Expected Performance of New Code-Compliant Buildings in California

Katherine Wade: Haselton Baker Risk Group, LLC
D. Jared DeBock: CSU, Chico | Haselton Baker Risk Group, LLC
Curt Haselton: CSU, Chico | Haselton Baker Risk Group, LLC
Dustin Cook: University of Colorado, Boulder
Edward Almeter, Haselton Baker Risk Group, LLC
Current Building Code

- Life safety
- Limit cost
- Limit recovery time
Current Building Code

- Life safety
- Limit cost
- Limit recovery time

Safe but disposable!
Outline

- Methods
 - FEMA P-58
 - REDi
- 8-story office building example
- Enhanced design
- Resilient design
- **Probabilistic** performance prediction
- **Building-specific** analysis
- Output results:
 - Repair costs
 - Repair time
 - Safety
FEMA P-58 Modeling Approach

- Ground Motion Hazard
- Structural Response
- Economic Loss
- Casualties
- Component Damage
- Repair Time
- Recovery Levels
 - Re-occupancy
 - Functional Recovery
 - Full Recovery
Outline

- Methods
 - FEMA P-58
 - REDi
- 8-story office building example
- Enhanced design
- Resilient design
Example Code Conforming Building

- **8-story office building**
 - Northridge, CA
 - New design
 - Steel Special Moment Frame

Design Event: 475 yr. return period

Rare Event: 2475 yr. return period
- 8-story office building
 - Northridge, CA
 - New design
 - Steel Special Moment Frame

\[
\text{Loss Ratio} = \frac{\text{Repair Cost}}{\text{Building Replacement Cost}}
\]

![Bar chart showing loss ratios for design and rare events]
8-story office building
- Northridge, CA
- New design
- Steel Special Moment Frame

Code Conforming Building Downtime

![Diagram showing Impeding Factors, Repair Time, and Functional Recovery]

- Design Event: 8 mo.
- Rare Event: > 1 yr.
- 8-story office building
 - 12 CA cities

Design Event

- ~5-20%

Rare Event

- ~10-80%
- 8-story office building
 - 12 CA cities

Design Event

Downtime (months):
- 7-10 mo.

Rare Event

Downtime (months):
- 7-18 mo.
Wide range of building types

- Design Event
 - 5-25%
 - 6-12+ mo.
- Rare Event
 - 10-80%
 - 1.5+ yrs.

Safe but disposable!
Outline

- Methods
 - FEMA P-58
 - REDI
- 8 Story office building example
- Enhanced design
- Resilient design
Critical Facility - Risk Category IV

- Seismic Importance Factor, $I_e = 1.5$
- Component Importance Factor, $I_p = 1.5$
- Drift Limit = 1%

Remember: Building strength is increased by I_e/R!
Enhanced Repair Cost

~5-20% ~10-45%

Design Event Rare Event
Enhanced Design Downtime

~7 mo.

Design Event

~7-12 mo.

Rare Event
Enhanced vs. Code Conforming

Significant Downtime

- Mean Loss Ratio
 - Design Event
 - Rare Event

- Downtime (months)
 - Design Event
 - Rare Event
Outline

- Methods
 - FEMA P-58
 - REDi
- 8-story office building example
- Enhanced design
- Resilient design
Resilient Design

- Limit repair cost & downtime
 - Set specific performance goals
 - Assess where damage will occur
 - Strengthen/stiffen as needed
 - Iterate
Quick Resilience-Based Design Example

• Project: Municipal office building
• Building: Design a 10-story RC Wall (coupled core), office occupancy
• Site: LA high-seismic, $S_{DS} = 1.1g$, $S_{DI} = 0.6g$.
• Design Objectives: USRC five-star performance in all categories
 – Repair Cost < 5%
 – Functional Recovery Time < 5 days
 – Safety – high (low collapse, no/few injuries, good egress)
• Showing example for design, but also applicable to risk assessment.
Quick Resilience-Based Design Example

• **Step #1:** Start with code-compliant design to see where that gets us...
 - Repair Cost = 8% [4-star]
 - Recovery Time = 6.5 months [3-star]
 - 3.0 months – mechanical and electrical (HVAC, lighting, switchgear)
 - 2.0 months – structural (mostly walls)
 - 1.5 months – non-structural drift-sensitive (partitions, stairs, piping, fire sprinklers)
 - Safety [3-star]
 (discussed at the end)
Quick Resilience-Based Design Example

- **Step #2:** Design wall to be “essentially elastic” (very strong) and remove coupling beams (need NO DAMAGE THAT WILL REQUIRE REPAIR).

Staggered Shear Wall Openings to avoid Link Beams
Step #3: Design mechanical and electrical components to be functional at the 10% in 50 year (anchorage, equipment, lighting, etc.).

• Result for Steps #2-3:
 – Repair Cost = 5.5% [still 4-star]
 – Recovery Time = 2.5 months [still 3-star]
 • 1.0 month – slab-column connections
 • 1.5 months – partition walls
Quick Resilience-Based Design Example

Step #4: Reduce the shear on the slab-column connections.

Step #5: Use less damageable partition walls.

- **Result:**
 - Repair Cost = 3.5% [now a 5-star]
 - Recovery Time = 6 weeks [still a 3-star]
 - 3 weeks – slab-column connections
 - 3 weeks – partition walls
Step #6: Stiffen the building (longer walls, more coupling, etc.). Reduces the maximum drifts from around 1.4% to 1.0%.

- **Result:**
 - Repair Cost = 2% [5-star]
 - Recovery Time = 2 days [moved from 3-star to 5-star]

Step #7: Now that building has less drift, move back to higher shear slab-column connections.

- **Result:**
 - Repair Cost = Still 2% [still a 5-star]
 - Recovery Time = Still 2 days [still a 5-star]
• **Step #8:** Now that building has less drift, see if we can move back more damageable partition walls.

• Result:
 – Repair Cost = 2.5% [5-star]
 – Recovery Time = 2 weeks [would moved down to 4-star]

Move back to less damageable partition walls to keep a 5-star recovery time.
• **Step #9**: Safety checks

• Overview of safety checks:

 – **Fatalities.** Show good collapse safety (limit fatalities).

 – **Injuries.** Check injury prediction from FEMA P-58 (would require additional non-structural bracing to get to 5-star).

 – **Residual Drifts.** Very low (essentially elastic).

 – **Stairs and Egress.** Check probability of non-functionality (direct outputs from the FEMA P-58 detailed results).
• **Final Design Outcomes (for 10% in 50 year motion):**

 – **Repair Cost:** 2% [5-star] (*Typically 10-20% for new code*)

 – **Recovery Time:** ~0 days [5-star] (*Typically 6-9mo. for new code*)

 – **Safety:** Low fatality+injury risk and good egress [5-star]

• This example was for **new resilient design**, but FEMA P-58 offers this same level of building-specific detail when doing **risk assessments**.