Epidemiology of Eyespot, Stripe Rust and Soilborne Wheat Mosaic

Tim Murray
Plant Pathologist
Wheat Academy 2016

World Class, Face to Face

Goals for Today

Discuss basic principles of plant disease epidemiology

Describe three important wheat diseases with different epidemiological characteristics

Discuss control options for each disease relative to their epidemiology

→ better understand why we do what we do to control diseases

Epidemiology

Epidemiology

= the study of disease in populations

Epidemic

= increase in disease intensity in a host population over time and space

Vanderplank (1963)

Plant Disease Triangle

'Disease Triangle' **Environment** Disease **Plant Pathogen**

The Generalized Disease Cycle

Principles of Epidemiology

Types of disease cycles:

Single-cycle (Monocyclic) diseases

- primary inoculum only

Multiple-cycle (*Polycyclic*) diseases

- primary & secondary inoculum
- → Multiple-cycle diseases have greater potential for rapid epidemic development than single-cycle diseases

Modeling Epidemics

Logistic Model

Quantifying Disease

Disease progress curve

= disease intensity over time

Quantifying Disease

Why use disease progress curves?

- Compare control measures
- Compare effect of environment on disease development
- Predict future disease development
 - Disease forecasting for improved control

Modeling Monocyclic Epidemics

Modeling Polycyclic Epidemics

$$X = X_0 e^{rt}$$

X = disease at time t

 X_0 = initial inoculum

r = rate of disease

increase

t = time

e = base of natural log

money at time t

initial investment

→interest rate

Modeling Polycyclic Epidemics

Initial Inoculum

Rate of Disease Increase

X=X_oe^{rt} Time

Natural log

Compound interest diseases

Polyetic Epidemics

Inoculum increases within each season and disease builds-up across years

- monocyclic in one season and polycyclic across seasons
- typical of perennial plants, but not always
- e.g. mistletoe, Dutch elm disease

Comparing Epidemic Types

Sclerotium rolfsii on bean

Dutch elm disease

Net blotch on barley

Apple powdery mildew

Managing Epidemics

Monocyclic: $X = X_0Rt$

Polycyclic: $X = X_0e^{rt}$

Two ways to reduce X (disease):

- Reduce the initial inoculum X₀
- Reduce the rate of disease development (R or r)

Effect of X₀ on Epidemic Development

X₀ depends upon:

- inoculum from previous crops within a field
- inoculum from crops in adjacent fields

Effect of X₀ on Epidemic Development

X_0 is affected by:

- destroying infested plant debris
- removing diseased plants
- chemical seed treatments
- protective fungicides
- race-specific disease resistance
- biological control agents targeted at initial inoculum

Effect of X₀ on Epidemic Development

delay onset and reduce the duration of the epidemic

Effect of r (R) on Epidemic Development

r depends upon:

- reproductive potential of the pathogen
- virulence of the pathogen
- susceptibility of the host
- conduciveness of environment

Effect of r (R) on Epidemic Development

r is affected by:

- non-specific disease resistance
- systemic fungicides
- cultural practices that alter environment
- removal of diseased plants

Effect of r on Epidemic Development

→ Slow the rate of spread of the epidemic

Plant Disease Development -

Arneson, P.A. 2001 Plant Disease Epidemiology: Temporal Aspects. *The Plant Health Instructor*. DOI: 10.1094/PHI-A-2001-0524-01 (Revised 2011)

Scenarios:

1. Compare the effect of rate of disease increase, r, with the same starting inoculum, X_0 r = 0.15 (polycyclic), 0.05 (monocyclic) X_0 = 0.01 (1%)

Scenarios:

2. Compare the effect of X_0 with the same r

$$r = 0.15$$

 $X_0 = 0.01 (1\%), 0.001 (0.1\%)$

Scenarios:

3. Compare the effect of reducing X_0 when r is high r = 0.15

 $X_0 = 0.01 (1\%), 0.001 (0.1\%), 0.0001 (0.01\%)$

Scenarios:

4. Compare the effect of reducing X_0 when r is low r = 0.05

 $X_0 = 0.01$ (1%), 0.001 (0.1%), 0.0001 (0.01%)

Scenarios:

5. Compare the effect of reducing both r and X_0 for a polycyclic disease

r = 0.15, 0.075

 $X_0 = 0.01 (1\%), 0.001 (0.1\%)$

Integrated Control

→ Reduce both X₀ and r to delay onset (shorten the epidemic) and reduce rate of spread (less disease)

Disease

Eyespot or Strawbreaker Foot Rot

Eyespot Lodging

Eyespot Pathogens

Old names = Cercosporella,
Pseudocercosporella, Tapesia & Oculimacula

O. acuformis

O. yallundae

Eyespot Disease Cycle

Factors Affecting Eyespot

Autumn temperatures

Rainfall

Snow cover

Stripe Rust

Stripe Rust

The Wheat Rusts

Stripe rust (yellow rust) - cool season: 50-64°F *Puccinia striiformis* f. sp. *tritici*

Leaf rust (brown rust) - moderate: 68-77°F *Puccinia triticina*

Stem rust (black rust) - warm season: 75-86°F *Puccinia graminis* f. sp. *tritici*

→ All require dew for spore germination & infection

Factors Affecting Stripe Rust

Favorable temps/moisture for infection

- temps of 50-64°F w/6 hrs of dew
- cool temps best for disease development, but less important than infection

Fall infection

- susceptible plants in fall

Winter survival

- temperatures during Dec-Feb

Stripe Rust Update – December 2016

1st update by Dr. Chen in January 2017

What we know so far:

- Rust intensity during summer 2016 was severe due to mild winter and spring weather
- Moist fall conditions have been very favorable for rust development and rust is established
- → Moderate potential for rust at this point

Going forward:

Monitor temperatures through December and January

Soilborne Wheat Mosaic Virus-SBWMV

Soilborne wheat mosaic (SBWM) discovered in 1919 in Illinois → Rosette disease

Polymyxa identified as the vector in 1960s

First identified in Walla Walla area in spring 2008, but reported in Umatilla Co. in 2005

- Reported in the Willamette valley in 1994

Localized in relatively small area - unknown how widely distributed in county or state

→ A major problem in the Great Plains and NE US

SBWMV

SBWMV was identified at the Arlington, Virginia Experiment Farm in 1925

- Important site of much early research
- Now the home of the Pentagon

apsnet.org

SBWM - Symptoms

SBWM – Biology

Disease of fall-sown wheat

Transmitted by *Polymyxa graminis*

→ acts like other soilborne diseases in terms of distribution within fields and spread

Infection occurs in the fall and symptoms appear in early spring

- symptoms fade and plants appear to recover as temperature increases in spring

Damage remains and yield is reduced

Polymyxa graminis

P. graminis infects root hairs and then invades root tissue forming resting spores

J. Deacon, Univ. Edinburgh

Wikipedia.org

SBWM – Disease Cycle **Resting spores** containing SBWMV virus in soil **Resting spores** germinate **Resting spores** w/SBWMV in **2° Zoospores swim** dead plant roots to nearby root **Plasmodium grows** in cortical cells **Systemic spread Zoospores encyst** in xylem on root, penetrate & infect Virus replication in plant roots and stems

Disease Comparison

Inoculum				
Disease	Primary Secondary		Туре	
Eyespot	Yes	Not important	Monocyclic	
Stripe rust	Yes	Yes	Polycyclic	
SBWMV	Yes	Not important	Polyetic	

Eyespot Control Options

Cultural practices

→ seeding date

Resistant varieties

Resistance to Eyespot, Pullman, WA 2016

Variety	Dis. index	% Lodging	Variety	Dis. index	% Lodging
LCS Colonia	17.5	0	HE 181/3	58.4	26.3
X06134-57C	21.6	0	OR2120276H	63.6	2.8
WA8225	22.3	0	UI WSU Huffman	65.0	5.5
Madsen	23.3	0	WA8245	65.1	6.3
LWW14-71032	26.3	1.3	Eltan	66.0	68.8
WA8187	26.9	0	LWW14-73163	66.9	12.5
X06132-45C	28.3	1.0	OR2110664	68.1	1.0
IDN 01-10704A	29.8	0	09PN062#18	68.3	17.5
ARS Crescent	31.6	0.5	A10601WDH061	69.9	13.8
04PN077-23	35.6	0	04PN096-2	72.6	20.5
WA8243	36.1	0	KXB01	72.9	70.0
X010679-1C	39.1	5.0	ORLD2112334	73.2	27.5
X06135-9C	41.6	4.3	MT1257	74.7	90.0
LWW14-73161	42.0	16.8	ID DB44	77.2	1.0
WA8202	42.5	32.5	ORLD2113092	79.2	56.3
04PN028B-3	42.7	0	OR2110679	80.7	35.0
X20060123-0-31C	43.4	10.0	MT1356	81.6	90.0
MAS08019-94-1-S-s	44.3	1.8	MT1354	89.4	96.3
IDN 02-29001A	44.4	0	MTS1224	91.3	98.8
WA8234	44.5	0.5	A10601WDHG073	91.7	73.8
WA8244	48.9	1.8	Mean	55.1	24.5
LWW14-71195	49.0	1.3	LSD 5%	15.9	17.1

Eyespot Resistant Winter Varieties

- AP700CL
- AP Legacy
- ARS Chrystal
- ARS Selbu
- Brundage 96
- Cara
- Chukar
- Coda
- Jasper
- LCS-Azimut
- LCS-Colonia

- Madsen
- Masami
- Norwest 553
- ORCF-102
- Otto
- Puma
- Rosalyn
- Tubbs 06
- WB 456
- WB 523
- WB 528
- WB 1066CL

Soft white, Hard red, Club

Eyespot Control Options

Cultural practices

→ seeding date

Resistant varieties

Foliar fungicides

When to Spray?

"the 10% rule"

Eyespot Disease Cycle

What to Spray?

```
Tilt + Topsin-M (4 \text{ oz} + 10 \text{ oz})
   (propiconazole + thiophanate-methyl)
Alto + Topsin-M (3.0-5.5 \text{ oz} + 10 \text{ oz})
   (cyproconazole + thiophanate-methyl)
Nexicor (9-13 oz)
   (fluxapyroxad + pyraclostrobin + propiconazole)
Priaxor (6-8 oz)
   (fluxapyroxad + pyraclostrobin)
Quilt + Topsin-M (14 \text{ oz} + 10 \text{ oz})
   (propiconazole + azoxystrobin + thiophanate-
   methyl)
```

Fungicides for Eyespot Control, Knodel Farms, Ralston, WA 2015

Treatment	Rate prod/ac	Lesion severity 0 - 4	% infected stems 0 – 100	Disease index 0 - 100	Yield bu/ac	Test weight lbs/bu
Priaxor	8 fl oz.	1.9	64.8	31.0	47.2	56.6
Tilt + Topsin-M	4 fl oz + 20 fl oz	2.1	79.4	41.6	50.7	56.8
Alto	5.5 fl oz.	2.1	81.4	42.6	48.4	56.6
Untreated control	-	2.2	87.5	48.3	46.3	56.3
	LSD	NS	12.0	10.5	NS	NS
	P-value	0.16	0.01	0.02	0.42	0.896

Fungicides for Eyespot Control, Warren Farms, Dayton, WA 2015

Treatment	Rate prod/ac	Lesion severity 0 - 4	% infected stems 0 - 100	Disease index 0 - 100	Yield bu/ac	Test weight lbs/bu
Priaxor	8 fl oz	1.7	65.2	27.5	74.6	54.9
Tilt + Topsin-M	4 fl oz + 20 fl oz	2.0	90.4	44.3	69.5	54.7
Alto	5.5 fl oz.	1.8	89.6	39.9	67.4	55.0
Untreated control	-	1.9	85.3	41.1	72.8	55.2
	LSD	NS	15.9	12.4	NS	NS
	P-value	0.32	0.01	0.05	0.65	0.96

Stripe Rust Control Options

Plant disease resistant varieties

→ preferably those with HTAP resistance Cultural

Green bridge management

- reduce volunteer & grassy weeds

Avoid early planting

Avoid excessive irrigation

- furrow better than sprinkler

Balanced fertility; don't over fertilize with N

Monitor rust forecast, scout fields, spray fungicides when necessary

Stripe Rust Reactions

striperustalert.wsu.edu

Stripe Rust Resistant Winter Varieties, WSCIA 2015-16 Portfolio

Rating	Varieties			
R (1,2)	Amber, AP700CL, Bobtail, Bruneau, Cara, Chukar, Farnum, LCS Azimut, Legion, Madsen, Norwest 553, Otto, Rosalyn, Selbu, Skiles, Sprinter, SY Ovation, WB1066CL, WB1070CL			
MR (3,4)	Bitterroot, Bruehl, Chrystal, Coda, Crescent, Curiosity CL+, Finley, Jasper, Keldin, Kaseberg, LCS Artdeco, LCS Colonia, Mary, Masami, ORCF 102, Puma, Stephens, SY 107, UICF Brundage, WB456, WB523, WB528, WB Junction, Whetstone, SY Clearstone CL2			
M (5)	AP Badger, AP503 CL2, Boundary, Eltan, Ladd, Mela CL+, Xerpha,			
MS (6,7)	AP Legacy, Bauermeister, Brundage 96, ORCF 103, WB Rimrock, Tubbs 06, WB Arrowhead,			
S (8,9)	Goetze			
	Soft white, Hard red, Club			

Stripe Rust Resistant Spring VarietiesWSCIA 2015-16 Portfolio

Rating	Varieties		
R (1,2)	Seahawk, Dayn, JD, SY Basalt, WB6121, WB9518,		
MR (3,4)	Alum, Chet, Diva, Glee, Louise, SY Steelhead, Ul Platinum, Whit		
M (5)	Bullseye, UI Stone, WB6341		
MS (6,7)	Cabernet, Kelse, Snow Crest, UI Pettit, WB1035 CL+, WB Hartline, WB Paloma		
S (8,9)	Babe, SY605CL2, WB Fuzion		
	Soft white, Hard red, Hard white		

Fungicides

Monitor forecasts and development of rust

→ Scout, Scout!

Spray when necessary:

Spray when susceptible varieties have 1 to 5% active rust

What Does 5% Rust Look Like?

