

and Life Sciences

SOIL ACIDIFICATION: MANAGEMENT AND IMPACT ON CEREAL DISEASES

DR. KURTIS L. SCHROEDER
CROPPING SYSTEMS AGRONOMY AND
PLANT PATHOLOGY

DOUG FINKELNBURG
AREA EXTENSION EDUCATOR

DECEMBER 11, 2018

OUTLINE

- Introduction to soil acidity
- Survey of north Idaho
- Management of soil acidity
- Hands-on demonstrations
- Interaction between soil pH and plant pathogens

I

SOIL PH

- Degree of acidity or alkalinity (0 to 14 scale)
- Soil solution pH = -log [H⁺]
- Each unit of pH change = 10X change in H⁺
 - pH of 5 is 10 times more acid than 6

- Impacts soil chemistry and biological properties
 - Root uptake of nutrients and toxins
 - Activity of soil microorganisms

PH SCALE

SOIL ACIDIFICATION

- 60 years of ammonium forms of nitrogen fertilizer
- Low soil pH associated with aluminum toxicity

I

PROBLEMS WITH ACID SOILS

- Potential toxicity from Al, Mn, other metals
- Lack of cationic nutrients: Ca, K, Mg
- Low P availability (Fe- and Al-phosphates)
- Toxicity to rhizobia in legumes
- Impact on plant diseases

WHY IS ALUMINUM A PROBLEM?

- Most abundant metal in earth's crust
 7% (70,000 ppm)
- Most is complexed on soil particles and clays as fixed forms: Al oxides and silicates
- However, free ion Al³⁺ is toxic to plants
- Root tips are most affected-growth is inhibited
- Interferes with hormone signaling
- Interferes with Ca uptake- involved in root development

ALUMINUM TOXICITY DAMAGE ON WHEAT ROOTS

NUTRIENT AVAILABILITY/PH RELATIONSHIP

4	5	6	Soil	7	рН	8	9	10
Microbial Inactivity			Nitr	ogen				Microbial Inactivity
Aluminum and Iron		Ph	ospho	rus		Calc	ium	
Leaching			Potas	sium		Calc	ium	
Leaching					Calciun	n & Ma	gnesium	Carbonates
			Sul	lfur				
Iron and 2	Zinc							Oxides
Toxicity Mangane	se and (A	luminum)						Oxides (and Silicates)
Leaching			C	oppe	r			Oxides
Leaching			Boro	n				Insolubility
Insoluble Molybdates							Мс	lybdenum
4	5	6	Soil	7	рН	8	9 F.R. Troeh - G.L.	10 Wegner 2013

PH ASSOCIATION WITH YIELD REDUCTION

(Mahler and McDole, 1987)

PH ASSOCIATION WITH YIELD REDUCTION

(Mahler and McDole, 1987)

PH ASSOCIATION WITH YIELD REDUCTION

(Mahler and McDole, 1987)

CHANGE IN SOIL PH - NORTH IDAHO SOIL SURVEY

DECLINE IN SOIL PH IN PNW

SOILS BELOW pH 6.0

46-65%

IIII 15-45% > 65 %

Mahler et al., 1985

SOIL ACIDIFICATION IN NORTHERN IDAHO

- 1982 to 1984
- Depth of 6 inches

Soil pH	% of Fields
>6.4	6
6.0 - 6.4	11
5.8 - 5.9	16
5.6 - 5.8	22
5.4 - 5.5	18
5.2 - 5.3	11
5.0 - 5.1	10
<5.0	6

Mahler et al. 1985

2014 TO 2015 SOIL SURVEY

- 116 Fields
 - 90 Annual Crop
 - 11 Pasture
 - 6 CRP
 - 2 Native Soils

- 6-inch cores
- Sample Analyses
 - pH & OM
 - Lime Requirement
 - Base Saturation
 - Plant AvailableMetals
 - -Al, Mn, Fe
 - Micronutrients
 - Boron, Zinc
 - Macro's
 - N, P, K, S

Figure 1. Transect pattern for soil pH survey composite sampling.

SOIL PH SURVEY IN NORTHERN IDAHO

Cail all	% of Fields in Each Category			
Soil pH	1982 to 1984	2014 to 2015		
>6.4	6	<1		
6.0 - 6.4	11	4		
5.8 - 5.9	16	3		
5.6 - 5.8	22	7		
5.4 - 5.5	18	9		
5.2 - 5.3	11	25		
5.0 - 5.1	10	26		
<5.0	6	26		

SOIL PH SURVEY IN NORTHERN IDAHO

Soil nH	% of Fields in	Aluminum	
Soil pH	1982 to 1984	2014 to 2015	(ppm)
>6.4	6	<1	1
6.0 - 6.4	11	4	<1
5.8 - 5.9	16	3	1
5.6 - 5.8	22	7	1
5.4 - 5.5	18	9	1
5.2 - 5.3	11	25	5
5.0 - 5.1	10	26	15
<5.0	6	26	53

RELATIONSHIP BETWEEN PH AND TOXIC METALS

SOIL PH PROFILE - PULLMAN, WA

SOIL PH MAP OF 100 ACRE FIELD

- 4.70 4.98
- 4.99 5.26
- 5.27 5.55
- 5.55 5.83
- 5.83 6.11
- 6.12 6.39

Courtesy of Tabitha Brown

MANAGEMENT OF SOIL ACIDITY - VARIETY SELECTION

SCREENING FOR ALUMINUM TOLERANT WHEAT

ALUMINUM TOLERANT WHEAT

- Single gene tolerance
- A malate transporter gene
- Root tips excrete malate and malate chelates Al so Al³⁺ is not taken up
- Cultivars developed in OK and KS as well as Alberta, Canada where acid soils are a problem

SOFT WHITE WINTER WHEAT TOLERANCE TO ALUMINUM 2017/2018 2-year average

HARD WINTER WHEAT TOLERANCE TO ALUMINUM 2017/2018 2-year average

SPRING WHEAT TOLERANCE TO ALUMINUM 2018 only

MANAGEMENT OF SOIL ACIDITY - LIMING

LIME SOURCES

Lime Type	Source of Lime			Fineness Factor	
Moses Lake Sugar Lime	Cascade Agronomics	92	84	85 to 98	65 to 75
Limestone (Ground)	Pioneer Enterprises	99	95	80	75 to 89
NuCal (liquid lime)	Columbia River Carbonates	99	98	100	97

Acidification localized in upper 20 cm

LIME PRICES AND APPLICATION COSTS, 2015

Product and Source	Product cost \$ per ton	Application cost \$ per acre
Sugar beet lime, Cascade Agronomics	54.00	11.00
Ground limestone, Pioneer Enterprises	55.00	13.00
Liquid lime, Columbia River Carbonates	280.00	15.00

HOW CALCIUM CARBONATE NEUTRALIZES ACID SOIL

Carbonic acid from the soil solution plus calcium carbonate yield free calcium and bicarbonate

$$H_2CO_3 + CaCO_3 = Ca^{2+} + 2 HCO^{3-}$$

COMMON QUESTIONS RELATED TO LIMING

- How much lime needs to be added?
- How long will a lime application be beneficial?
- How long will it take for the lime to fully react?
- How long will an increased yield be observed?
- What is the benefit to each crop in the rotation?
- Will lime application be cost effective?
- Could variable rate application be a benefit?

LIMING SOURCE AND RATE STUDIES

Plots established at:
 Pullman, WA
 Potlatch, ID
 Winchester, ID

- Applied lime at 500, 1000 and 2000 lb calcium carbonate/A
- Ground limestone, sugar beet lime, NuCal fluid lime
- Winter wheat spring pea rotation

AVERAGE CHANGE IN YIELD OVER 3 YEARS 2014 to 2016

EVALUATION OF HIGH LIME RATES

- Five sites in northern Idaho
 - Potlatch, Tensed, Moscow
- Criteria Soil pH below 5 in upper 6 inches, aluminum above 20 ppm, uniformly acidic
- Limed at rates of 0, 1, 2 and 3 ton/A ground limestone
- Plots oriented into 8' wide x 100' long strips
- Follow standard crop rotation for the location
- Monitor for 6+ years

Andrew Leggett

CHANGE IN SOIL PH 8 OR 20 MONTHS AFTER LIMING

CHANGE IN ALUMINUM 8 OR 20 MONTHS AFTER LIMING

YIELD INCREASE FOLLOWING LIME APPLICATION

Ground	Mos	Pot#1	Pot#1	Pot#2	Pot#2	Ten#1	Ten#1	Ten#2	Ten#2
limestone	2018	2017	2018	2017	2018	2017	2018	2017	2018
(ton/A)	W. Wheat	Prevented	W. Wheat	W. Wheat	Chickpea	W. Wheat	S. Canola	W. Wheat	Lentil
0	102		127 c	67 c		67 b	2351	57	911
1	103		131 bc	73 b		71 ab	2558	59	1045
2	106		135 ab	78 a		76 a	2318	58	1065
3	109		136 a	77 a		76 a	2466	60	1109

Ground										
limestone										
(ton/A)	Percent increase in yield									
1	1		3	9		6	9	4	15	
2	4		6	16		13	-1	2	17	
3	7		7	15		13	5	5	22	

ECONOMICS OF LIMING ACIDIC SOILS IN THE PALOUSE

Liming is a capital investment rather than an operating input

- Long term effects
- Estimated ~10 years for a one-ton application of calcium carbonate
 - Many factors will influence the timeframe
 - We lack long-term empirical research on liming for this region

Painter and Schroeder

USING NET PRESENT VALUE TO CALCULATE ANNUAL COSTS

- Annualize the cost of applying lime in order to compare it to annual benefits of liming
- An annual value for the cost is similar to a loan at a certain interest rate and number of years
- > This annualized value is easily calculated using an Excel formula:
 - PMT = (rate, number of periods, present value)
- Compare annual cost to a long run average annual benefit
 - Using today's crop prices will hopefully vastly understate the annual benefits!

ECONOMIC VALUE OF YIELD GAIN 2017 TRIALS, POTLATCH

			Cost	Site:		3enefit
Ground Limestone	Cost of	Timeframe	Annualized		Yield	Value of yield
applied per	pplied per treatment*		value of	Potlatch 2	gain	gain**
acre	\$/ac	efficacy	liming	(bu/ac)	(ac)	(ac)
Control	\$0			67		
1 Ton	\$87	10	\$12	73	6	\$27
2 Ton	\$161	15	\$17	78	11	\$49
3 Ton	\$235	20	\$20	77	10	\$45

^{*}Cost of ground limestone is \$74 per ton plus \$13 delivery.

Estimated value of 2017 wheat production is \$4.45 per bu

Painter and Schroeder

^{**}Assumed price of wheat is \$4.45 per bu, farmgate (USDA-NASS, WA & ID combined, average of August - November, 2017 prices received)

Note: Discount rate is assumed to be 6%.

ECONOMIC VALUE OF YIELD GAIN

						Tensed#2 W. Wheat	
2	(\$7)	\$10	\$15	\$6	\$19	(\$3)	\$20
3	\$5	\$27	\$32	\$23	(\$22)	(\$12)	\$20
4	\$19	\$30	\$25	\$20	(\$3)	(\$6)	\$28

IDENTIFYING THE PROBLEM

- Sample from upper 6 inches for soil pH
- Test multiple samples from one field due to variability across landscape
- Interested in knowing quantity of KCI extractable AI, CEC, base saturation in addition to soil pH
- Avoid tissue testing for Al
- Lime requirement the amount of CaO or CaCO₃ that is needed to raise the pH to a target value
 - Not a particularly reliable lime requirement test for the PNW

OTHER STRATEGIES TO MINIMIZE SOIL ACIDITY

- Proper management of fertilizer
 - Avoid excessive nitrogen fertilizer application
 - Consider variable rate nitrogen application
- Diverse crop rotation (legumes, barley)
 - Crops that have lower or no fertilizer requirements
- Avoid removal of residue by baling or burning
 - Loss of OM and cations which lower buffering capacity of soil

HANDS-ON ACTIVITIES:

HANDHELD PH METER ROTATION STRATEGIES FOR ACID SOILS

INFLUENCE OF SOIL PH ON CEREAL PATHOGENS

IMPACT OF SOIL PH ON FUNGI

- Many fungi function best at pH of 5 to 7
- External pH impacts ability of fungi to take up food
- pH can influence availability of trace nutrients (Fe, Zn, Mn)
- Low pH can stress plants, making them vulnerable to infection
- Low pH can reduce the natural population of microorganisms that normally suppress pathogens

CEPHALOSPORIUM STRIPE

T. Murray, WSU

Cephalosporium graminearum Winter wheat, higher rainfall

Ohio State University Extension

CEPHALOSPORIUM STRIPE

Stiles and Murray 1996

I

TAKE-ALL

Gaeumannomyces graminis var. tritici Irrigation or high rainfall, monoculture wheat Increase in incidence and severity in alkaline soil

FUSARIUM CROWN ROT

Fusarium culmorum

F. pseudograminearum

High nitrogen rates

Plant stress

INFLUENCE OF SOIL PH ON FUSARIUM CROWN ROT

- Smiley et al 1972
- Ammonium (NH₄⁺) forms of fertilizer
 increased disease incidence and severity
- Nitrate (NO₃⁻) forms of nitrogen fertilizer decreased disease incidence and severity
- Similar to response observed with Fusarium wilt diseases on other crops

INFLUENCE OF SOIL PH ON FUSARIUM CROWN ROT

Soil pH was also inversely correlated with the quantity of N applied

F. CULMORUM DISEASE RATING (0-8)

IMPACT OF LIMING ON FUSARIUM CROWN ROT

- Site at Parker farm with soil pH of 4.2 in upper 6 inches
- Applied 3 tons/A fluid lime
- Inoculated with F. culmorum

F. CULMORUM RESPONSE TO LIMING

IDENTIFYING ALUMINUM TOXICITY IN WHEAT

RHIZOCTONIA ROOT ROT

RHIZOCTONIA ROOT ROT

RHIZOCTONIA ROOT ROT

PYTHIUM ROOT ROT

IDENTIFYING ALUMINUM TOXICITY

- Reduced seedling vigor
- Reduced tillering
- Yellow and stunting of plants
- Patches may occur anywhere in a field
- Associated with low soil pH (<5) in upper 6 inches

Thank you!