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Perspective

• Avoid category theory

• Automata-level bisimulation

• Weak pullback preservation & bisimulation

• Automata-level precongruence



Plan
1. Bisimulation for deterministic systems

2. Bisimulation for nondeterministic systems

3. Precongruences (for both)



Deterministic 
bisimulation



Deterministic Finite Automata
• Each state has a type

• Finitely many transition types

• Exactly one transition of 
each type leaves each state
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Def’n: the behavior of a state is the map from words 
to outputs starting from s

Def’n: the output of a state s on a word w is the state
type we reach from s following transitions in w



Tree unfoldings are behavior
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Annotated tree unfolding
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Detecting equal unfoldings
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Good properties:

1. The type of (r, s) is the 
common type of r and s.

2. If δ(r, λ) = r’ and δ(s, λ) = s’, 
then δ((r, s), λ) = (r’, s’)

Detecting equal unfoldings



Bisimulation
That this tree satisfies…

1. The type of (r, s) is the 
common type of r and s,

2. If δ(r, λ) = r’ and δ(s, λ) = s’, 
then δ((r, s), λ) = (r’, s’),

3. All unexpanded pairs are 
expanded elsewhere

…is enough to guarantee the 
infinite tree matches.
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Short-circuiting I
R) If we discover a pair like      we don’t need to
expand (r, r).

λ

(r,r)

S) If we discover a pair like      and we already 
expanded (r, s), we don’t need to expand (s, r).

λ

(s,r)

T) If we discover a pair like      and there is an s 
such that we already expanded (r, s) and (s, t), we 
don’t need to expand (r, t).

λ

(r,t)

Up-to techniques I



Bisimulation up-to
That this tree satisfies…

1. The type of (r, s) is the 
common type of r and s,

2. If δ(r, λ) = r’ and δ(s, λ) = s’, 
then δ((r, s), λ) = (r’, s’),

3. All unexpanded pairs are in the 
equivalence closure of those 
expanded elsewhere

…is enough to guarantee the 
infinite tree matches.
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Easy Generalization
We need:

• All states of a type have the same transitions

• There are finitely many transitions for each state 
type

• Each transition gives a unique next state

We don’t need:

• All states have the same transitions



Easy Generalization
We could add any number of new types
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Hard Generalization
We need:

• All states of a type have the same transitions

• There are finitely many transitions for each state 
type

• Each transition gives a unique next state

Removing the last criteria is possible, but delicate.



Interlude: categorical formulation
Transition structures are captured by a functor F:

• Given states X, transitions returning to X are FX

• Given f: X→Y, get substitution Ff: FX→FY
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A transition system is just τ: X→FX



Nondeterministic 
bisimulation



Nondeterminstic automata
We want to reason about states with transitions like

0a

fb
0 1 1 1

a c b

(We simplify by only considering one type)

a
b f



Axioms of nondeterminacy
Order doesn’t matter, so these should be the same:

b f f b

=ϵ

Repeats don’t matter, so these should be the same:

b f fb

=ϵ
b



Recall one of our critical ingredients was

• All states of a type have the same transitions

b f fb
=ϵ

b

How will we make matching transitions?



Adding new state types
We subdivide the red type into ω-many subtypes…

∅ {}1 {}2
…

{}3 {}k

…
(k children)

…

require some axioms…
{}1 {}2

=ϵ
x x x

{}3

x zy
=ϵ

{}3

z yx

{}3

x xy
=ϵ

{}2

y x

close under e&s…

and relax our notion of equal tree unfolding.



Kind-of-equal tree unfolding

{}3

∅ ∅

{}2

∅

=ϵ*
{}3

∅ ∅{}3

∅ ∅{}3

∅ ∅{}3

∅ ∅…

{}2

∅{}2

∅{}2

∅{}2

∅…



Unfolding semantics

“The” tree unfolding of a state is the equivalence 
class of trees obtainable by applying the axioms to 
the state’s usual tree unfolding.

It suffices to prove that two states have one 
common unfolding to show they have the same set of 
possible unfoldings.



Seems like a lot of work…
Say a system type is finitely-coverable if every transition 
structure on a set X (potentially infinite) can be 
found as the image of transition structures on a Y, 
some finite subset of X, under the inclusion.

Theorem (Adámek, Porst, Gumm, Trnková):  
A system type is finitely-coverable if and only if it has 
a presentation.



Examples of presentations 
Finite powerset

∅ {}1
…

{}k

…
(k children)

…

{}1 {}2
=ϵ

x x x

{}3

x zy
=ϵ

{}3

z yx

Weighted automata
α, β, … ϵ ℝ

(α) (α, β) (α, β, γ)

…

(α, β, 0)

=ϵ
x y

(α,β)

x

(α, β, γ)

x x
=ϵ

(α, β+γ)

x

Markov chains

(1) (α, β)

α+β = 1

…

(1, 0)

=ϵ
x y

(1)

x

(α, β)

x x
=ϵ

(1)

x

α+β = 1



Bisimulation for powerset

{}2

∅

{}3

∅ ∅

a b

cde a b

bc

c, d, e{}3

a ed
∅

{}2

{}3 (a,b)

(a,b) ∅ ∅ (e, c)
(d, c)

This witnesses a 
common unfolding:

Ok, because

bc

{}2 {}3

b cc
=ϵτ(b) = 



Presentation bisimulations
Data: a transition presentation scheme (state types 
and axioms), a transition system in that scheme

Algorithm:  A normal bisimulation, but to expand a 
pair (r, s), pick representatives of [τ(r)]=ϵ and [τ(s)]=ϵ 
with common type.

Proposition: If (r, s) is in a presentation 
bisimulation, then r and s have the same tree 



Up-to techniques II
R) If we discover a pair like      we don’t need to
expand (r, r).

(r,r)

S) If we discover a pair like      and we already 
expanded (r, s), we don’t need to expand (s, r).

(s,r)

1 2
=ϵτ(r) = 

3
=ϵ = τ(s)

r’ r” s’r’r’r”

2

s’s’s’

(r”, s’) and (r’, s’)
are expanded

1
=ϵτ(s) = 

3
=ϵ = τ(r)

r’ r”s’

2

r’r’r”

2

s’s’s’



Up-to techniques II
T) If we discover a pair like      and there is an s 
such that we already expanded (r, s) and (s, t), we 
don’t need to expand (r, t).

(r,t)

We might not find a common type for τ(r) and τ(t)!

τ(r) τ(s)
5

t’ t”

4
=ϵ

s’s’s’

=ϵ

τ(t)
1 2

=ϵ
3

=ϵ
r’ r” s’r’r’r”

2

s’s’s’

4

t’t”t’

(r”, s’) and (r’, s’)
are expanded

(s’, t’) and (s’, t”)
are expanded



An odd situation
“Have the same tree unfoldings” is an equivalence 
relation on states.

“Are related by a bisimulation” may not be transitive.

 
Proposition: If (r, s) is in a presentation 
bisimulation, then r and s have the same tree 
unfoldings.

Converse does not hold!!



Concrete counterexample

1

Consider the following presentation:
1

x x

2 3
=ϵ

2

x x

=ϵ
3

x x

And this transition system:

b

aa

ca 1

ba

2 3

ab

1(a,b)

(a,a) (b,a)

3(b,c)

(a,a)
1(a,b)

(a,a) (b,a)

…but there are no 
rewrites for (a, c)!!



Resolution: domination

4

s’s’s’

=ϵ
2

s’s’s’

Insist that whenever there is an equation like…

there is a common type and equations of the form…

=ϵ
2

cba

4

cba

=ϵ
42 42

cbb aa
(must be different)

bbb ab
(must be different)(must be from <=) (must be from =>)

and when you follow the obvious substitution…

=ϵ
2

s’s’s’

4

s’s’s’

=ϵ
42 42

s’s’s’ s’s’ s’s’s’ s’s’

=



Weak pullback preservation
Theorem (Adámek, Gumm, Trnková):  
A system type has a dominated presentation if and 
only if it preserves weak pullbacks.

From Universal Coalgebra:



Precongruence



Concrete counterexample

1

Recall the Aczel-Mendler presentation:
1

x x

2 3
=ϵ

2

x x

=ϵ
3

x x

And this transition system:

b

aa

ca 1

ba

2 3

ab
There is no bisimulation with the pair (a, c) since

3

ab

1

ba
≠ϵ …but a and b have the same unfolds



Concrete counterexample
b

aa

ca 1

ba

2 3

ab
An informal justification:

3(a,c)

1(a,b)

(a,a) (b,a)

1(b,a)

(a,a) (a,b)

Let E = {(a, c), (a, b), (b, a)}  
and Ē = e(E)

It is still true that:
3

ab

1

ba
≠ϵ

31

[a]Ē
=ϵ

But notice:

[a]Ē[b]Ē[b]Ē



A different way
Instead of:  A normal bisimulation, but to expand a 
pair (r, s), pick representatives of [τ(r)]=ϵ and [τ(s)]=ϵ 
with common type.  

Do this:  To expand (r, s), optimistically choose any 
transition structure Tr,s whatsoever.  After the tree is 
finished, let E relate expanded pairs as above. Justify 
all choices by verifying

[τ(r)]Ē =ϵ [Tr,s]Ē =ϵ [τ(s)]Ē

Such an E is a precongruence.



Trust me, I’m a doctor…
Proposition: If (r, s) is a pair in a precongruence, 
then r and s have the same tree unfoldings.

Proof: It turns out this is precisely the condition 
needed for the quotient map to be a “machine 
morphism”, which we combine with the fact that 
morphisms preserve unfoldings.

1 2

3

1 0

0

0,1

1 30,1



Up-to techniques III
R) If we discover a pair like      we don’t need to
expand (r, r).

(r,r)

We will still need to justify

[τ(x)]e(E-(r,r)) =ϵ [Tx,y]e(E-(r,r)) =ϵ [τ(y)]e(E-(r,r))

for the remaining (x, y) in E-(r,r). But e(E-(r,r)) = e(E).



Up-to techniques III
S) If we discover a pair like      and we already 
expanded (r, s), we don’t need to expand (s, r).

(s,r)

We will still need to justify

[τ(x)]e(E-(s,r)) =ϵ [Tx,y]e(E-(s,r)) =ϵ [τ(y)]e(E-(s,r))

for the remaining (x, y) in E-(s,r).

T) Transitive closure is similar.

But e(E-(s,r)) = e(E) since (r, s) is still in E.



Better guarantees
Theorem (Aczel, Mendler): A pair (r, s) is a 
precongruence if and only if r and s have the same 
tree unfoldings.  
 
Theorem (S): A logic which finds precongruences is 
sound and complete with respect to unfolding 
semantics. On finite systems, it is decidable.



Concluding remarks



Main messages
• Presentations of transition systems cover all the 

finitary system types

• Precongruences detect tree unfolding semantics 
better than bisimulations for finitary systems

• Precongruences support more sound up-to 
techniques than bisimulations



Future work
• Language inclusion is another kind of (transitive) 

relation on tree unfoldings. Weak pullback 
preservation is often used here.

• Generalize to non-Set coalgebras?



Thanks!


