Nonlinear Analysis in Accordance with ASCE 7-16 (proposed) and ASCE 41-13: Compatibilities, Incompatibilities, and Needed Future Work

Presented by: Curt B. Haselton, PhD, PE

Chair, Civil Engineering @ CSU, Chico

Tenth U.S. National Conference on Earthquake Engineering

July 21-25, 2014; Anchorage, Alaska

ractitioner

The Issue Team Membership

- CB Crouse, URS Corp.
- Chung-Soo Doo, SOM
- Andy Fry, MKA
- Mahmoud Hachem, Degenkolb
- Ron Hamburger, SGH
- John Hooper, MKA
- Afshar Jalalian, R&C
- Charles Kircher, Kircher & Assoc.
- Silvia Mazzoni, Degenkolb
- Bob Pekelnicky, Degenkolb
- Mark Sinclair, Degenkolb
- Rafael Sabelli, Walter P Moore
- Reid Zimmerman, R&C

- Curt Haselton, CSUC, Team Chair
- Jack Baker, Stanford University
- Finley Charney, Virginia Tech
- Greg Deierlein, Stanford Univ.
- Ken Elwood, Univ. of British Col.
- Steve Mahin, UC Berkeley
- Graham Powell, UC Berkeley Em.
- Jon Stewart, UCLA
- Andrew Whittaker, SUNY Buffalo
- Robert Hanson, FEMA
- Jay Harris, NIST
- Nico Luco, USGS
- Mike Tong, FEMA

Existing Versus New Buildings

Need:

Consistency

and

Compatibility

(as feasible)

FEMA 273/356

1

SF Administrative Bulletin 083

PEER Tall Buildings
Initiative

Tall Building Seismic Design Council

1

ASCE 41-13

ASCE 7-16 Chp. 16 (in-progress)

Chapter 16: Overall Structure

Title: Seismic Response-History Procedure

- Section 16.1: General Requirements
- Section 16.2: Ground Motions
- Section 16.3: Modeling and Analysis
- Section 16.4: Analysis Results and Accept. Criteria
- Section 16.5: Design Review

Status: In ASCE 7 process.

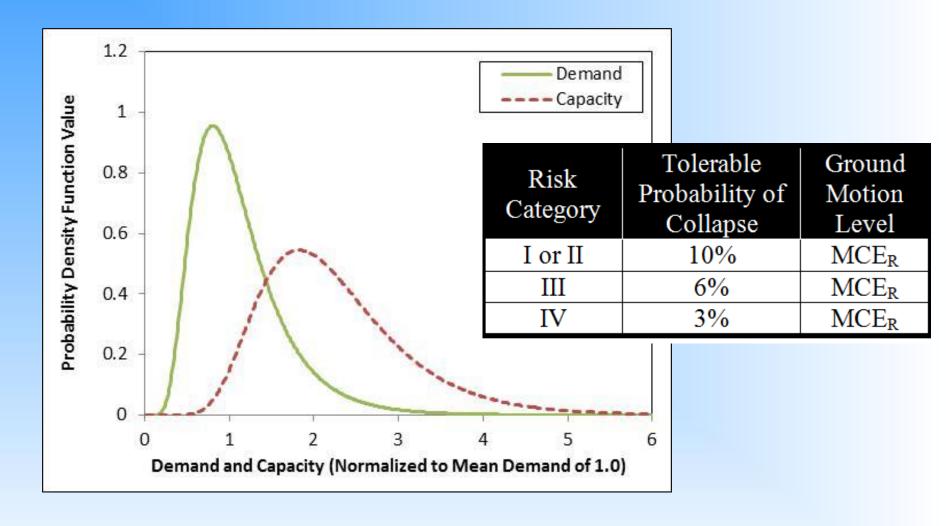
Chapter 16: Overall Structure

Title: Seismic Response-History Procedure

- Section 16.1: General Requirements
- Section 16.2: Ground Motions
- Section 16.3: Modeling and Analysis
- Section 16.4: Analysis Results and Accept. Criteria
- Section 16.5: Design Review

Status: In ASCE 7 process.

Acceptance Criteria


Big Focus: Develop acceptance criteria more clearly tied to the ASCE7 safety goals.

Risk Category	Tolerable Probability of Collapse	Ground Motion Level
I or II	10%	MCE_R
III	6%	MCE _R
IV	3%	MCE_R

Acceptance Criteria: Components

Acceptance Criteria: Components

- Component Categories:
 - ✓ Force-controlled (brittle)
 - Deformation-controlled
- Component Sub-Categories:
 - ✓ Critical = failure causes immediate global collapse
 - ✓ Ordinary = failure causes local collapse (one bay)
 - ✓ Non-critical = failure does not cause collapse

Acceptance Criteria: Force-Controlled Example

- Force-controlled (brittle) components:
 - $2.0 I_e F_u \le F_e$ for "critical" (same as PEER-TBI)
 - 1.5 $I_e F_u \leq F_e$ for "ordinary"
 - 1.0 $I_e F_u \le F_e$ for "non-critical" (judgment)

 F_{μ} = mean demand (from 11 motions)

 F_e = expected strength

Acceptance Criteria: Collapses

- Current Treatment in ASCE7-10: Nothing but silence....
- Philosophical Camp #1:
 - Outliers are statistically meaningless.
 - Acceptance criteria should be based only on mean/median.
- Philosophical Camp #2:
 - Outliers are statistically meaningless, but are still a concern.
 - ✓ Acceptance criteria should consider "collapses".
- Proposed Criterion (based on lots of statistics):
 - ✓ Basic Case: Allow up to 1/11 "collapses" but not 2/11.

FEMA 273/356

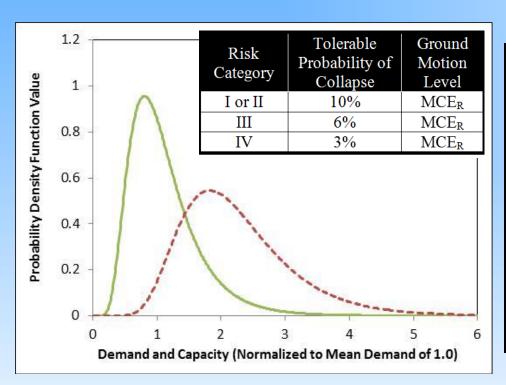
ASCE 41-13

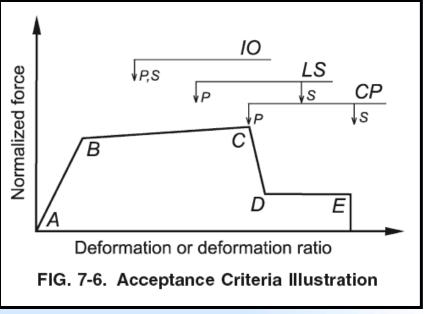
SF Administrative Bulletin 083

PEER Tall Buildings Initiative

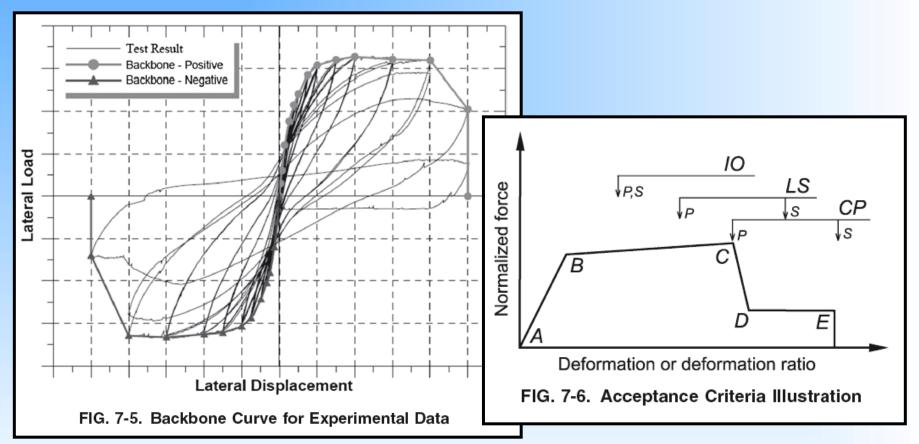
LA Tall Building Seismic Design Council

ASCE 7-16 Chp. 16 (in-progress)




- Issue #1: Structure of component types and acceptance criteria.
 - Component Categories:
 - ✓ Force-controlled (brittle)
 - Deformation-controlled
 - Component Sub-Categories:
 - ✓ Critical = failure causes immediate global collapse
 - ✓ Ordinary = failure causes local collapse (one bay)
 - ✓ Non-critical = failure does not cause collapse

Issue #2: Statistical basis for component-level acceptance criteria.



Issue #2: Statistical basis for component-level acceptance criteria (Sec. 7.6).

Issue #2: Statistical basis for component-level acceptance criteria (tables and Elwood et al. 2007).

			Modeling Parameters ^a			Acceptance Criterias		
			Plactic Pet	Rotations Angle	Residual Strength	Plastic Rotations Angle (radians)		
			(radians)		Ratio	Performance Level		
Conditions			а	ь		Ю	LS	СР
Condition i.b								
P^{-c}	$\rho = \frac{A_{\nu}}{A_{\nu}}$							
$\overline{A_g f_c'}$	$\rho = \frac{1}{b_w s}$							
≤0.1	≥0.006		0.035	0.060	0.2	0.005	0.045	0.060
≥0.6	≥0.006		0.010	0.010	0.0	0.003	0.009	0.010
≤0.1	=0.002		0.027	0.034	0.2	0.005	0.027	0.034
≥0.6	=0.002		0.005	0.005	0.0	0.002	0.004	0.005
Condition ii.b								
P^{-c}	$\rho = \frac{A_v}{A_v}$	V d						
$\overline{A_g f_c'}$	$\rho = \frac{1}{b_w s}$	$\overline{b_w d \sqrt{f_c'}}$						
≤0.1	≥0.006	≤3 (0.25)	0.032	0.060	0.2	0.005	0.045	0.060
≤0.1	≥0.006	≥6 (0.5)	0.025	0.060	0.2	0.005	0.045	0.060
≥0.6	≥0.006	≤3 (0.25)	0.010	0.010	0.0	0.003	0.009	0.010
≥0.6	≥0.006	≥6 (0.5)	0.008	0.008	0.0	0.003	0.007	0.008
≤0.1	≤0.0005	≤3 (0.25)	0.012	0.012	0.2	0.005	0.010	0.012
≤0.1	≤0.0005	≥6 (0.5)	0.006	0.006	0.2	0.004	0.005	0.006
≥0.6	≤0.0005	≤3 (0.25)	0.004	0.004	0.0	0.002	0.003	0.004
≥0.6	≤0.0005	≥6 (0.5)	0.0	0.0	0.0	0.0	0.0	0.0

- Issue #3: Treatment of "collapse" cases (of secondary importance compared with the others).
- Next steps:
 - Decide which compatibility issues are most important (suggest that statistical basis of acceptance criteria is the top priority).
 - Work on it!

Questions/Comments?

- Thanks you for your time.
- Please contact me if you would like more information/background because 11 minutes is not enough!
- Contact:
 - E-mail: chaselton@csuchico.edu
 - Phone: (530) 898-5457

