Washington Grain Commission Wheat and Barley Research Annual Progress Reports and Final Reports

Project #:	3163			
Progress Report Year:	2_of_3(maximum of 3 year funding cycle)			
Title:	Greenhouse and laboratory efforts for spring wheat variety development			
Cooperators:	Mike Pumphrey, Vic DeMacon, Sheri Rynearson, Wycliffe Nyongesa, Vadim Jitkov			

Executive summary:

This project is integral to core efforts of the Spring Wheat Breeding program. This project provides funding to make crosses and develop breeding populations in the greenhouse, staff support for management and selection of breeding materials in the field and greenhouse, and supports/enables the most effective end-use quality selection procedures for development of superior Washington spring wheat varieties. In addition to routine early-generation grain quality selection carried out through this project, we apply DNA marker technology to elite breeding materials, and conduct research projects of direct relevance to our breeding efforts. This project also supports our two-gene Clearfield and AXigen breeding efforts, Fusarium head blight resistance gene introgression, Hessian fly resistance gene introgression, and expanded irrigated hard red spring wheat breeding efforts. Our progress in each of these areas is consistent, and these outputs shape our overall breeding efforts.

Impact:

This project is critical to the spring wheat breeding program and establishes our core breeding efforts. Program efficiency is increased by evaluating early generation lines for quality and eliminating those with poor quality characteristics before further testing. Increased testing of superior material in the field program protects resources from being used to further test lines that are inferior in terms of quality, lack adequate pest resistance, and numerous other DNA-marker selectable traits. Spring wheat varieties with complex stripe rust resistance, Hessian fly resistance, aluminum tolerance, superior end-use quality, and broad adaptation are critical for Washington wheat producers by adding millions of dollars of annual return. Over the past five years, we have released Seahawk, Tekoa, Melba, Ryan, Net Cl+, and Hedge CL+. They have been rapidly adopted by seed dealers and growers and are top-volume sellers through the Washington State Crop Improvement Association Foundation Seed program. The consistency, broad adaptation, disease and pest resistances, sound grain traits, most desirable end-use quality, good falling numbers, and overall performance of these varieties reflects the outputs of comprehensive wheat breeding and genetics research effort. Two new releases are planned for 2021 and will provide growers a top-performing Hessian fly resistant club spring wheat variety (WA8325) and a broadly adapted hard red spring wheat (WA8315) with excellent yield, disease resistance, quality, and slightly higher protein than our current top-end dryland varieties beginning in 2022.

Outputs and Outcomes: File attached

WGC project number: 3019 3163 WGC project title:Greenhouse and laboratory efforts for spring wheat variety development Project PI(s): Mike Pumphrey Project initiation date: 2019 Project year: 2 of 3

Objective	Deliverable	Progress	Timeline	Communication
Develop DNA markers and select	Elite variety candidates will result, in part,	Two Wheat Life articles were written/contributed in	Activities are cyclical and	Pumphrey attended/presented at numerous virtual
breeding lines by marker-assisted	due to these molecular selection	2020, as well as supporting other articles. Axigen trait	occur annually throughout the	WSU field days, workshops/meetings, PNW wheat
selection with stripe rust resistance,	activities. Many of these populations will	introgression continued, and we have made BC3	normal breeding cycles.	Quality Council, WSCIA Annual Meeting
Hessian fly resistance, and two-gene	be ideal for marker optimization, new	materials with this new herbicide tolerance to date. We		(presentation), WSCIA Board Meetings, WA Grain
Clearfield [™] herbicide tolerance as	genetic mapping studies, and potentially	have developed new DNA markers for a previously		Commission meetings, industry tours.
well as other traits when desirable.	the basis of new competitively funded	undocumented Hessian fly resistance locus that allow		
	projects.	us to track resistance in most of our germplasm for the		
		first time. KASP assays have been developed. Our		
		second backrosssed, marker-assisted selection,		
		doubled haploid, two-gene Clearfield variety was		
		released in 2020, in a JD background.		
Select early-generation breeding	Elimination of lines with inferior end-use	Another year of selection was succesfully completed in	Return on investment is	
lines with good end-use quality	quality. This ensures only lines with	2020, with approximtaely 2400 lines evaluated through	realized each year, since lines	
potential by eliminating inferior	acceptable end-use quality are tested in	the various quality tests. Markers for PPO and waxy	with poor end-use quality are	
breeding lines prior to expensive and	the field and maximizes efficiency in field	alleles were validated and applied to breeding	not tested in expensive and	
capacity-limited yield tests.	operations. Current analyses include:	materials.	capacity-limited yield tests.	
	NIR-protein, NIR-hardness, SKCS-		This allows for additional yield	
	hardness, SDS micro-sedimentation, PPO,		testing of lines with good end-	
	and micro-milling.		use quality and more efficient	
			variety development.	
Conduct greenhouse operations	Lines for field testing that contain	We continue to use the expanded greeenhouse space	Greenhouse multiplication	
required for variety development,	desirable and novel characterisitcs. This is	to our advantage to increase breeding and research	and crossing is completed	
including crossing, doubled haploid	where new varieties are born.	materials, make crosses, and conduct experiments.	annually, including two large	
development, generation	Greenhouse operations also allow more	COVID-19 has some, but minor impact on our ability to	crossing blocks and thousands	
advancement, and seedling assays	rapid breeding cycles by advancing F1	conduct this day to day work.	of early generation lines	
such as herbicide screening, and	and F5 generations every year as part of		tested for stripe rust and	
stripe rust screening.	of our routine breeding efforts. Seedling		herbicide tolerance.	
	evaluation of stripe rust resistance and			
	herbicide tolerance screening are also			
	major greenhouse activities.			