
Eigenvalues and Transduction of Morphic Sequences

David Sprunger?, William Tune??, Jörg Endrullis? ? ?, and Lawrence S. Moss†

Abstract. We study finite state transduction of automatic and morphic sequences. Dekking [4]
proved that morphic sequences are closed under transduction and in particular morphic images. We
present a simple proof of this fact, and use the construction in the proof to show that non-erasing
transductions preserve a condition called α-substitutivity. Roughly, a sequence is α-substitutive if
the sequence can be obtained as the limit of iterating a substitution with dominant eigenvalue α.
Our results culminate in the following fact: for multiplicatively independent real numbers α and β,
if v is a α-substitutive sequence and w is an β-substitutive sequence, then v and w have no common
non-erasing transducts except for the ultimately periodic sequences. We rely on Cobham’s theorem
for substitutions, a recent result of Durand [5].

1 Introduction

Infinite sequences of symbols are of paramount importance in a wide range of fields, ranging from formal
languages to pure mathematics and physics. A landmark was the discovery in 1912 by Axel Thue, found-
ing father of formal language theory, of the famous sequence 0110 1001 1001 0110 1001 0110 · · · .Thue
was interested in infinite words which avoid certain patterns, like squares ww or cubes www, when w is
a non-empty word. Indeed, the sequence shown above, called the Thue–Morse sequence, is cube-free.
It is perhaps the most natural cube-free infinite word.

q0

q1

q2

0 | ε

1 | ε

1 | 10 | 1

1 | 0

0 | 0

Fig. 1. A transducer computing the
difference (exclusive or) of consecu-
tive bits.

A common way to transform infinite sequences is by using finite
state transducers. These transducers are deterministic finite automata
with input letters and output words for each transition; an example
is shown in Figure 1. Usually we omit the words “finite state” and
refer to transducers. A transducer maps infinite sequences to infinite
sequences by reading the input sequence letter by letter. Each of these
transitions produces an output word, and the sequence formed by
concatenating each of these output words in the order they were
produced is the output sequence. In particular, since this transducer
runs for infinite time to read its entire input, this model of transduc-
tion does not have final states. A transducer is called k-uniform if each step produces k-letter words. For
example, Mealy machines are 1-uniform transducers. A transducer is non-erasing if each step produces a
non-empty word; this condition is prominent in this paper.

Although transducers are a natural machine model, hardly anything is known about their capabilities
of transforming infinite sequences. To state the issues more clearly, let us write x E y if there is a
transducer taking y to x. This transducibility gives rise to a partial order of stream degrees [6] that is
analogous to, but more fine-grained than, recursion-theoretic orderings such as Turing reducibility ≤T
and many-one reducibility≤m. We find it surprising that so little is known aboutE. As of now, the structure
of this order is vastly unexplored territory with many open questions. To answer these questions, we
need a better understanding of transducers.

? Department of Mathematics, Indiana University, Bloomington IU 47405 USA.
?? Department of Mathematics, Indiana University, Bloomington IU 47405 USA.

? ? ? Vrije Universiteit Amsterdam, Department of Computer Science, 1081 HV Amsterdam, The Netherlands; and
Department of Mathematics, Indiana University, Bloomington IU 47405 USA.
† Department of Mathematics, Indiana University, Bloomington IU 47405 USA. This work was partially supported

by a grant from the Simons Foundation (#245591 to Lawrence Moss).

2 David Sprunger, William Tune, Jörg Endrullis, and Lawrence S. Moss

The main things that are known at this point concern two particularly well-known sets of streams,
namely the morphic and automatic sequences. Morphic sequences are obtained as the limit of iterating a
morphism on a starting word (and perhaps applying a coding to the limit word). Automatic sequences
have a number of independent characterizations (see [1]); we shall not repeat these here. There are two
seminal closure results concerning the transduction of morphic and automatic sequences:

(1) The class of morphic sequences is closed under transduction (Dekking [4]).
(2) For all k, the class of k-automatic sequences is closed under uniform transduction (Cobham [3]).

The restriction in (2) to uniform transducers is shown by the following example.

Example 1. Let w ∈ { 0, 1 }ω be defined by w(n) = 1 if n is a power of 2 and w(n) = 0 otherwise. This
sequence is 2-automatic. Let h be the morphism 0 7→ 0 and 1 7→ 01. Taking the image of w under h, that
is h(w), yields a sequence that is no longer automatic (but still morphic).

In this paper, we do not attack the central problems concerning the stream degrees. Instead, we are
interested in a closure result for non-erasing transductions. Our interest comes from the following easy
observation:

(3) For every morphic sequence w ∈ Σω there is a 2-automatic sequence w′ ∈ (Σ ∪ { a })ω such that w is
obtained from w′ by erasing all occurrences of a. (See Allouche and Shallit [1, Theorem 7.7.1])

This motivates the question: how powerful is non-erasing transduction?

Our contribution. The main result of this paper is stated in terms of the notion of α-substitutivity. This
condition is defined in Definition 8 below, and the definition uses the eigenvalues of matrices naturally
associated with morphisms on finite alphabets. Indeed, the core of our work is a collection of results on
eigenvalues of these matrices.

We prove that the set of α-substitutive words is closed under non-erasing finite state transduction.
We follow Allouche and Shallit [1] in obtaining transducts of a given morphic sequence w by annotating
an iteration morphism, and then taking a morphic image of the annotated limit sequence. For the first
part of this transformation, we show that a morphism and its annotation have the same eigenvalues with
non-negative eigenvectors. For the second part, we revisit the proof given in Allouche and Shallit [1] of
Dekking’s theorem that morphic images of morphic sequences are morphic. We simplify the construction
in the proof to make it amenable for an analysis of the eigenvalues of the resulting morphism.

Related work. Durand [5] proved that if w is an α-substitutive sequence and h is a non-erasing morphism,
then h(w) is αk-substitutive for some k ∈ N. We strengthen this result in two directions. First, we show
that k may be taken to be 1; hence h(w) is αk-substitutive for every k ∈N. Second, we show that Durand’s
result also holds for non-erasing transductions.

2 Preliminaries

We recall some of the main concepts that we use in the paper. For a thorough introduction to morphic
sequences, automatic sequences and finite state transducers, we refer to [1,8].

We are concerned with infinite sequences Σω over a finite alphabet Σ. We write Σ∗ for the set of finite
words, Σ+ for the finite, non-empty words, Σω for the infinite words, and Σ∞ = Σ∗ ∪ Σω for all finite or
infinite words over Σ.

Eigenvalues and Transduction of Morphic Sequences 3

2.1 Morphic sequences and automatic sequences

Definition 2. A morphism is a map h : Σ→ Γ∗. This map extends by concatenation to h : Σ∗ → Γ∗, and we do
not distinguish the two notationally. Notice also that h(vu) = h(v)h(u) for all u, v ∈ Σ∗. If h1, h2 : Σ → Σ∗, we
have a composition h2 ◦ h1 : Σ→ Σ∗.

An erased letter (with respect to h) is some a ∈ Σ such that h(a) = ε. A morphism h : Σ∗ → Γ∗ is called
erasing if has an erased letter. A morphism is k-uniform (for k ∈ N) if |h(a)| = k for all a ∈ Σ. A coding is a
1-uniform morphism c : Σ→ Γ.

A morphic sequence is obtained by iterating a morphism, and applying a coding to the limit word.

Definition 3. Let s ∈ Σ+ be a word, h : Σ → Σ∗ a morphism, and c : Σ → Γ a coding. If the limit hω(s) =
limn→∞ hn(s) exists and is infinite, then hω(s) is a pure morphic sequence, and c(hω(s)) a morphic sequence.

If h(x1) = x1z for some z ∈ Σ+, then we say that h is prolongable on x1. In this case, hω(x1) is a pure morphic
sequence.

If additionally, the morphism h is k-uniform, then c(hω(s)) is a k-automatic sequence. A sequence w ∈ Σω is
called automatic if w is k-automatic for some k ∈N.

Example 4. A well-known example of a purely morphic word is the Thue–Morse sequence. This se-
quence can be obtained as the limit of iterating the morphism 0 7→ 01, 1 7→ 10 on the starting word 0.
The first iterations are 0 7→ 01 7→ 0110 7→ 01101001 7→ · · · , and they converge, in the limit, to the
Thue–Morse sequence. As the morphism h is 2-uniform, the sequence is also 2-automatic.

Example 5. An example of a purely morphic word which is not automatic is provided by the Fibonacci
substitution a 7→ ab, b 7→ a. Starting with a, the fixed point is abaababaabaababaababaabaababaabaababaaba · · · .

2.2 Cobham’s Theorem for morphic words

Definition 6. For a ∈ Σ and w ∈ Σ∗ we write |w|a for the number of occurrences of a in w. Let h be a morphism
overΣ. The incidence matrix of h is the matrix Mh = (mi, j)i∈Σ, j∈Σ where mi, j = |h(j)|i is the number of occurrences
of the letter i in the word h(j).

Theorem 7 (Perron-Frobenius). Every non-negative square matrix M has a real eigenvalue α > 1 that is
greater than or equal to the absolute value of any other eigenvalue of M and the corresponding eigenvector is
non-negative. In particular every incidence matrix has a unique largest real eigenvalue.

Definition 8. The dominating eigenvalue of a morphism h is the largest real eigenvalue of Mh. An infinite
sequence w ∈ Σω over a finite alphabetΣ is said to be α-substitutive (α ∈ R) if there exist a morphism h : Σ→ Σ∗

with dominating eigenvalue α, a coding c : Σ → Σ and a letter a ∈ Σ such that (i) w = c(hω(a)), and (ii) every
letter of Σ occurs in hω(a).

We shall use the following version of Cobham’s theorem due to Durand [5].

Theorem 9. Let α and β be multiplicatively independent Perron numbers. If a sequence w is both α-substitutive
and β-substitutive, then w is eventually periodic. ut

2.3 Transducers

Definition 10. A (sequential finite-state stream) transducer (FST) M = (Σ,∆,Q, q0, δ, λ) consists of (i) a
finite input alphabet Σ, (ii) a finite output alphabet ∆, (iii) a finite set of states Q, (iv) an initial state q0 ∈ Q, (v) a
transition function δ : Q × Σ→ Q, and (vi) an output function λ : Q × Σ→ ∆∗.

4 David Sprunger, William Tune, Jörg Endrullis, and Lawrence S. Moss

Example 11. The transducer (Σ,∆,Q, q0, δ, λ) shown in Figure 1 can be defined as follows:Σ = ∆ = { 0, 1 },
Q = { q0, q1, q2 }with q0 the initial state, and the transition function δ and output function λ are given by:

δ(q0, 0) = q1 λ(q0, 0) = ε δ(q0, 1) = q2 λ(q0, 1) = ε

δ(q1, 0) = q1 λ(q1, 0) = 0 δ(q1, 1) = q2 λ(q1, 1) = 1
δ(q2, 0) = q1 λ(q2, 0) = 1 δ(q2, 1) = q2 λ(q2, 1) = 0

We use transducers to transform infinite words. The transducer reads the input word letter by letter,
and the transformation result is the concatenation of the output words encountered along the edges.

Definition 12. Let M = (Σ,∆,Q, q0, δ, λ) be a transducer. We extend the state transition function δ from
letters Σ to finite words Σ∗ as follows: δ(q, ε) = q and δ(q, aw) = δ(δ(q, a),w) for q ∈ Q, a ∈ Σ, w ∈ Σ∗.

The output function λ is extended to the set of all words Σ∞ = Σω ∪ Σ∗ by the following definition:
λ(q, ε) = ε and λ(q, aw) = λ(q, a)λ(δ(q, a),w) for q ∈ Q, a ∈ Σ, w ∈ Σ∞.

We introduce δ(w) and λ(w) as shorthand for δ(q0,w) and λ(q0,w), respectively. Moreover, we define
M(w) = λ(w), the output of M on w ∈ Σω. In this way, we think of M as a function from (finite or infinite)
words on its input alphabet to infinite words on its output alphabet M : Σ∞ → ∆∞.

If x ∈ Σω and y ∈ ∆ω, we write y E x if for some transducer M, we have M(x) = y.

Notice that every morphism is computable by a transducer (with one state). In particular, every
coding is computable by a transducer.

Definition 13. Let M = (Σ,∆,Q, q0, δ, λ) and N = (Σ′, ∆′,Q′, q′0, δ
′, λ′) be transducers, and assume that

Σ′ = ∆. We define the composition N ◦M to be the transducer

N ◦M = (Σ, ∆′, Q ×Q′, (q0, q′0), ((q, q′), a) 7→ (δ(q, a), δ′(q′, λ(q, a))), ((q, q′), a) 7→ λ′(q′, λ(q, a))).

Here δ′ and λ′ are the extensions of the transition and output functions of N to Σ∗, respectively.

Proposition 14. Concerning the composition relation on transducers and E on finite and infinite words:

(i) The mapΣ∞ → (∆′)∞ computed by N◦M is the composition of M : Σ∞ → ∆∞ followed by N : ∆∞ → (∆′)∞.
(ii) The relation E is transitive.

(iii) If x ∈ Σ∞ and h : Σ→ ∆∗ is a coding, then h(x) E x.

3 Closure of Morphic Sequences under Morphic Images

Definition 15. Let h : Σ∗ → Σ∗ be morphisms, and let Γ ⊆ Σ be a set of letters. We call a letter a ∈ Σ

(i) dead if hn(a) ∈ Γ∗ for all n ≥ 0,
(ii) near dead if a < Γ, and for all n > 0, hn(a) consists of dead letters,

(iii) resilient if hn(a) < Γ∗ for all n ≥ 0,
(iv) resurrecting if a ∈ Γ and hn(a) < Γ∗ for all n > 0.

with respect to h and Γ. We say that the morphism h respects Γ if every letter a ∈ Σ is either dead, near
dead, resilient, or resurrecting. (Note that all of these definitions are with respect to some fixed h and Γ.)

Lemma 16. Let g : Σ∗ → Σ∗ be a morphism, and let Γ ⊆ Σ. Then gr respects Γ for some natural number r > 0.

Proof. See Lemma 7.7.3 in Allouche and Shallit [1]. ut

Definition 17. For a set of letters Γ ⊆ Σ and a word w ∈ Σ∞, we write γΓ(w) for the word obtained from w by
erasing all occurrences of letters in Γ.

Eigenvalues and Transduction of Morphic Sequences 5

Definition 18. Let g : Σ∗ → Σ∗ be a morphism, and Γ ⊆ Σ a set of letters. We construct an alphabet ∆,
a morphism ξ : ∆∗ → ∆∗ and a coding ρ : ∆ → Σ as follows. We refer to ∆, ξ, ρ as the morphic system
associated with the erasure of Γ from gω.

Let r ∈ N>0 be minimal such that gr respects Γ (r exists by Lemma 16). Let D be the set of dead
letters with respect to gr and Γ. For x ∈ Σ∗ we use brackets [x] to denote a new letter. For words w ∈ Σ∗,
whenever γD(w) = w0 a1w1 a2w2 · · · ak−1wk−1 akwk with a1, . . . , ak < Γ and w0, . . . ,wk ∈ Γ∗, we define

blocks(w) = [w0a1w1] [a2w2] · · · [ak−1wk−1] [akwk]

Here it is to be understood that blocks(w) = ε if γD(w) = ε, and blocks(w) is undefined if γD(w) ∈ Γ+.
Let the alphabet∆ consist of all letters [a] and all bracketed letters [w] occurring in words blocks(gr(a))

for a ∈ Σ. We define the morphism ξ : ∆→ ∆∗ and the coding ρ : ∆→ Σ by

ξ([a1 · · · ak]) = blocks(gr(a1)) · · · blocks(gr(ak)) ρ([w a u]) = a

for [a1 · · · ak] ∈ ∆ and a < Γ, w,u ∈ Γ∗. For a ∈ Γ we can define ρ([a]) arbitrarily, for example, ρ(a) = a.

Remark 19. The requirement that gr respects Γ in Definition 18 guarantees for every a ∈ Σ that either
gr(a) consists of dead letters only or gr(a) contains at least one near dead or resilient letter. In both cases,
blocks(gr(a)) is well-defined. As a consequence ξ([w]) is well-defined for every [w] ∈ ∆.

Example 20. We let Σ = { a, b, c } and define a morphism g : Σ → Σ∗ by a 7→ ab, b 7→ ac and c 7→ a. The
word gω(a) = abacabaabacababacabaabacabacabaabacababa · · · is known as the tribonacci word.

Let Γ = { a }, that is, we delete the letter a. The morphism g does not respect Γ since g(c) = a ∈ Γ∗ but
g2(c) = ab < Γ∗. However, g2 respects Γ: g2(a) = abac, g2(b) = aba and g2(c) = ab. The letter a is resurrecting
and b, c are resilient with respect to g2 and Γ. Definition 18 yields ∆ = { [a], [b], [c], [ab], [aba] } and

ξ([a]) = [aba][c] ξ([b]) = [aba] ξ([c]) = [ab] ξ([ab]) = [aba][c][aba] ξ([aba]) = [aba][c][aba][aba][c]

and ρ([b]) = ρ([ab]) = ρ([aba]) = b and ρ([c]) = c if w contains b. We can choose ρ([a]) arbitrarily. The
starting letter for iterating ξ is [a] (since the tribonacci word starts with a). The first iterations of ξ are:

[a] 7→ [aba][c] 7→ [aba][c][aba][aba][c][ab]
7→ [aba][c][aba][aba][c][ab][aba][c][aba][aba][c][aba][c][aba][aba][c][ab][aba][c][aba] 7→ · · ·

Then an application of the coding ρ yields ρ(ξω([a])) = bcbbcbbcbbcbcbbcbb · · · = γa(gω(a)).

Example 21. We let Σ = { a, b, c, d, e } and define g : Σ→ Σ∗ by a 7→ abcde, b 7→ cc, c 7→ b, d 7→ c and e 7→ ea.
We let Γ = { b, e }. Then g2 respects Γ: a 7→ abcdeccbcea, b 7→ bb, c 7→ cc, d 7→ b and e 7→ eaabcde. Here b is
dead, d near dead, a and c are resilient and e is resurrecting. Definition 18 yields

ξ([a]) = [a][c][de][c][c][ce][a] ξ([b]) = ε ξ([c]) = [c][c] ξ([d]) = ε ξ([e]) = [ea][a][c][de]

ξ([ce]) = [c][c][ea][a][c][de] ξ([de]) = [ea][a][c][de] ξ([ea]) = [ea][a][c][de][a][c][de][c][c][ce][a]

where ∆ = { [a], [b], [c], [d], [e], [ce], [de], [ea] }. Moreover, we have ρ([a]) = ρ([ea]) = a, ρ([c]) = ρ([ce]) = c
and ρ([d]) = ρ([de]) = d. We can chose ρ([b]) and ρ([e]) arbitrarily.

Proposition 22. Let g : Σ∗ → Σ∗ be a morphism, a ∈ Σ such that gω(a) ∈ Σω, and Γ ⊆ Σ a set of letters. Let ∆,
ξ and ρ be the morphic system associated to the erasure of Γ from gω in Definition 18. Then

ρ(ξω([a])) = γΓ(gω(a))

6 David Sprunger, William Tune, Jörg Endrullis, and Lawrence S. Moss

Proof. For ` ∈N and [w1], . . . , [w`] ∈ ∆we define cat([w1] · · · [w`]) = w1 · · ·w`. We prove by induction on
n that for all words w ∈ ∆∗, and for all n ∈ N, cat(ξn(w)) = gnr(cat(w)). The base case is immediate. For
the induction step, assume that we have n ∈ N such that for all words w ∈ ∆∗, cat(ξn(w)) = gnr(cat(w)).
Let w ∈ ∆∗, w = [a1,1 · · · a1,`1] · · · [ak,1 · · · ak,`k]. Then

cat(ξ(w)) = cat(ξ([a1,1 · · · a1,`1]) · · · ξ([ak,1 · · · ak,`k]))
= cat(blocks(gr(a1,1)) · · · blocks(gr(a1,`1)) · · · blocks(gr(ak,1)) · · · blocks(gr(ak,`k)))
= gr(cat(w))

By the induction hypothesis, cat(ξn+1(w)) = gnr(cat(ξ(w))) = gnr(gr(cat(w))) = g(n+1)r(cat(w)). To complete
the proof, note that by definition ρ([w a u]) = γΓ(w a u) and thus ρ(w) = γΓ(cat(w)) for every w ∈ ∆∗.
Hence, for all n ≥ 1, ρ(ξn([a])) = γΓ(cat(ξn([a]))) = γΓ(gnr(a)). Taking limits: ρ(ξω([a])) = γΓ(gω(a)). ut

Definition 23. Let g, h : Σ∗ → Σ∗ be morphisms such that h is non-erasing. We construct an alphabet ∆,
a morphism ξ : ∆∗ → ∆∗ and a coding ρ : ∆ → Σ as follows. We refer to ∆, ξ, ρ as the morphic system
associated with the morphic image of gω under h.

Let ∆ = Σ ∪ { [a] | a ∈ Σ }. For nonempty words w = a1a2 · · · ak ∈ Σ∗ we define head(w) = a1 and
tail(w) = a2 · · · ak. We also define img(w) = [a1]u1 [a2]u2 · · · [ak−1]uk−1 [ak]uk where ui = tail(h(ai)) ∈ Σ∗. We
define the morphism ξ : ∆∗ → ∆∗ and the coding ρ : ∆→ Σ by

ξ([a]) = img(g(a))) ξ(a) = ε ρ([a]) = head(h(a)) ρ(a) = a

for a ∈ Σ.

Notice here the ρ([a]) and ui, defined using head() and tail(), are well-defined since h is non-erasing
and hence h(ai) will be nonempty.

Example 24. Here is an example illustrating Definition 23. Let g be the substitution from the Fibonacci
word, g(a) = ab and g(b) = a. Further, let h be defined so that h(a) = bb and h(b) = a. As in Definition 23,
let ξ and ρ be defined by

ξ([a]) = [a]b[b] ξ([b]) = [a]b ξ(a) = ε = ξ(b) ρ([a]) = b ρ([b]) = a

Then [a] 7→ [a]b[b] 7→ [a]b[b][a]b 7→ [a]b[b][a]b[a]b[b] 7→ [a]b[b][a]b[a]b[b][a]b[b][a]b 7→ · · · are the first
iterations of ξ on [a]. The point here is that applying ρ to the limit word ξω([a]) is the same as h(gω(a)):

h(gω(a)) = h(abaababaabaababaabab · · ·) = bbabbbbabbabbbbabbbbabb · · ·

Proposition 25. Let g, h : Σ∗ → Σ∗ be morphisms such that h is non-erasing, and a ∈ Σ such that gω(a) ∈ Σω.
Let ∆, ξ and ρ be as in Definition 18. Then

ρ(ξω([a])) = h(gω(a))

Proof. We define z : ∆→ Σ∗ by z(a) = ε and z([a]) = a for all a ∈ Σ. By induction on n > 0 we show

ρ(ξn(w)) = h(gn(z(w))) and z(ξn(w)) = gn(z(w)) for all w ∈ ∆∗ (1)

We start with the base case. Note that ρ(ξ([a])) = h(g(a)) = h(g(z([a]))) and ρ(ξ(a)) = ε = h(g(z(a))) for all
a ∈ Σ, and thus ρ(ξ(w)) = h(g(z(w))) for all w ∈ ∆∗. Moreover, we have z(ξ([a])) = g(a) = g(z([a])) and
z(ξ(a)) = ε = g(z(a)) for all a ∈ Σ, and hence z(ξ(w)) = g(z(w)) for all w ∈ ∆∗.

Let us consider the induction step. By the base case and induction hypothesis

ρ(ξn+1(w)) = ρ(ξ(ξn(w))) = h(g(z(ξn(w)))) = h(g(gn(z(w)))) = h(gn+1(z(w)))

z(ξn+1(w)) = z(ξ(ξn(w))) = g(z(ξn(w))) = g(gn(z(w))) = gn+1(z(w))

Thus ρ(ξn([a])) = h(gn(a)) for all n ∈N, and taking limits yields ρ(ξω([a])) = h(gω(a)). ut

Eigenvalues and Transduction of Morphic Sequences 7

Every morphic image of a word can be obtained by erasing letters, followed by the application of a
non-erasing morphism. As a consequence we obtain:

Corollary 26. The morphic image of a pure morphic word is morphic or finite.

Proof. Let w ∈ Σω be a word and h : Σ → Σ∗ a morphism. Let Γ = { a | h(a) = ε } be the set of letters
erased by h, and ∆ = Σ \ Γ. Then h(w) = g(γΓ(w)) where g is the non-erasing morphism obtained by
restricting h to ∆. Hence for purely morphic w, the result follows from Propositions 22 and 25. ut

Theorem 27 (Cobham [2], Pansiot [7]). The morphic image of a morphic word is morphic.

Proof. Follows from Corollary 26 since the coding can be absorbed into the morphic image. ut

Eigenvalue analysis

The following lemma states that if a square matrix N is an extension of a square matrix M, and all added
columns contain only zeros, then M and N have the same non-zero eigenvalues.

Lemma 28. Let Σ, ∆ be disjoint, finite alphabets. Let M = (mi, j)i, j∈Σ and N = (ni, j)i, j∈Σ∪∆
be matrices such that (i) ni, j = mi, j for all i, j ∈ Σ and (ii) ni, j = 0 for all i ∈ Σ ∪ ∆, j ∈ ∆.
Then M and N have the same non-zero eigenvalues.


M 0 · · · 0

0 · · · 0
0 · · · 0


Proof. N is a block lower triangular matrix with M and 0 as the matrices on the diagonal. Hence the
eigenvalues of N are the combined eigenvalues of M and 0. Therefore M and N have the same non-zero
eigenvalues. ut

We now show that morphic images with respect to non-erasing morphisms preserve α-substitutivity.
This strengthens a result obtained in [5] where it has been shown that the non-erasing morphic image
of an α-substitutive sequence is αk-substitutive for some k ∈N. We show that one can always take k = 1.
Note that every α-substitutive sequence is also αk-substitutive for all k ∈N, k > 0.

Theorem 29. Let Σ be a finite alphabet, w ∈ Σω be an α-substitutive sequence and h : Σ → Σ∗ a non-erasing
morphism. Then the morphic image of w under h, that is h(w), is α-substitutive.

Proof. Let Σ = { a1, . . . , ak } be a finite alphabet, w ∈ Σω be an α-substitutive sequence and h : Σ → Σ∗ a
non-erasing morphism. As the sequence w is α-substitutive, there exist a morphism g : Σ → Σ∗ with
dominant eigenvalue α, a coding c : Σ→ Σ and a letter a ∈ Σ such that w = c(gω(a)) and all letters from
Σ occur in gω(a). Then h(w) = h(c(gω(a))) = (h ◦ c)(gω(a))), and h ◦ c is a non-erasing morphism. Without
loss of generality, by absorbing c into h, we may assume that c is the identity.

From h and g, we obtain an alphabet ∆, a morphism ξ, and a coding ρ as in Definition 23. Then by
Proposition 25, we have ρ(ξω([a])) = h(gω(a)). As a consequence, it suffices to show that ρ(ξω([a])) is
α-substitutive. Let M = (Mi, j)i, j∈Σ and N = (Ni, j)i, j∈∆ be the incidence matrices of g and ξ, respectively.
By Definition 23 we have for all a, b ∈ Σ: |ξ([a])|[b] = |g(a)|b and |ξ(a)|b = |ξ(a)|[b] = 0. Hence we obtain
N[b],[a] = Mb,a, Nb,a = 0 and N[b],a = 0 for all a, b ∈ Σ. After changing the names (swapping a with [a]) in
N, we obtain from Lemma 28 that N and M have the same non-zero eigenvalues, and thus the same
dominant eigenvalue. ut

Example 30. Let F be the Fibonacci word (generated by the morphism a 7→ ab and b 7→ a) and let T be the
Thue–Morse sequence. We show that there exist no non-erasing morphisms g, h such that g(F) = h(T)
and this image is not ultimately periodic. Let g and h be non-erasing morphisms. The Fibonacci word is
ϕ-substitutive where ϕ = (1 +

√
5)/2 is the golden ratio, and the Thue-Morse sequence is 2-substitutive.

By Theorem 29, g(F) is ϕ-substitutive and h(T) is 2-substitutive. Note that ϕ and 2 are multiplicatively
independent: using induction on k ∈ N>0 it follows that every ϕk is of the form a + b

√
5 for rational

numbers a, b > 0. It follows by Theorem 9 that g(F) = h(T) implies that this word is ultimately periodic.

8 David Sprunger, William Tune, Jörg Endrullis, and Lawrence S. Moss

Remark 31. The restriction to non-erasing morphisms in Theorem 29 is important since every morphic
sequence can be obtained by erasure of letters from a 2-substitutive sequence.

Nevertheless, we can use the above theorem to reason about morphic images with respect to erasing
morphisms as follows. Let w ∈ Σω, and g : Σ → Σ∗ a morphism. Let Γ be the letters erased by g,
and let h be the restriction of g to Σ \ Γ. Then h is non-erasing and g(w) = h(γΓ(w)). Hence, if γΓ(w) is
α-substitutive, then so is g(w) by Theorem 29. As a consequence, it suffices to determine α-substitutivity
of all sequences γΓ(w) with Γ ⊆ Σ (using Definition 18 and Proposition 22).

4 Closure of Morphic Sequences under Transduction

In this section, we give a proof of the following theorem due to Dekking [4].

Theorem 32 (Transducts of morphic sequences are morphic). If M = (Σ,∆,Q, q0, δ, λ) is a transducer
with input alphabet Σ and x ∈ Σω is a morphic sequence, then M(x) is morphic or finite.

This proof will proceed by annotating entries in the original sequence x with
information about what state the transducer is in upon reaching that entry. This
allows us to construct a new morphism which produces the transduced sequence
M(x) as output. After proving this theorem, we will show that this process of
annotation preserves α-substitutivity.

Example 33. To illustrate several points in this section, we will consider the Fi-
bonacci morphism (h(a) = ab, h(b) = a) and the transducer which doubles every
other letter, shown in Figure 2.

s t

a | aa b | bb

a | a b | b

Fig. 2. A transducer that
doubles every other letter.

4.1 Transducts of morphic sequences are morphic

We show in Lemma 42 that transducts of morphic sequences are morphic. In order to prove this, we
also need several lemmas about transducers which are of independent interest. The approach here is
adapted from a result in Allouche and Shallit [1]; it is attributed in that book to Dekking. We repeat it
here partly for the convenience of the reader, but mostly because there are some details of the proof are
used in the analysis of the substitutivity property.

Definition 34 (τw, Ξ(w)). Given a transducer M = (Σ,∆,Q, q0, δ, λ) and a word w ∈ Σ∗, we define τw ∈

QQ to be τw(q) = δ(q,w). Note that τwv = τv ◦ τw. Further, we define Ξ : Σ∗ → (QQ)ω by Ξ(w) =
(τw, τh(w), τh2(w), . . . , τhn(w), . . .).

Example 35. Recall the transducer M from Figure 2. Let id : Q→ Q be the identity, and let ν : Q→ Q be
the transposition ν(s) = t and ν(t) = s. For this transducer, τw = id if |w| is even and τw = ν if |w| is odd.
We have Ξ(a) = (τa, τab, τaba, τabaab, τabaababa, . . .). In this notation,

Ξ(a) = (ν, id, ν, ν, id, ν, ν, id, ν, ν, . . .) Ξ(b) = (ν, ν, id, ν, ν, id, . . .) Ξ(ε) = (id, id, id, id, . . .)

Next, we show that {Ξ(w) : w ∈ Σ∗ } is finite.

Lemma 36. For any transducer M and any morphism h : Σ → Σ∗, there are natural numbers p ≥ 1 and n ≥ 0
so that for all w ∈ Σ∗, τhi(w) = τhi+p(w) for all i ≥ n.

Proof. Let Σ = {1, 2, . . . , s}. Define H : (QQ)s
→ (QQ)s by H(f1, f2, . . . , fs) = (fh(1), fh(2), . . . , fh(s)). When we

write fh(i) on the right, here is what we mean. Suppose that h(i) = v0 · · · v j. Then fh(i) is short for the
composition fv j ◦ fv j−1 ◦ · · · ◦ fv1 ◦ fv0 . Recall the notation τw from Definition 34; we thus have τi for the
individual letters i ∈ Σ. Consider T0 = (τ1, τ2, . . . , τs). We define its orbit as the infinite sequence (Ti)i∈ω
of elements of (QQ)s given by Ti = Hi(T0) = Hi(τ1, . . . τs) = (τhi(1), . . . , τhi(s)). Since each of the Ti belongs

Eigenvalues and Transduction of Morphic Sequences 9

to the finite set (QQ)s, the orbit of T0 is eventually periodic. Let n be the preperiod length and p be the
period length. The periodicity implies that (∗) τhi(j) = τhi+p(j) for each j ∈ Σ and for all i ≥ n.

Let w ∈ Σ∗ and i ≥ n. Since w ∈ Σ∗, we can write it as w = σ1σ2 · · · σm. We prove that τhi(w) = τhi+p(w).
Note that τhi(w) = τhi(σ1···σm) = τhi(σ1)hi(σ2)···hi(σm) = τhi(σn)◦· · ·◦τhi(σ1). We got this by breaking w into individual
letters, then using the fact that h is a morphism, and finally using the fact that τuv = τu ◦ τv. Finally we
know by (∗) that for individual letters, τhi(σ j) = τhi+p(σ j). So τhi(w) = τhi+p(w), as desired. ut

Definition 37 (Θ(w)). Given a transducer M and a morphism h, we find p and n as in Lemma 36 just above and
define Θ(w) = (τw, τh(w), . . . , τhn+p−1(w)).

Example 38. We continue with Example 33. As the proof in Lemma 36 demonstrates, to find the p and n
for our transducer and the Fibonacci morphism, we only need to find the common period of Ξ(a) and
Ξ(b). Using what we saw in Example 35 above, we can take n = 0 and p = 3. Therefore, Θ(a) = (ν, id, ν)
and Θ(b) = (ν, ν, id). We also note that Θ(ε) = (id, id, id) and Θ(ab) = (id, ν, ν), as we will need these later.

Lemma 39. (i) Given M and h, the set A = {Θ(w) : w ∈ Σ∗ } is finite.
(ii) If Θ(w) = Θ(y), then Θ(h(w)) = Θ(h(y)).

(iii) If Θ(w) = Θ(y), then for all u ∈ Σ∗, Θ(wu) = Θ(yu).

Proof. Part (i) comes from the fact that each of the n + p coordinates of Θ(w) comes from the finite set
QQ. For (ii), we calculate:

Θ(h(w)) = (τh(w), τh2(w), τh3(w), . . . , τhn+p(w)) = (τh(w), τh2(w), τh3(w), . . . , τhn+p−1(w), τhn(w)) by Lemma 36
= (τh(y), τh2(y), τh3(y), . . . , τhn+p−1(y), τhn(y)) = Θ(h(y)) since Θ(w) = Θ(y)

Part (iii) uses Θ(w) = Θ(y) as follows:

Θ(wu) = (τwu, τh(wu), τh2(wu), . . . , τhn+p−1(wu)) = (τu ◦ τw, τh(u) ◦ τh(w), τh2(u) ◦ τh2(w), . . . , τhn+p−1(u) ◦ τhn+p−1(w))
= (τu ◦ τy, τh(u) ◦ τh(y), τh2(u) ◦ τh2(y), . . . , τhn+p−1(u) ◦ τhn+p−1(y)) = Θ(yu) ut

Definition 40 (h). Given a transducer M and a morphism h, let A be as in Lemma 39(i). Define the morphism
h : Σ × A→ (Σ × A)∗ as follows. For for all σ ∈ Σ, whenever h(σ) = s1s2s3 · · · s`, let

h((σ,Θ(w))) = (s1, Θ(hw)) (s2, Θ((hw)s1)) (s3, Θ((hw)s1s2)) · · · (s`, Θ((hw)s1s2 · · · s`−1))

By repeated use of Lemma 39, h is well-defined. Notice that |h(σ, a)| = |h(σ)| for all σ.

Lemma 41. For all σ ∈ Σ, all w ∈ Σ∗ and all natural numbers n, if hn(σ) = s1s2 · · · s`, then

h
n
((σ,Θ(w))) = (s1, Θ(hnw)) (s2, Θ((hnw)s1)) (s3, Θ((hnw)s1s2)) · · · (s`, Θ((hnw)s1s2 · · · s`−1)).

In particular, for 1 ≤ i ≤ `, the first component of the ith term in hn(σ,Θ(w)) is si.

Proof. By induction on n. For n = 0, the claim is trivial. Assume that it holds for n. Let hn(σ) = s1s2 · · · s`,
and for 1 ≤ i ≤ `, let h(si) = ti

1ti
2 · · · t

i
ki

. Thus hn+1(σ) = h(s1s2 · · · s`) = t1
1t1

2 · · · t
1
k1

t2
1t2

2 · · · t
2
k2

t`1t`2 · · · t
`
k`

. Then:

h(h
n
(σ,Θ(w))) = h(s1, Θ((hnw))) h(s2, Θ((hnw)s1)) h(s3, Θ((hnw)s1s2)) · · · h(s`, Θ((hnw)s1s2 · · · s`−1))

For 1 ≤ i ≤ `, we have

h(si, Θ((hnw)s1 · · · si−1))
= (ti

1, Θ((hhnw)h(s1 · · · si−1))) (ti
2, Θ((hhnw)h(s1 · · · si−1)ti

1)) · · · (ti
ki
, Θ(hhnw)h(s1 · · · si−1)ti

1ti
2 · · · t

i
ki−1))

= (ti
1, Θ((hn+1w)t1

1t1
2 · · · t

1
k1
· · · ti−1

1 ti−1
2 · · · t

i−1
ki−1

)) (ti
2, Θ((hn+1w)t1

1t1
2 · · · t

1
k1
· · · ti−1

1 ti−1
2 · · · t

i−1
ki−1

ti
1))

· · · (ti
ki
, Θ((hn+1w)t1

1t1
2 · · · t

1
ki
· · · ti−1

1 ti−1
2 · · · t

i−1
ki−1

ti
1 · · · t

i
ki−1))

Concatenating the sequences h(si, Θ((hnw)s1 · · · si−1)) for i = 1, . . . , ` completes our induction step. ut

10 David Sprunger, William Tune, Jörg Endrullis, and Lawrence S. Moss

Lemma 42. Let M = (Σ,∆,Q, q0, δ, λ) be a transducer, let h be a morphism prolongable on the letter x1, and
write hω(x1) as x = x1x2x3 · · · xn · · · . Let Θ be from Definition 37. Using this, let A be from Lemma 39(i), and h
from Definition 40. Then

(i) h is prolongable on (x1, Θ(ε)).
(ii) Let c : Σ × A→ Σ ×Q be the coding c(σ,Θ(w)) = (σ, τw(q0)). Then c is well-defined.

(iii) The image under c of h
ω

((x1, Θ(ε)) is

z = (x1, δ(q0, ε)) (x2, δ(q0, x1)) (x3, δ(q0, x1x2)) · · · (xn, δ(q0, x1x2 · · · xn−1)) · · · (2)

This sequence z is morphic in the alphabet Σ ×Q.

Proof. For (i), write h(x1) as x1x2 · · · x`. Using the fact that hi(ε) = ε for all i, we see that

h((x1, Θ(ε))) = (x1, Θ(ε)) (x2, Θ(x1)) · · · (x`, Θ(x1, . . . , x`−1)).

This verifies the prolongability.
For (ii): if Θ(w) = Θ(u), then τw and τu are the first component of Θ(w) and are thus equal.
We turn to (iii). Taking w = ε in Lemma 41 shows that h

ω
((x1, Θ(ε)) is

(x1, Θ(ε)) (x2, Θ(x1)) (x3, Θ(x1x2)) · · · (xm, Θ(x1x2 · · · xm−1)) · · · .

The image of this sequence under the coding c is

(x1, τε(q0)) (x2, τx1 (q0)) (x3, τx1x2 (q0)) · · · (xm, τx1x2···xm−1 (q0)) · · · .

In view of the τ functions’ definition (Def. 34), we obtain z in (2). By definition, z is morphic. ut

This is most of the work required to prove Theorem 32, the main result of this section.

Proof (Theorem 32). Since x is morphic there is a morphism h : Σ′ → (Σ′)∗, a coding c : Σ′ → Σ, and
an initial letter x1 ∈ Σ′ so that x = c(hω(x1)). We are to show that M(c(hω(x1))) is morphic. Since c is
computable by a transducer, we have x = (M◦c)(hω(x1)), where ◦ is the composition of transducers from
Definition 13. It is thus sufficient to show that given a transducer M, the sequence M(hω(x1)) is morphic.

By Lemma 42, the sequence

z = (x1, δ(q0, ε)) (x2, δ(q0, x1)) (x3, δ(q0, x1x2)) · · · (xn, δ(q0, x1x2 · · · xn−1)) · · ·

is morphic. The output function of M is a morphism λ : Σ × Q → ∆∗. By Corollary 26, λ(z) is morphic
or finite. But λ(z) is exactly M(x); indeed, the definition of M(x) is basically the same as the definition of
λ(z). This proves the theorem. ut

4.2 Substitutivity of transducts

We are also interested in analyzing the α-substitutivity of transducts. We claim that if a sequence x is
α-substitutive, then M(x) is also α-substitutive for all M.

As a first step, we show that annotating a morphism does not change α-substitutivity.

Definition 43. Let Σ be an alphabet and A any set. Let w = (b1, a1) (b2, a2) . . . (bk, ak) ∈ (Σ×A)∗ be a word.
We call A the set of annotations. We write bwc for the word b1b2 . . . bk, that is, the word obtained by dropping
the annotations.

A morphism h : (Σ × A)→ (Σ × A)∗ is an annotation of h : Σ→ Σ∗ if h(b) = bh(b, a)c for all b ∈ Σ, a ∈ A.

Note that the morphism h from Definition 40 is an annotation of h in this sense. Then from the
following proposition it follows that if x is α-substitutive, then the sequence z in Lemma 42 is also
α-substitutive.

Eigenvalues and Transduction of Morphic Sequences 11

Proposition 44. If x = hω(σ) is an α-substitutive morphic sequence with morphism h : Σ → Σ∗ and A is any
set of annotations, then any annotated morphism h : Σ × A → (Σ × A)∗ also has an infinite fixpoint h

ω
((σ, a))

which is also α-substitutive.

The proof of this proposition is in two lemmas: first that the eigenvalues of the morphism are
preserved by the annotation process, and second that if α is the dominant eigenvalue for h, then no
greater eigenvalues are introduced for h.

Lemma 45. All eigenvalues for h are also eigenvalues for any annotated version h of h.

Proof. Let M = (mi, j)i, j∈Σ be the incidence matrix of h. Order the elements of the annotated alphabet
Σ × A lexicographically. Then the incidence matrix of h, call it N = (ni, j)i, j∈Σ×A, can be thought of as a
block matrix where the blocks have size |A| × |A| and there are |Σ| × |Σ| such blocks in N. Note that by
the definition of annotation, the row sum in each row of the (a, b) block of N is ma,b. To simplify the
notation, for the rest of this proof we write J for |Σ| and K for |A|. Suppose v = (v1, v2, . . . , vJ) is a column
eigenvector for M with eigenvalue α. Consider v = (v1, . . . , v1, v2, . . . , v2, . . . , vn, . . . vn). This is a “block
vector”: the first K entries are v1, the second K entries are v2, and so on, for a total of K · J entries. We
claim that v is a column eigenvector for N with eigenvalue α.

Consider the product of row k of N with v. This is
∑K·J

j=1 nk, jv j =
∑J

b=1 vb · (
∑K

j=1 nk,Kb+ j). Now k = Ka + r.

So
∑K

j=1 nk,Kb+ j is the row sum of the (a, b) block of N and hence is ma,b. Therefore, row k of N times v
is
∑J

b=1 vbma,b = αva, since v is an eigenvector of M. Finally we note that the kth entry of v is va by its
definition. Hence multiplying v by N multiplies the kth entry of v by α for all k.

We have shown that v is a column eigenvector of N with eigenvalue α, so the (column) eigenvalues
of M are all present in N. However, since a matrix and its transpose have the same eigenvalues, the
(column) qualification on the eigenvalues is unnecessary. ut

If h is an annotation of h, then we have

|h(b)|b′ =
∑
a′∈A

| h((b, a)) |(b′, a′) for all b, b′ ∈ Σ and a ∈ A (3)

Lemma 46. Let h, h be morphisms such that h : (Σ×A)→ (Σ×A)∗ is an annotation of h : Σ→ Σ∗. Then every
eigenvalue of h with a non-negative eigenvector is also an eigenvalue for h.

Proof. Let M = (mi, j)i, j∈Σ be the incidence matrix of h and N = (ni, j)i, j∈Σ×A be the incidence matrix of h. Let
r be an eigenvalue of N with corresponding eigenvector v = (v(b, a))(b, a)∈Σ×A, that is, Nv = rv and v , 0.
We define a vector w = (wb)b∈Σ as follows: wb =

∑
a∈A v(b, a). We show that Mw = rw. Let b′ ∈ Σ, then:

(Mw)b′ =
∑
b∈Σ

Mb′,bwb =
∑
b∈Σ

Mb′,b

∑
a∈A

v(b, a)

 =
∑
b∈Σ

∑
a∈A

Mb′,bv(b, a)
by (3)
=
∑
b∈Σ

∑
a∈A

∑
a′∈A

N(b′, a′),(b, a)

 v(b, a)

=
∑
a′∈A

∑
b∈Σ

∑
a∈A

N(b′, a′),(b, a)v(b, a)
Nv=rv

=
∑
a′∈A

rv(b′, a′) = r
∑
a′∈A

v(b′, a′) = rwb′

Hence Mw = rw. If w , 0 it follows that r is an eigenvalue of M. Note that if v is non-negative, then
w , 0. This proves the claim. ut

Corollary 47. Let h, h be morphisms such that h : (Σ×A)→ (Σ×A)∗ is an annotation of h : Σ→ Σ∗. Then the
dominant eigenvalue for h coincides with the dominant eigenvalue for h.

12 David Sprunger, William Tune, Jörg Endrullis, and Lawrence S. Moss

Proof. By Lemma 45 every eigenvalue of h is an eigenvalue of h. Thus the dominant eigenvalue of h is
greater or equal to that of h. By Theorem 7, the dominant eigenvalue of a non-negative matrix is a real
number α > 1 and its corresponding eigenvector is non-negative. By Lemma 45, every eigenvalue of h
with a non-negative eigenvector is also an eigenvalue of h. Thus the dominant eigenvalue of h is also
greater or equal to that of h. Hence the dominant eigenvalues of h and h must be equal. ut

Theorem 48. Let α and β be multiplicatively independent real numbers. If v is a α-substitutive sequence and
w is an β-substitutive sequence, then v and w have no common non-erasing transducts except for the ultimately
periodic sequences.

Proof. Let hv and hw be morphisms whose fixed points are v and w, respectively. By the proof of
Theorem 32, x is a morphic image of an annotation hv of hv, and also of an annotation hw of hw. The
morphisms must be non-erasing, by the assumption in this theorem. By Corollary 47 and Theorem 29,
x is both α- and β-substitutive. By Durand’s Theorem 9, x is eventually periodic. ut

5 Conclusion

We have re-proven some of the central results in the area of morphic sequences, the closure of the
morphic sequences under morphic images and transduction. However, the main results in this paper
come from the eigenvalue analyses which followed our proofs in Sections 3 and 4. These are the some of
the only results known to us which enable one to prove negative results on the transducibility relation
E. One such result is in Theorem 48; this is perhaps the culmination of this paper.

The next step in this line of work is to weaken the hypothesis in some of results that the transducers
be non-erasing. Although our results can be used to reason about erasing morphisms, see Remark 31,
this does not help us with erasing transducers since annotating a morphism can yield an unbounded
large alphabet. As a consequence, to reason about erasing transducers, we need to understand better
what form of annotated morphisms arise from transducers, and how these interact with the erasure of
letters (Proposition 22).

References

1. J.-P. Allouche and J. Shallit. Automatic Sequences: Theory, Applications, Generalizations. Cambridge University
Press, New York, 2003.

2. A. Cobham. On the Hartmanis-Stearns problem for a class of tag machines. In IEEE Conference Record of 1968
Ninth Annual Symposium on Switching and Automata Theory, pages 51–60, 1968.

3. A. Cobham. Uniform tag sequences. Math. Systems Theory, 6:164–192, 1972.
4. F. M. Dekking. Iteration of maps by an automaton. Discrete Math., 126:81–86, 1994.
5. F. Durand. Cobham’s theorem for substitutions. Journal of the European Mathematical Society, 13:1797–1812, 2011.
6. J. Endrullis, D. Hendriks, and J. W. Klop. Degrees of Streams. Integers, 11B(A6):1–40, 2011. Proceedings of the

Leiden Numeration Conference 2010.
7. Jean-Jacques Pansiot. Hiérarchie et fermeture de certaines classes de tag-systèmes. Acta Inform., 20(2):179–196,

1983.
8. Jacques Sakarovitch. Elements of Automata Theory. Cambridge University Press, 2009.

Eigenvalues and Transduction of Morphic Sequences 13

A Appendix

Example 49 (Extended version of Example 1). Let w ∈ { 0, 1 }ω be defined by w(n) = 1 if n is a power of 2
and w(n) = 0 otherwise. This sequence is 2-automatic. Let h be the morphism 0 7→ 0 and 1 7→ 01. Taking
the image of w under h, that is h(w), yields a sequence that is no longer automatic (but still morphic).
Here is a sketch that h(w) is not 2-automatic. Note that the ith digit in h(w) is 1 iff i = 2n + n for some
n. Suppose that M is a finite-state machine with the property that reading in each number i in binary
yields the ith digit of h(w). Let N be large enough so that the binary representation of 2N + N has a run of
zeroes longer than the number of states in N. Then by pumping, N must accept a number which is not
of the form 2n + n.

Remark 50. Let us remark on the importance of the condition (ii) in Definition 8. Without this condition
every α-substitutive sequence w ∈ Σω would also be β-substitutive for every β > α that is the dominating
eigenvalue of a non-negative integer matrix.

This can be seen as follows. Let h : Σ→ Σ∗ be a morphism with dominating eigenvalue α. Let a ∈ Σ
such that w = hω(a) exists, is infinite and contains all letters from Σ. Then w is α-substitutive. Now let
β > α be the dominating eigenvalue of a non-negative integer matrix. Then there exists an alphabet
Γ (disjoint from Σ, Γ ∪ Σ = ∅) and a morphism g : Γ → Γ∗ with dominating eigenvalue β. Define
z : (Σ ∪ Γ)→ (Σ ∪ Γ)∗ by z(b) = h(b) for all b ∈ Σ and z(c) = h(c) for all c ∈ Γ. Then zω(a) = hω(a) = w and
the dominating eigenvalue of z is β.

Example 51 (An example of Theorem 32 and the lemmas in Section 4). We saw the Fibonacci sequence in
Example 5:

x = abaababaabaababaababaabaababaabaababaaba · · ·
We conclude our series of examples pertaining to this sequence and the transducer M which doubles
every other letter (see Example 33 and Figure 2). We want to exhibit h, following the recipe of Lemma 42.
First, some examples of how h works:

(b, Θ(a)) 7→ (a, Θ(ab)) (a, Θ(ε)) 7→ (a, Θ(ε))(b, Θ(a))
(b, Θ(ab)) 7→ (a, Θ(aba)) = (a, Θ(b)) (a, Θ(a)) 7→ (a, Θ(ab))(b, Θ(aba)) = (a, Θ(ab))(b, Θ(b))

It turns out that only a few elements from this A end up appearing in the expressions for h(σ,Θ(w)):
It is convenient to abbreviate some of the elements of Σ×A: Let us use x as an element of {a, b}, and also
write (x, Θ(ε)) as x0, (x, Θ(a)) as x1, (x, Θ(b)) as x2 and (x, Θ(ab)) as x3. It turns out that we do not need to
exhibit h in full because only eight points are reachable from a0. We may take h to be

a0 7→ a0b1 a1 7→ a2b3 a2 7→ a3b2 a3 7→ a1b0
b0 7→ a0 b1 7→ a2 b2 7→ a3 b3 7→ a1

The fixpoint of this morphism starting with a0 starts as

y = h
ω

(a0) = a0 b1 a2 a3 b2 a1 b0 a3 a2 b3 a0 a1 b0 a3 b2 a1 a0 b1 a2 b3 a0 a1 b0 a3 a2 b3 a0 b1 · · ·

Turning to the coding c, recall that the set Q of states of M is {s, t}. Let us abbreviate the elements of
Σ ×Q the same way we did with Σ × A. It is not hard to check that c(σ0) = σs, c(σ1) = σt, c(σ2) = σs, and
c(σ3) = σt. Then the state-annotated sequence z from Lemma 42 is

z = c(y) = as bt as at bs at bs at as bt as at bs at bs at as bt as bt as at bs at as bt as bt · · ·

Recall that λ : Σ×Q→ ∆∗ = Σ∗ in our transducer doubles whatever letter it sees while in state s and
copies whatever letter it sees while in state t. That is, λ(xs) = xx, and λ(xt) = x. Thus when we apply the
morphism λ to the sequence z, we get

λ(z) = aa b aa a bb a bb a aa b aa a bb a bb a aa b aa b aa a bb a aa b aa b · · ·

As we saw in the proof of Theorem 32, this sequence aabaaabbabbaaabaaabbabbaaabaabaaabbaaabaab · · · is
exactly M(x).

	Eigenvalues and Transduction of Morphic Sequences

