

Managing Nitrogen for Yield and Protein in Winter Wheat

Haiying Tao Aaron Esser Department of Crop and Soil Sciences <u>Haiying.tao@wsu.edu</u> 509-335-4389

Outline

- N Cycle in the soil-plant-atmosphere system
- Fate of N fertilizers
- Management Practices that affect N Use Efficiency
- Tools and Technologies for N Management
- WSU N management tools
 - **O** Dryland Wheat N Fertilizer Calculator
 - **O** Post-Harvest N Efficiency Calculator

Nitrogen Forms in Soil

□ Inorganic N compounds

 $\checkmark\,$ 2-5% of the total of soil N

Ammonium N (NH₄⁺), nitrate N (NO₃⁻), nitrite N (NO₂⁻), ammonia (NH₃), nitrous (N₂O) and nitric (NO) oxides

Organic N

- $\checkmark\,$ 95-98% of the total soil N
- ✓ Among the total organic N:
 - Bound amino acids, 20-40%
 - Amino sugars, 5-10%;
 - Purine and pyrimidine derivatives, <1%;
 - Unknown, 50%.

N cycle in the soil-plant-atmosphere system

N cycle in the soil-plant-atmosphere system

```
Mineralization = organic N to mineral N (NH<sub>4</sub><sup>+</sup>)
```

Immobilization = mineral N to organic N by microbes

```
Nitrification = NH_4^+ to NO_3^-
```

Denitrification = nitrate to gaseous NO, N_2O , or N_2

Volatilization = Gaseous NH_3 loss to the atmosphere (NH_4^+ to NH_3 at high pH >7.6 and urea to NH_3)

NH₄⁺ Fixation = movement of ammonium into clays

Nitrate leaching = movement of nitrate in water below root zone

N Cycling Effects on Soil N Content				
N Gains	N Losses	No Net Change (Cycling)		
N ₂ Fixation (natural)	Plant uptake	Immobilization		
Fertilizer (N ₂ fixation by human)	Denitrification	Mineralization		
Animal manure Sewage sludge	Volatilization	Nitrification		
Crop residue	Leaching	NH ₄ ⁺ Fixation		

Factors Affecting Mineralization

- C:N Ratio less than 20:1 = mineralization greater than = immobilization
- Moisture Level Optimum at 50-70% of field capacity
- Temperature Maximum: 40 50° C (104 140° F) Optimum: 25 - 35° C (77 - 95° F) Minimum: 5 - 10° C (40 - 50° F)
- Aeration Most mineralizing bacteria are aerobic.
- pH Microbes can be sensitive to pH

In general, conditions are good for root growth \Box good for N mineralization

				C.	
	60 1 3 4 6 7 1			there is the second	
Soll	Micro	orga	nism	S	3:1
Soil					0:1
Grai	n Stra	Ŵ			0:1

N supply from Mineralization

- Soil organic matter (SOM) contains about 5% N.
- During a single growing season 1 4% of the SOM is mineralized to inorganic N.
 4% SOM @ 2% mineralization → 80 lbs N/acre
 4% SOM @ 4% mineralization → 160 lbs N/acre
- This is one reason it is very difficult to accurately predict the N fertilizer requirement of a crop.
- The amount of N a crop will remove or uptake is fairly uniform from year to year, but the amount of N available to the crop from the soil changes from year to year.

N supply from Mineralization in WA

	Annual net N mineralization	Fall net N mineralization	Spring net N mineralization	
	September 2012- August 2013	September 2012- April 2013	April 2013 - August 2013	
	kg N ha ⁻¹			
Pullman, WA	84	37	47	
Davenport, WA	64	12	52	

Source Zaac T.

Synchrony of soil N mineralization VS Crop N uptake in corn and winter wheat

Havlin et al.

ALLER A LEAST DE CONTRACTOR DE CONTRACTOR

Fate of Anhydrous Ammonia Abla Soils

Reactions of Anhydrous Ammonia in Soil

Volatilization

Volatilization — Gaseous NH_3 loss to the atmosphere. $NH_4^+ + OH^- \rightarrow NH_3^\uparrow + H_2O$

Soil pH effects on percentages of N present as NH₃ and NH₄⁺

	Ammoniacal N		
Soil pH	Ammonia	Ammonium	
	%		
6	0.058	99.94	
7	0.57	99.43	
8	5.4	94.6	
9	36.5	63.5	

Havlin et al.

Factors Favoring Volatilization

- Initially moist soil followed by drying
- No rain or irrigation after application
- High crop residue on the soil surface
- High temperatures
- High wind
- High soil pH, >7.8
- Low clay & organic matter (low CEC)

NH₃ Volatilization Losses

- Injection or tillage
- Rain 2-3 days control loss
- Maximum loss of N through volatilization = 20-30% of N
- Up to 50% loss of N through volatilization on calcareous soils

Nitrification

Nitrification --- Conversion of $NH_4^+ \longrightarrow NO_3^-$

- Exclusively carried out by aerobic autotrophs
- Nitrification is fairly rapid under favorable conditions

Processes of Nitrification

Step 1: Nitrosommonas

Step 2: Nitrobacter

Factors Affecting Nitrification

- Moisture Level Optimum at 50-70% of field capacity
- Temperature Optimum at 30 35° C (86 95° F)
- Aeration O₂ necessary for nitrification, associated with soil moisture
- pH
 - Nitrification bacteria sensitive to soil pH
 - Optimum at 6.8 7.0 or higher
 - Slower at low pH, negligible with $pH \le 5.0$
 - At high pH free NH₃ is toxic to nitrobacter which may result in buildup of toxic levels of NO₂⁻
 - Nitrification lowers pH

Ammonium (NH₄+) Fixation

- NH₄⁺ enters interlayer of 2:1 clay minerals such as vermiculite and mica minerals to replace existing K⁺.
- NH₄⁺ fixation ≠ exchangeable NH₄⁺, but the fixation is not permanent and may protect the fertilizer from nitrification and leaching for short periods of time (1 to 8 weeks).
- Not very important in most soils. Maximum fixation 30 Ibs N/acre.

Diagram of an expanding clay mineral capable of fixing native or applied NH₄⁺

Havlin et al.

Immobilization

Immobilization --- Conversion of mineral N to organic N by microbes

- Organisms that decompose organic matter as an energy source require nitrogen.
- Organic materials with a low N content cannot supply the needs of these organisms, thus they use soil N and compete with the crop.
- Freshly immobilized N = 5-15% of soil N.

NH₄+ Immobilization

N mineralization and immobilization following addition of residue to soil

ALCEN & HERE EN ALCENER & HERE &

Fate of Urea-Amonium Nitrate UAN/Fertilizers

Reactions of UAN in Soil

- A solution of Urea and NH₄NO₃
- 50% NO_3NH_4 : 50% Urea \longrightarrow 25% NO_3^- + 75% NH_4^+
- % by weight:
 - UAN 32 : 45% NH₄NO₃ + 35% Urea + 20% Water
 - UAN 30: 42% NH₄NO₃ + 33% Urea + 25% Water
 - UAN 28: 40% NH₄NO₃ + 30% Urea + 30% Water

Behavior of Nitrate (NO₃⁻) in Soil

- Most common mineral form of N in most soils
- Plant uptake
- Anion, therefore is not adsorbed on CEC
- Leaching loss
- Denitrification loss

Denitrification

Denitrification --- Conversion of NO_3^--N to gaseous NO, N_2O , or N_2 $NO_3^- \rightarrow NO_2^- \rightarrow NO \rightarrow N_2O \rightarrow N_2$ Nitrate Nitric acid Nitrous oxide Dinitrogen

Most denitrifying bacteria are chemoheterotrophic (aerobic) bacteria (e- acceptor = O_2) that are capable of anaerobic growth only in the presence of N oxides (nitrate).

Under anaerobic conditions these bacteria use NO_3^- as the e-acceptor and carbon (OM) as the e- donor.

Denitrification

Conditions needed for denitrification to occur:

- -Lack of oxygen (or extremely low oxygen levels)
- -A source of carbon (OM)
- -A source of nitrate

Factors that Favor Denitrification

- Poor soil structure.
- Soil alternately wet and dry.
- Recent additions of easily decomposed carbon such as an alfalfa crop plowed down.
- Flooding.
- pH greater than 5.0, and the higher the pH the quicker the denitrification.
 - pH < 5.5 = NO favored
 - $pH < 5.5-6.0 = N_2O$ favored
 - $pH > 6.0 = N_2$ favored

Factors that Favor Denitrification

Effect of soil water content (% of water-holding capacity) on denitrification in soil (Havlin et al., 2005)

Factors that Favor Denitrification

Relationship between denitrification capacity and watersoluble organic C (Burford & Bremner, 1975) Havelin et al.

Effect of soil pH on denitrification in soil (Havlin et al., 2005)

pH 4.8

pH 3

16

18

20

14

Reactions of Urea in Soil

Rates of urea hydrolysis in a silt loam soil at three temperatures (L.G. Bundy)

Change in soil pH in a urea-treated silt loam at two temperatures (L.G. Bundy)

N fertilization and soil quality

Application of large amounts of ammonium fertilizers can cause a decrease of soil pH, can be a problem in no-till system.

- anhydrous ammonia $NH_3 + 2O_2 \stackrel{t}{\rightarrow} NO_3^- + H_2O + H^+$
- urea
- $(NH_2)_2CO + 4O_2 \stackrel{2}{\Rightarrow} 2NO_3 + 2H^+ + CO_2 + H_2O_3$ • ammonium nitrate
- $\dot{NH}_4 NO_3^{-1} + 2O_2 \rightleftharpoons 2NO_3^{-1} + 2H^+ + H_2O_4^{-1} + 4O_2 \backsim 2NO_3^{-1} + 2SO_4^{-2} + 4H^+ + H_2O_4^{-1}$ • ammonium sulfate
- monoammonium phosphate

 $NH_{a}H_{2}O_{a} + O_{2} \stackrel{t}{\Rightarrow} 2NO_{3}^{-} + 2H^{+} + H_{2}PO_{a}^{-} + H_{2}O_{3}$

diammonium phosphate

 $(NH_4)_2HPO_4 + O_2 \leftrightarrows 2NO_3^- + 3 H^+ + H_2PO_4^- + H_2O_3^- + 3O_2 + H_2O \leftrightarrows 2SO_4^{-2} + 4 H^+$

• ammonium thiosulfate

• elemental S

 $(NH_4)_2S_2O_3 + 6O_2 \implies 2SO_4^{-2} + 2NO_3^{-1} + 6H^+ + H_2O_3^{-1}$

N fertilization and soil quality

- Long-term excessive application of fertilizer N have negative effect on soil C sequestration. – found by numerous studies
- A research studying effect of N fertilization on soil C sequestration for different crop rotation grown on Mollisols: net decline in soil C despite increasingly massive residue C incorporation.
- Fertilizer N applications increase biomass production, but have little benefit to soil C sequestration. – found by numerous studies
Management Practices and NUE

- Climate: rainfall, temperature
- 4Rs of nutrient stewardship: Rate, Form, Timing, Placement;

5th R – right data

- Variety
- Soil: type, drainage, microbiology, soil pH, etc.
- Tillage
- Crop rotation
- Residue management
- Fungicides
- Herbicides

When are yield components "set"?

Weight/kernel

Impacts of nitrogen

Nitrogen late Weight/kernel

What makes yield?

What makes high grain protein?

- Nitrogen taken up during vegetative growth (before flowering)
 - Used to grow the plant and make yield, but also stored
 - Later, remobilized to grain during grain filling period
- Nitrogen taken up during grain filling

Rainfall & Crop Rotation vs N Uptake

Source: Zaac T.

Rainfall & Crop Rotation vs N Uptake

Source: Zaac T.

Right Rate Yield-Protein basics: Hard Wheats

Right Rate Yield-Protein basics: Hard Wheats

2004 hard red spring wheat – Dusty area

Right Rate Yield-Protein basics: Hard Wheats

2004 hard white spring wheat – Colfax

Right Rate More N is Required for Hard Wheat Protein

- Maximum yield occurs at 12.5% grain protein in hard red spring, 11.5% grain protein in hard white spring, and 10.5% grain protein in soft white winter wheat
- The amount of N required to reach protein goals of 12.5% (hard white) or 14% (hard red) is slightly more than the amount necessary for maximum yield
- How much more? About 0.4 to 0.5 lb N/bushel more than for maximum yield

Source: W. Pan & R. Koenig

Right Rate N supply - yield and protein trends

W. Pan & R. Koenig

Right Rate It's not the N applied but the total N supply

- The total amount of N available to wheat is the most important factor in achieving yield and protein goals, not the N fertilizer rate
- Soil residual N, mineralized N, and immobilized N must be accounted for before determining how much fertilizer N is needed
- Soil testing is the only way to quantify soil N contributions
 - Soil testing will be required (CSP program)

Source: W. Pan & R. Koenig

Right Timing Early and late N availability are critical

- N taken up during vegetative growth (before flowering) is used primarily to set the yield potential (tillers → heads/plant and kernels/head)
- Vegetative N is later remobilized to the kernels to make grain protein
- N taken up after flowering is used to increase size of kernels and grain protein
 - This is critical to reach protein goals in hard wheats

Source: W. Pan & R. Koenig

Right Timing Soil N and application timing scenarios (dryland spring sampling)

Right Timing N application timing and hard red spring wheat grain protein

No difference in yield among application timings

Source: Huggins, 1991

Right Location Positional availability of N is important

Spatial variability of N within- and across-field

Availability of N at key times is critical

- Shallow N available early in the season establishes yield potential
 - N = tillers \rightarrow heads and kernels per head
 - Some protein later
- Subsoil availability of N is critical late in the season when precipitation is limited
 - Helps kernels fill, but is also critical to make higher protein in hard wheat

Source W. Pan & R. Koenig

Tools and Technologies in N Management

- Soil Tests
- Tissue Tests
- In-season nutrient deficiency symptoms
- Post-harvest Evaluation
- Sensors: ground sensors, remote sensing
- Precision Ag.
- •
- •

Some Thoughts

- Optimize N Form × Timing × Rate for target protein
- Right N rate for different varieties
- Variable N rate for spatial variation
- Benchmark best management practices for N in WA
- Post-harvest evaluation for N management
- Continuous improvement of N management : Adaptive nutrient Management

Your input

Soil fertility and residue research and extension/information needs

- Current issues & Long-term issues
- Cooperative projects and joint efforts

Immediate Extension Needs

Some issues can be resolved with existing knowledge and resources

Haiying Tao, Department of Crop and Soil Sciences Haiying.tao@wsu.edu 509-335-4389

N Recommendation for Winter Wheat

Eastern Washington Nutrient Management Guide: http://cru.cahe.wsu.edu/CEPublications/EB1987E/EB1987E.pdf

N management for hard wheat protein enhancement: http://plantbreeding.wsu.edu/pnw0578.pdf

Yield, Protein, N use efficiency of spring wheat: evaluating field-scale performance: <u>http://csanr.wsu.edu/publications/researchreports/CFF%20Report/CSANR</u> 2010-001.Ch17.pdf

N Recommendation for Winter Wheat

Wheat and Small Grains: <u>www.smallgrains.wsu.edu</u>

Nitrogen Calculator: http://wheattools.wsu.edu/Applications/Fertilizer%20Use%20Calc ulator/

Post Harvest Calculator:

http://wheattools.wsu.edu/Applications/Fertilizer%20Use%20Calc ulator/

Acknowledgement

Rich Koenig Aaron Esser William Pan Tai Zaac

N Calculator Post Harvest Calculator

Aaron Esser Area Extension Agronomist Lincoln/Adams County Washington State University