

Problem Diagnosis

Rachel Bomberger
WSU Plant Pest Diagnostic Clinic
Wheat Academy December 13th, 2017

Course Goals

- Distinguishing Biotic from Abiotic
- Distinguishing Between Similar Diseases
- Diagnostic Resources at WSU

Diagnostic Language

- Normal/Healthy = what we expect plant to look like
 - May be a relative term!
- Chlorotic = yellowing
- Necrotic = dead tissue (brown, black, grey, tan, white)
- Wilted = drooping or limp
- Stunted/Poor Growth = smaller than normal
- **Deformed/Distorted** = looks 'distinctly odd', no other terms fit the symptom description

Diagnostic Terms

- Abiotic = damage caused by non-living factor
 - referred to as disorder rather than disease
- **Biotic** = damage caused by a living organism
- Pest = insect or arthropod
- Disease = virus, bacteria, fungi, nematodes, and parasitic plants
- **Sign** = physical presence of the (biotic) cause
- **Symptom** = the plants response

Why is diagnosis based on symptoms difficult?

Poor Stand

- Damping off pathogens
- Insects/pest
- Soil issues
- pH issues
- Machinery skips/planting issue
- Carryover

Leaf Spots

- Fungi (which one?)
- Bacteria (which one?)
- Virus (which one?)
- Residue/drift
- Insects

Yellowing

- Nutrient disorders
- Root compaction
- pH issues
- Soil issues
- Virus
- Foliar pathogens
- Vascular pathogens
- Root pathogens
- Foliar insects
- Girdling insects
- Root insects
- Nematodes
- Herbicides
- Looked at the plant funny

Symptoms are a reflection of what plant process is interrupted!

- Whole plant yellowing
 - Vascular system interruption
 - Root rots
 - Not enough resources
- Yellow spots
 - Discrete damage to affected tissue
 - Reduction in photosynthetic tissue

- Stunting
 - Vascular system interruption
 - Not enough resources
- Deformation
 - Plant genetics interrupted
 - Physical distortion of affected tissues
- Necrosis
 - Rapid cell death
 - Increased severity of yellowing/chlorosis

Disease Triangle

Disease Triangle

Susceptible host

Genetics/Breeding

Age

Virulent pathogen

Genetics

Out-evolving plant defense

Conducive environment

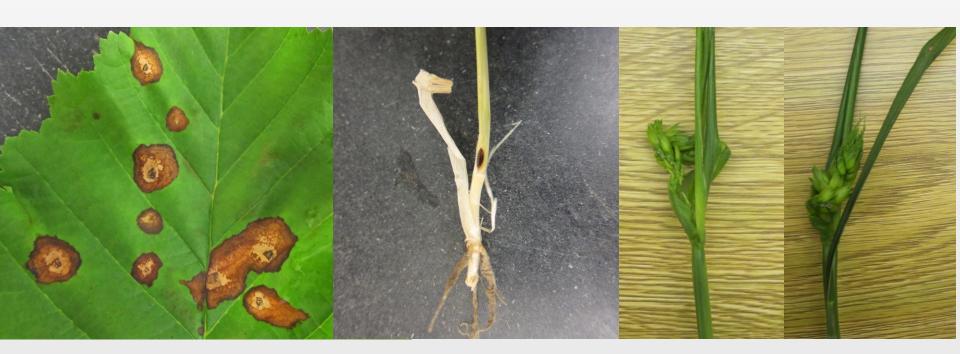
Influences severity and prevalence of disease *Think Snow Mold!*

How does environment influence disease?

- Speckled snow mold
 - Previously thought to be winter kill
 - Long lived structures in wheat, turf, wild grasses
 - REQUIRES 100 days of snow cover with unfrozen soil
 - Snow insulates plants from the cold

- Find a problem
 - What is wrong, what are the symptoms?
- Collect evidence
 - Is the culprit visible?
 - Circumstance
 - Physical
 - Background info
- Rule out suspects
- Build your case

Find a problem
What is wrong, what are the symptoms?


What is normal and how does this plant look abnormal

Collect evidence =

Signs, insects, plant growth stage, chemical history, weather, soil characteristics, planting dates, irrigation, cropping & site history, previous problems

Rule out suspects

=

What do you NOT observe/recover, what has/has not been done or used.

Build your case

Pieces should fit together

Pythium and Rhizoctonia

Pythium

- Cool, wet
 - Fall through Spring
- Seedling stage
- Winter green-up
- Clay soils
 - Take longer to warm up
- Uniform-ish through field
- Low spots
- Poor growth, thin
- Yellowing (N deficient-like)

Rhizoctonia

- Cool, wet
 - Fall through Spring
- Seedling stage
- Winter green-up
- Clay soils
 - Take longer to warm up
- Often circular, patchy, uneven height
- Green Bridge
- Poor growth, missing
- Yellowing (N deficient & drought-like)

Fusarium Dryland Foot Rot and Take-all

Fusarium Dryland Foot Rot

- Warm weather, drought stressed
- Wet, humid may lead to Fusarium Head Blight
- White heads
 - Sooty molds
- Chocolate brown discoloration under nodes
- Induced drought stress

Take-all

- Prefers alkaline soil
- Stunted
- Few, brittle roots
- White heads
 - Sooty molds
- Black shinny leaf sheath

Fusarium Diseases

Fusarium Dryland Foot Rot

- Drought stressed plants
 - Summer
 - High/exposed spots
- Four species
 - Three cause FHB

Fusarium Head Blight

- Irrigation, high humidity
 - During head emergence through harvest
- Corn in rotation/nearby
- During heading
- Scout for premature head discoloration or odd tan florets while heads should be green!
- 17 species possible—3 common

Early Root rots versus Cephlasporium Stripe

Rhizoctonia/Pythium

- Infection both fall and spring
- Acidic maybe?
- Cooler, wetter encouraged
- Symptoms in roots
- Rhizoctonia slowed maturity (=no whitehead)
- Pythium whiteheads

Cephalosporium Stripe

- Infection occurs in Fall
- Low, wet, acidic soil
- Cool weather
- Symptom Scouting
 - Later winter/early spring=ambiguous leaf symptoms
 - Jointing=classic yellow stripe extending through nodes
 - Brown discoloration in node
- Whiteheads

Nematodes

Cyst nematode

- Lemon shaped cysts on outside of roots
- Thin stands
- Fewer tillers
- Poor growing plants
- Roots look bushy
 - Distortion of cells

Root Lesion

- Microscopic worm
- Reduced growth
- Often in complex
 - Rhizoctonia, Pythium, and Fusarium
- Roots are browned
 - Damaging outside

Aluminum vs Root Rots

High Aluminum

- Bright white roots
- Same volume of roots
- Twisted, clubbed, distorted
- Low pH

Root Rot

- Discolored
- Fewer roots
- Damaged roots
- No root hairs
- Cysts

Stem Lesion

Eyespot

- Reduced growth
- Lodging
- Not dead plants!
- Scout after jointing
- Whiteheads
 - Sooty head molds
- Infects fall through spring
 - Lots of water increases severity
 - Seen more severe, early last year!
- Diamond/football shape with brown and diffuse golden-yellow

Sharp Eyespot

- Rhizoctonia
 - Not the same as root rot
- Dark brown diamond/football shape
 - Sharp border, no yellow
- Snow mold weather=sharp eyespot weather
 - May also see wet, matted appearance of snow mold

Leaf Spotters

Stagnospora Blotch

- Early Spring
- Lowest leaves
- Irregular ovals or flecks with yellow halo
- Tiny fruiting bodies
- Can discolor spiklets too
 - Looks like bacterial infection too

Septoria Blotch

- Wet, cool weather
- Lowest leaves
- Streaks brown and yellow
- Fruiting bodies in necrotic tissue
- Two consecutive rain days increases likelihood

Tan Spot

- Oval-ish spots
- brown surrounded by yellows
- No fruiting body on leaves (old straw in spring has fruiting bodies
- Are you SURE it isn't physiological leaf spot?

Soil-based Viruses

Wheat Soilborne Mosaic

- Soil microorganism
- Patchy in field
 - Wet, low areas
- MUST catch leaf symptoms in late winter/early spring
 - After breaking dormancy

Barley Yellow Dwarf

- Aphid vector
- Yellow flag leaf
 - Or red, or purple, or green, or brown, or orange
- Short internodes ('Dwarf')

Wheat Spindle Streak

- Same soil microorganism
- Uniform-ish in field
 - May be worse in wetter areas
- MUST catch leaf symptoms in late winter/early spring
 - After breaking dormancy
- If cool long enough may turn necrotic
 - Looks very close to Stagnospora and Septoria!
 - How could we rule out Septoria?

Why is the grain discolored?!?

Sooty Head Molds

- Dead tissue vs pathogen
- Not on grain
- Associated with whitehead causing diseases
- 2015--rain when harvest should have happened

Black Chaff

- Bacteria!
- Leaf may have glaze like ooze
- Random-ish florets (melanosis=regular)
- Irrigation
- Infrequent/seedborne
- Looks like Stagnospora infection too

Smuts

- Pathogen controlled via resistance and fungicides
- Common/Stinking=smells like fish
- Smut on grain
 - Bunt balls vary based on smut type
 - Common=grain-shaped
 - Glumes distorted
 - Dwarf=round
 - Karnal=only one end bunted
 - Glumes not distorted

Frost

Burning from nutrient application

More Diagnostic Resources

- Herbicide Resistance Testing Program
 - Completed Submission Form http://smallgrains.wsu.edu/wp-content/uploads/2015/03/Resistance-Program-Sample-Submission-Form-2.pdf
 - Several hundred seeds, grown out, then tested
 - See our Timely Topic: http://smallgrains.wsu.edu/submit-samples-to-the-wsu-resistance-testing-program/
- The USDA-ARS Western Regional Small Grain Genotyping Laboratory
 - https://plantpath.wsu.edu/people/faculty/see/see-lab/
 - Uses markers to determine the identity of the plants in question

Submitting Samples

- Whole plants whenever possible
- Range of symptoms
- Healthy plant too
- As many photos as needed
- Carefully packaged
- Kept cool until delivery (to mail or in person)
- Delay=decay
- Completely fill out submission form
 - Download online:

http://plantpath.wsu.edu/wp-content/uploads/2016/01/Commercial-Disease_Pullman_Dec2015.pdf

WHAT YOU SEE

WHAT I SEE

Borrowed from Clarissa Balbalian Mississippi State University Plant Disease&Nematode Diagnostic Clinic

Thank you!

- Questions?
- Contact me at:

rachel.bomberger@wsu.edu

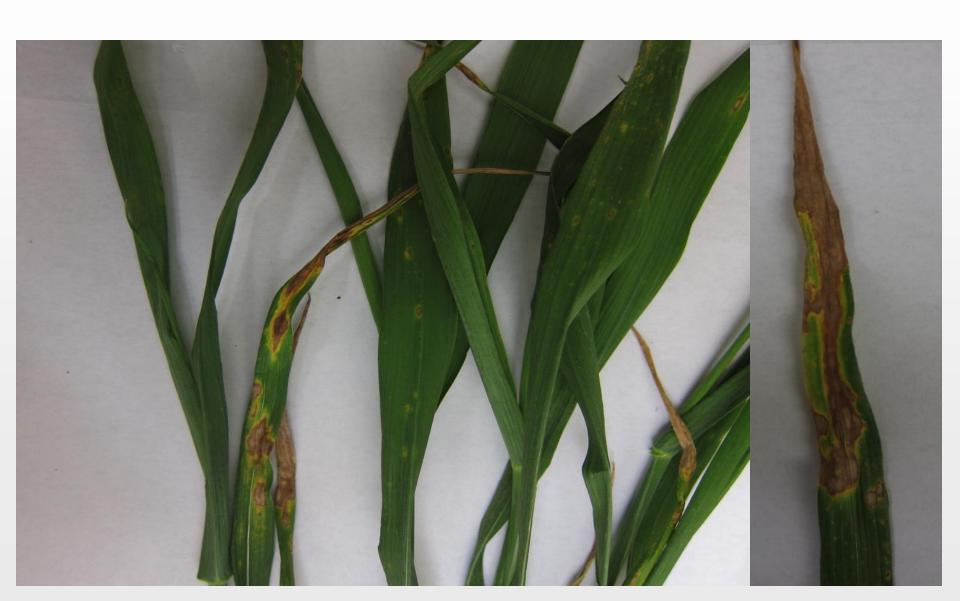
(509)335-0619

plant.clinic@wsu.edu

(509)335-3292

plantpath.wsu.edu/diagnostics/

Scenario #1


Scenario #2

Scenario #3

Please turn in survey forms at end of day