 0;
time_diff=0;

%% Load Files
fid = fopen('NRL_to_USNA_40mph.csv');
[latd, lond, time] =
textread('NRL_to_USNA_40mph.csv','%*f%f%f%*f%*s%s','delimiter',',');
fidw = fopen('to_USNA_Time_Mod.csv','w');

%% Degrees to radians conversion
for(i=1:size(latd,1))
 lat(i,1) = latd(i,1)*pi/180;
 lon(i,1) = lond(i,1)*pi/180;
end

%% Parse time string
% for(i=1:size(time,1))
% [h(i,1), m(i,1), s(i,1)] = strread(time{i,1}, '%d%d%d',
 'delimiter', ':');
% end

h(1,1) = 8;
m(1,1) = 29;
s(1,1) = 56;

%%Print Header
% fprintf(fidw,'%s\n', 'No,Latitude,Longitude,Altitude,Date,Time');
% fprintf(fidw,'%d,%.6f,%.6f,%d,%s,%s\n',count,latd(1,1),lond(1,1),alt,
 date,time{1,1});
%% Repeat Point for loitering
if(0)
 for(i=1:300)

 165

%current total number of seconds and subtracts delay
 N = 86400*datenum(2008,9,21,h(1,1),m(1,1),s(1,1))+i;

%store updated time information
[Y, M, D, hour(i,1), min(i,1), sec(i,1)] = datevec((N/86400));
%make new time string

 time =sprintf('%d:%d:%2.2d',hour(i,1),min(i,1),int8(sec(i,1)));

sprintf('%d,%.6f,%.6f,%d,%s,%s\n',count,latd(i,1),lond(i,1),alt,date,time);
%print line of track file
fprintf(fidw,'%d,%.6f,%.6f,%d,%s,%s\n',count,latd(i,1),lond(i,1),alt,date,tim
e);
 end
end
for(i=1:size(latd,1)-1)
 a(i,1) = sin((lat(i+1,1)-lat(i,1))/2)^2 +
cos(lat(i,1))*cos(lat(i+1,1))*sin((lon(i+1,1)-lon(i,1))/2)^2;
 c(i,1) = 2*atan2(sqrt(a(i,1)),1-sqrt(a(i,1)));
 d(i,1) = 3956*c(i,1); %convert to miles
 time_diff = (d(i,1)/speed); %time to next waypoint
 count = count+1; %line number
 %current total number of seconds and add to make future time
 N = 86400*datenum(2008,9,21,h(i,1),m(i,1),s(i,1))+time_diff;
 %store updated time information
 [Y, M, D, h(i+1,1), m(i+1,1), s(i+1,1)] = datevec((N/86400));
 if(int8(s(i+1,1))==60)
 m(i+1,1) = m(i+1,1)+1;
 s(i+1,1)=0;
 end
 %make new time string

time = sprintf('%d:%d:%2.2d',h(i+1,1),m(i+1,1),int8(s(i+1,1)));

%print line of track file
fprintf(fidw,'%d,%.6f,%.6f,%d,%s,%s\n',count,latd(i,1),lond(i,1),alt,date,tim
e);
end

fclose('all');

 166

8. Definition of Terms

• α (alpha) – parameter that controls the equidistant spacing behavior
• η (eta) – parameter that control the baseline alignment behavior
• μ (mu) – parameter that controls the heading alignment behavior
• u – output of the control law, a steering command for the vehicle
• 0r - parameter that sets the desired vehicle spacing
• minr - distance at which vehicles are assumed to have collided

