
Bisimulation and
Precongruence

David Sprunger
October 23, 2017

Perspective

• Avoid category theory

• Automata-level bisimulation

• Weak pullback preservation & bisimulation

• Automata-level precongruence

Plan
1. Bisimulation for deterministic systems

2. Bisimulation for nondeterministic systems

3. Precongruences (for both)

Deterministic
bisimulation

Deterministic Finite Automata
• Each state has a type

• Finitely many transition types

• Exactly one transition of
each type leaves each state

1

1
1

11

1

1

1

0

0

0

0

0

0

0
0

Def’n: the behavior of a state is the map from words
to outputs starting from s

Def’n: the output of a state s on a word w is the state
type we reach from s following transitions in w

Tree unfoldings are behavior
1

1
1

11

1

1

1

0

0

0

0

0

0

0
0

0 1

0 1 0 1

… …… …

0 1

0 1 0 1

… …… …

0 1

0 1 0 1

… …… …

0 1

0 1 0 1

… …… …

Annotated tree unfolding
1

1
1

11

1

1

1

0

0

0

0

0

0

0
0

a b c d

e f g h

0 1a

fb
0 1b

cg
0 1c

ca
0 1d

gc

0 1e

fh
0 1f

gc
0 1g

eg
0 1h

cg

a 0 1

fb

a
0 1

fb

a

0 1

cg
0 1

gc

0 1

fb

a

0 1 0 1

g

0 1

c

0 1

c

0 1

g

0 1

… … … … … … … …

*

0 1

0 1 0 1

0 1 0 1 0 1 0 1

… … … … … … … …

Detecting equal unfoldings
0 1

fb

a

0 1 0 1

g

0 1

c

0 1

c

0 1

g

0 1

… … … … … … … …

0 1

fh

e

0 1 0 1

g

0 1

c

0 1

c

0 1

g

0 1

… … … … … … … …

1

1
1

11

1

1

1

0

0

0

0

0

0

0
0

a b c d

e f g h

0 1

(a,e)

0 1 0 1

0 1 0 1 0 1 0 1

… … … … … … … …

(f,f)(b,h)

(c,c)(c,c) (g,g)(g,g)

0 1

fb

a

0 1 0 1

g

0 1

c

0 1

c

0 1

g

0 1

… … … … … … … …

0 1

fh

e

0 1 0 1

g

0 1

c

0 1

c

0 1

g

0 1

… … … … … … … …

0 1

(a,e)

0 1 0 1

0 1 0 1 0 1 0 1

… … … … … … … …

(f,f)(b,h)

(c,c)(c,c) (g,g)(g,g)

Good properties:

1. The type of (r, s) is the
common type of r and s.

2. If δ(r, λ) = r’ and δ(s, λ) = s’,
then δ((r, s), λ) = (r’, s’)

Detecting equal unfoldings

Bisimulation
That this tree satisfies…

1. The type of (r, s) is the
common type of r and s,

2. If δ(r, λ) = r’ and δ(s, λ) = s’,
then δ((r, s), λ) = (r’, s’),

3. All unexpanded pairs are
expanded elsewhere

…is enough to guarantee the
infinite tree matches.

0 1

(a,e)

0 1 0 1

0 1 0 1

(f,f)(b,h)

(c,c)(c,c) (g,g)(g,g)

0 1

(e,e)

0 1

(h,h)

0 1

(a,a)

0 1

(b,b)

(c,c)

(f,f)

(c,c)(g,g)

(g,g)

(f,f)

(c,c)(g,g)

1

1
1

11

1

1

1

0

0

0

0

0

0

0
0

a b c d

e f g h

Short-circuiting I
R) If we discover a pair like we don’t need to
expand (r, r).

λ

(r,r)

S) If we discover a pair like and we already
expanded (r, s), we don’t need to expand (s, r).

λ

(s,r)

T) If we discover a pair like and there is an s
such that we already expanded (r, s) and (s, t), we
don’t need to expand (r, t).

λ

(r,t)

Up-to techniques I

Bisimulation up-to
That this tree satisfies…

1. The type of (r, s) is the
common type of r and s,

2. If δ(r, λ) = r’ and δ(s, λ) = s’,
then δ((r, s), λ) = (r’, s’),

3. All unexpanded pairs are in the
equivalence closure of those
expanded elsewhere

…is enough to guarantee the
infinite tree matches.

0 1

(a,e)

0 1

(f,f)(b,h)

(c,c)(g,g)

1

1
1

11

1

1

1

0

0

0

0

0

0

0
0

a b c d

e f g h

Easy Generalization
We need:

• All states of a type have the same transitions

• There are finitely many transitions for each state
type

• Each transition gives a unique next state

We don’t need:

• All states have the same transitions

Easy Generalization
We could add any number of new types

* ! ?

And still reason about
1

1
!

1

1

!

1

0

0

?

0

0

0

?

*

*

Hard Generalization
We need:

• All states of a type have the same transitions

• There are finitely many transitions for each state
type

• Each transition gives a unique next state

Removing the last criteria is possible, but delicate.

Interlude: categorical formulation
Transition structures are captured by a functor F:

• Given states X, transitions returning to X are FX

• Given f: X→Y, get substitution Ff: FX→FY

1

1
1

11

1

1

1

0

0

0

0

0

0

0
0

a b c d

e f g h

0 1a

fb
0 1b

cg
0 1c

ca
0 1d

gc

0 1e

fh
0 1f

gc
0 1g

eg
0 1h

cg
A transition system is just τ: X→FX

Nondeterministic
bisimulation

Nondeterminstic automata
We want to reason about states with transitions like

0a

fb
0 1 1 1

a c b

(We simplify by only considering one type)

a
b f

Axioms of nondeterminacy
Order doesn’t matter, so these should be the same:

b f f b

=ϵ

Repeats don’t matter, so these should be the same:

b f fb

=ϵ
b

Recall one of our critical ingredients was

• All states of a type have the same transitions

b f fb
=ϵ

b

How will we make matching transitions?

Adding new state types
We subdivide the red type into ω-many subtypes…

∅ {}1 {}2
…

{}3 {}k

…
(k children)

…

require some axioms…
{}1 {}2

=ϵ
x x x

{}3

x zy
=ϵ

{}3

z yx

{}3

x xy
=ϵ

{}2

y x

close under e&s…

and relax our notion of equal tree unfolding.

Kind-of-equal tree unfolding

{}3

∅ ∅

{}2

∅

=ϵ*
{}3

∅ ∅{}3

∅ ∅{}3

∅ ∅{}3

∅ ∅…

{}2

∅{}2

∅{}2

∅{}2

∅…

Unfolding semantics

“The” tree unfolding of a state is the equivalence
class of trees obtainable by applying the axioms to
the state’s usual tree unfolding.

It suffices to prove that two states have one
common unfolding to show they have the same set of
possible unfoldings.

Seems like a lot of work…
Say a system type is finitely-coverable if every transition
structure on a set X (potentially infinite) can be
found as the image of transition structures on a Y,
some finite subset of X, under the inclusion.

Theorem (Adámek, Porst, Gumm, Trnková):  
A system type is finitely-coverable if and only if it has
a presentation.

Examples of presentations
Finite powerset

∅ {}1
…

{}k

…
(k children)

…

{}1 {}2
=ϵ

x x x

{}3

x zy
=ϵ

{}3

z yx

Weighted automata
α, β, … ϵ ℝ

(α) (α, β) (α, β, γ)

…

(α, β, 0)

=ϵ
x y

(α,β)

x

(α, β, γ)

x x
=ϵ

(α, β+γ)

x

Markov chains

(1) (α, β)

α+β = 1

…

(1, 0)

=ϵ
x y

(1)

x

(α, β)

x x
=ϵ

(1)

x

α+β = 1

Bisimulation for powerset

{}2

∅

{}3

∅ ∅

a b

cde a b

bc

c, d, e{}3

a ed
∅

{}2

{}3 (a,b)

(a,b) ∅ ∅ (e, c)
(d, c)

This witnesses a
common unfolding:

Ok, because

bc

{}2 {}3

b cc
=ϵτ(b) =

Presentation bisimulations
Data: a transition presentation scheme (state types
and axioms), a transition system in that scheme

Algorithm: A normal bisimulation, but to expand a
pair (r, s), pick representatives of [τ(r)]=ϵ and [τ(s)]=ϵ
with common type.

Proposition: If (r, s) is in a presentation
bisimulation, then r and s have the same tree

Up-to techniques II
R) If we discover a pair like we don’t need to
expand (r, r).

(r,r)

S) If we discover a pair like and we already
expanded (r, s), we don’t need to expand (s, r).

(s,r)

1 2
=ϵτ(r) =

3
=ϵ = τ(s)

r’ r” s’r’r’r”

2

s’s’s’

(r”, s’) and (r’, s’)
are expanded

1
=ϵτ(s) =

3
=ϵ = τ(r)

r’ r”s’

2

r’r’r”

2

s’s’s’

Up-to techniques II
T) If we discover a pair like and there is an s
such that we already expanded (r, s) and (s, t), we
don’t need to expand (r, t).

(r,t)

We might not find a common type for τ(r) and τ(t)!

τ(r) τ(s)
5

t’ t”

4
=ϵ

s’s’s’

=ϵ

τ(t)
1 2

=ϵ
3

=ϵ
r’ r” s’r’r’r”

2

s’s’s’

4

t’t”t’

(r”, s’) and (r’, s’)
are expanded

(s’, t’) and (s’, t”)
are expanded

An odd situation
“Have the same tree unfoldings” is an equivalence
relation on states.

“Are related by a bisimulation” may not be transitive.

 
Proposition: If (r, s) is in a presentation
bisimulation, then r and s have the same tree
unfoldings.

Converse does not hold!!

Concrete counterexample

1

Consider the following presentation:
1

x x

2 3
=ϵ

2

x x

=ϵ
3

x x

And this transition system:

b

aa

ca 1

ba

2 3

ab

1(a,b)

(a,a) (b,a)

3(b,c)

(a,a)
1(a,b)

(a,a) (b,a)

…but there are no
rewrites for (a, c)!!

Resolution: domination

4

s’s’s’

=ϵ
2

s’s’s’

Insist that whenever there is an equation like…

there is a common type and equations of the form…

=ϵ
2

cba

4

cba

=ϵ
42 42

cbb aa
(must be different)

bbb ab
(must be different)(must be from <=) (must be from =>)

and when you follow the obvious substitution…

=ϵ
2

s’s’s’

4

s’s’s’

=ϵ
42 42

s’s’s’ s’s’ s’s’s’ s’s’

=

Weak pullback preservation
Theorem (Adámek, Gumm, Trnková):  
A system type has a dominated presentation if and
only if it preserves weak pullbacks.

From Universal Coalgebra:

Precongruence

Concrete counterexample

1

Recall the Aczel-Mendler presentation:
1

x x

2 3
=ϵ

2

x x

=ϵ
3

x x

And this transition system:

b

aa

ca 1

ba

2 3

ab
There is no bisimulation with the pair (a, c) since

3

ab

1

ba
≠ϵ …but a and b have the same unfolds

Concrete counterexample
b

aa

ca 1

ba

2 3

ab
An informal justification:

3(a,c)

1(a,b)

(a,a) (b,a)

1(b,a)

(a,a) (a,b)

Let E = {(a, c), (a, b), (b, a)}  
and Ē = e(E)

It is still true that:
3

ab

1

ba
≠ϵ

31

[a]Ē
=ϵ

But notice:

[a]Ē[b]Ē[b]Ē

A different way
Instead of: A normal bisimulation, but to expand a
pair (r, s), pick representatives of [τ(r)]=ϵ and [τ(s)]=ϵ
with common type.  

Do this: To expand (r, s), optimistically choose any
transition structure Tr,s whatsoever. After the tree is
finished, let E relate expanded pairs as above. Justify
all choices by verifying

[τ(r)]Ē =ϵ [Tr,s]Ē =ϵ [τ(s)]Ē

Such an E is a precongruence.

Trust me, I’m a doctor…
Proposition: If (r, s) is a pair in a precongruence,
then r and s have the same tree unfoldings.

Proof: It turns out this is precisely the condition
needed for the quotient map to be a “machine
morphism”, which we combine with the fact that
morphisms preserve unfoldings.

1 2

3

1 0

0

0,1

1 30,1

Up-to techniques III
R) If we discover a pair like we don’t need to
expand (r, r).

(r,r)

We will still need to justify

[τ(x)]e(E-(r,r)) =ϵ [Tx,y]e(E-(r,r)) =ϵ [τ(y)]e(E-(r,r))

for the remaining (x, y) in E-(r,r). But e(E-(r,r)) = e(E).

Up-to techniques III
S) If we discover a pair like and we already
expanded (r, s), we don’t need to expand (s, r).

(s,r)

We will still need to justify

[τ(x)]e(E-(s,r)) =ϵ [Tx,y]e(E-(s,r)) =ϵ [τ(y)]e(E-(s,r))

for the remaining (x, y) in E-(s,r).

T) Transitive closure is similar.

But e(E-(s,r)) = e(E) since (r, s) is still in E.

Better guarantees
Theorem (Aczel, Mendler): A pair (r, s) is a
precongruence if and only if r and s have the same
tree unfoldings.  
 
Theorem (S): A logic which finds precongruences is
sound and complete with respect to unfolding
semantics. On finite systems, it is decidable.

Concluding remarks

Main messages
• Presentations of transition systems cover all the

finitary system types

• Precongruences detect tree unfolding semantics
better than bisimulations for finitary systems

• Precongruences support more sound up-to
techniques than bisimulations

Future work
• Language inclusion is another kind of (transitive)

relation on tree unfoldings. Weak pullback
preservation is often used here.

• Generalize to non-Set coalgebras?

Thanks!

