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Where we’re heading

In February, I laid out a case for why the derivative of this function:

× 1

Is this:

× 1

×

× +
0

Today, I will give a more direct route to this causal derivative,
inspired by traditional calculus and using less categorical machinery.
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How we get there

1 Causal functions

2 Definition of causal derivatives

3 Rules of causal derivatives

4 Example application: Elman networks
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Causal functions on sequences

Aω is the set of A-valued infinite sequences. The entries of
σ ∈ Aω are σk ∈ A for k ∈ N, so σ = (σ0, σ1, . . . , σk, . . .).

Slicing extracts a finite list from an infinite sequence:

(·)j:k : σ 7→ (σj , σj+1, . . . , σk)

(We also sometimes use slicing on finite lists.)

Definition

A function on sequences f : Aω → Bω is causal if it satisfies
σ0:k = τ0:k → f(σ)0:k = f(τ)0:k for all input sequences σ, τ ∈ Aω
and k ∈ N.

Intuitively, the first k outputs of f only depend on the first k
inputs.
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Finite approximants

Lemma

The following are equivalent:

1 a causal function f : Aω → Bω,

2 a sequence of functions uk : Ak+1 → B, and

3 a sequence of functions tk : Ak+1 → Bk+1 satisfying
tk(x0:k) = [tk+1(x)]0:k for all x ∈ Ak+2.

Proof.

(1⇒ 2) The pointwise approximation of f is the sequence
Uk(f)(x) , f(x : σ)k for x ∈ Ak+1. (1⇒ 3) The stringwise
approximation of f is the sequence Tk(f)(x) , f(x : σ)0:k for
x ∈ Ak+1.

(2⇒ 1) f : σ 7→ τ iff τk = uk(σ0:k). (3⇒ 2) uk , πk+1 ◦ tk.
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Defining a causal function pointwise

Suppose (A,+A, ·A, 0A) is a vector space (over R). Then Aω is
also an R-vector space using the following:

1 Define +Aω : Aω ×Aω → Aω pointwise by
Uk(+Aω)((σ0, τ0), (σ1, τ1), . . . , (σk, τk)) = σk +A τk.

2 For each r ∈ R, define r ·Aω (−) : Aω → Aω pointwise by
Uk(r ·Aω (−))(σ0, σ1, . . . , σk) = r ·A σk.

3 The zero sequence is 0A in each position.

Note that +Aω defined above is really +Aω : (A×A)ω → Aω. We
will use the isomorphisms like the one between (A×A)ω and
Aω ×Aω without pointing it out in the future.
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Stringwise approximations are also useful

Lemma

The composition of two causal functions f : Aω → Bω and
g : Bω → Cω is another causal function g ◦ f : Aω → Cω. Their
composite is also the unique causal function satisfying
Tk(g ◦ f) = Tk(g) ◦ Tk(f).

Characterizing the composition of causal functions using only
pointwise approximants is harder—they aren’t composable on the
nose.
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Outline

1 Causal functions

2 Definition of causal derivatives

3 Rules of causal derivatives

4 Example application: Elman networks
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Our goal: derivatives of causal functions

As a reminder, f : Rn → Rm is differentiable at x ∈ Rn means
there is a linear map Jf(x) : Rn → Rm such that
f(x+ ∆x) ≈ f(x) + Jf(x)(∆x).

One way ≈ is formalized is

lim
∆x→0

‖f(x+ ∆x)− f(x)− Jf(x)(∆x)‖
‖∆x‖

= 0

Linear maps Jf(x) : R→ R are 1-1 with real numbers. Linear
maps Jf(x) : Rn → Rm are (Jacobian) matrices:

∂f1
∂x1

(x) ∂f1
∂x2

(x) . . . ∂f1
∂xn

(x)
∂f2
∂x1

(x) ∂f2
∂x2

(x) . . . ∂f2
∂xn

(x)
...

...
. . .

...
∂fm
∂x1

(x) ∂fm
∂x2

(x) . . . ∂fm
∂xn

(x)


What is J+(x, y) for + : R2 → R? What about J(·)(x, y)?
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Linear causal functions

The derivative of a causal function at a sequence will be an
appropriate linear map. We have already described a vector space
structure on (Rn)ω—this gives the appropriate notion of linear.

Definition

A function on sequences f : (Rn)ω → (Rm)ω is a linear causal map
if it is (1) causal and (2) linear with respect to the natural vector
space structure on (Rn)ω.

Examples:

1 dup(Rn)ω : (Rn)ω → (Rn)ω × (Rn)ω given by
Uk(dup(Rn)ω)(σ0:k) = 〈σk, σk〉.

2 +(Rn)ω : (Rn)ω × (Rn)ω → (Rn)ω given by
Uk(+(Rn)ω)(〈σ, τ〉0:k) = σk + τk.

3 0 : (Rn)ω → (Rn)ω given by Uk(0)(σ0:k) = 0.
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Linear causal functions, continued

Lemma

Let f : (Rn)ω → (Rm)ω be a causal function. TFAE:

1 f is linear,

2 Uk(f) : (Rn)k+1 → Rm is linear for all k ∈ N, and

3 Tk(f) : (Rn)k+1 → (Rm)k+1 is linear for all k ∈ N.

This lets us define linear causal functions by giving linear
approximants. That’s the trick we need to define derivatives.
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Derivatives of causal functions

Definition

A causal function f : (Rn)ω → (Rm)ω is differentiable at
σ ∈ (Rn)ω if and only if Uk(f) : (Rn)k+1 → Rm is differentiable at
σ0:k for all k ∈ N.

If f is differentiable at σ, the derivative of f at σ is the linear
causal function D∗f(σ) : (Rn)ω → (Rm)ω satisfying
Uk(D∗f(σ)) = J(Uk(f))(σ0:k).

You could equally well use stringwise approximants in the above
definition. In that case, Tk(D∗f(σ)) = J(Tk(f))(σ0:k).
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Example I: sequence sum

The causal function + : (R2)ω → Rω is its own derivative at every
point, meaning D∗+(σ, τ) = +. By definition,
Uk(+)(σ0, τ0, . . . , σk, τk) = σk + τk.

Then
J(Uk(+))(σ0, τ0, . . . , σk, τk) =

[
0 . . . 0 1 1

]
, so

J(Uk(+))(〈σ, τ〉0:k)(〈∆σ,∆τ〉0:k) = ∆σk + ∆τk. This means
D∗+(σ, τ)(∆σ,∆τ) = ∆σ + ∆τ .

An intuition which can also be useful is to think about
f(x+ ∆x)− f(x). In this case, f is sequence sum:

[(σ + ∆σ) + (τ + ∆τ)]− [σ + τ ] = ∆σ + ∆τ
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Example II: Cauchy product

The Cauchy product of sequences × : (R2)ω → Rω is defined by
Uk(×)(σ0:k, τ0:k) =

∑k
i=0 σi · τk−i. Writing out the first few terms,

σ × τ = (σ0τ0,

σ0τ1 + σ1τ0,

σ0τ2 + σ1τ1 + σ2τ0, . . .)

Now we find its causal derivative at (σ, τ) ∈ (R2)ω.

J(Uk(×))(σ0, τ0, . . . , σk, τk) =
[
τk σk τk−1 σk−1 . . . τ0 σ0

]

J(Uk(×))(〈σ, τ〉0:k)(〈∆σ,∆τ〉0:k) =
k∑
i=0

∆σi · τk−i +
k∑
i=0

σi ·∆τk−i

D∗×(σ, τ)(∆σ,∆τ) = ∆σ × τ + σ ×∆τ .
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Remark on definition

The uniqueness of the usual derivative is ensured by the norm
condition:

lim
∆x→0

‖f(x+ ∆x)− f(x)− Jf(x)(∆x)‖
‖∆x‖

= 0

But our causal derivative doesn’t use a norm on sequence spaces.
It does still have a canonical property though: it gives the unique
linear causal function whose approximants are the derivatives of
the approximants of the original function.

It’s also worth noting that our derivative probably cannot be
realized by a Fréchet derivative (the above definition, possibly in
infinite dimensions), since it does not need a norm.
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infinite dimensions), since it does not need a norm.
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Overview of rules

There are three core rules to our differential calculus:

the causal chain rule,

the causal parallel rule, and

the causal linear rule.

With these three rules, we can derive many other standard-looking
rules as consequences, including:

the causal sum rule,

the causal product rule, and

the causal reciprocal rule.

Later, we will cover a special rule with no analogue in ordinary
calculus: the recurrence rule.
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Causal chain rule

Theorem (causal chain rule)

Suppose f : (Rn)ω → (Rm)ω and g : (Rm)ω → (R`)ω are causal
differentiable at σ ∈ (Rn)ω and f(σ), respectively. Then h = g ◦ f
is causal differentiable at σ and D∗g(f(σ)) ◦ D∗f(σ).

Proof.

Let fk = Tk(f), gk = Tk(g), and hk = Tk(h).

Tk(D∗(g ◦ f)(σ)) = Jhk(σ0:k) = J(gk ◦ fk)(σ0:k)

= Jgk(fk(σ0:k)) ◦ Jfk(σ0:k) (∗)
= Jgk(f(σ)0:k) ◦ Jfk(σ0:k)

= Tk(D∗g(f(σ))) ◦ Tk(D∗f(σ))

= Tk(D∗g(f(σ)) ◦ D∗f(σ))
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Causal parallel rule

Theorem (causal parallel rule)

Suppose f : (Rn)ω → (Rm)ω and h : (Rp)ω → (Rq)ω are causal
differentiable at σ ∈ (Rn)ω and τ ∈ (Rp)ω, respectively. Then
f‖h : (Rn+p)ω → (Rm+q)ω is differentiable at (σ, τ) ∈ (Rn+p)ω

and its derivative is D∗f(σ)‖D∗h(τ).

Proof.

Tk(D∗(f‖h)(σ, τ)) = J(Tk(f‖h))(σ0:k, τ0:k)

= J(Tk(f)‖Tk(h))(σ0:k, τ0:k)

= J(Tk(f))(σ0:k)‖J(Tk(h))(τ0:k) (∗)
= Tk(D∗f(σ))‖Tk(D∗h(τ))

= Tk(D∗f(σ)‖D∗h(τ))
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Causal linear rule

Theorem (causal linear rule)

If f : (Rn)ω → (Rm)ω is a linear causal function, it is differentiable
at every σ ∈ (Rn)ω and its derivative is D∗f(σ) = f .

Proof.

f is linear causal if and only if Tk(f) is linear for all k ∈ N. Linear
functions between finite vector spaces are always their own
derivatives, so f is its own derivative.

We can now derive many other standard rules using these three
rules.
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Causal sum rule

Definition (sum of causal maps)

The sum of f, g : (Rn)ω → (Rm)ω is f + g , + ◦ (f‖g) ◦ dup.

Theorem (causal sum rule)

If f and g as above are both differentiable at σ, so is f + g and its
derivative is D∗f(σ) +D∗g(σ).

Proof.

D∗(f + g)(σ) = D∗(+ ◦ (f‖g) ◦ dup)(σ)

= D∗(+)((f‖g ◦ dup)(σ)) ◦ D∗(f‖g ◦ dup)(σ)

= + ◦ D∗(f‖g ◦ dup)(σ)

= + ◦ D∗(f‖g)(dup(σ)) ◦ D∗(dup)(σ)

= + ◦ D∗(f‖g)(σ, σ) ◦ dup
= + ◦ (D∗f(σ)‖D∗g(σ)) ◦ dup = D∗f(σ) +D∗g(σ)



21/33

Causal sum rule

Definition (sum of causal maps)

The sum of f, g : (Rn)ω → (Rm)ω is f + g , + ◦ (f‖g) ◦ dup.

Theorem (causal sum rule)

If f and g as above are both differentiable at σ, so is f + g and its
derivative is D∗f(σ) +D∗g(σ).

Proof.

D∗(f + g)(σ) = D∗(+ ◦ (f‖g) ◦ dup)(σ)

= D∗(+)((f‖g ◦ dup)(σ)) ◦ D∗(f‖g ◦ dup)(σ)

= + ◦ D∗(f‖g ◦ dup)(σ)

= + ◦ D∗(f‖g)(dup(σ)) ◦ D∗(dup)(σ)

= + ◦ D∗(f‖g)(σ, σ) ◦ dup
= + ◦ (D∗f(σ)‖D∗g(σ)) ◦ dup = D∗f(σ) +D∗g(σ)



22/33

Causal product rule

Definition (product of causal maps)

The product of f, g : Rω → Rω is f × g ,× ◦ (f‖g) ◦ dup.

Theorem (causal product rule)

If f and g as above are both differentiable at σ, so is f × g and its
derivative is D∗f(σ)(∆σ)× g(σ) + f(σ)×D∗g(σ)(∆σ).

Proof.

Similar to the sum rule, using the derivative of Cauchy product we
found in the first section.
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Stream inverse function

The stream inverse is the first partial causal function we will
consider. This operation is defined on σ ∈ Rω such that σ0 6= 0
with the unbounded-order recurrence relation

[σ−1]k =


1
σ0

if k = 0

− 1
σ0
·
k−1∑
i=0

(
σn−i · [σ−1]i

)
if k > 0

Jan Rutten showed that σ × σ−1 = [1] , (1, 0, 0, 0, . . .) for all σ
satisfying σ0 6= 0 (2005). We can use this fact and the product
rule to find the derivative of stream inverse using implicit
differentiation.
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Causal reciprocal rule

Theorem (causal reciprocal rule)

Stream inverse is differentiable everywhere it is defined, and its
derivative is D∗(·)−1(σ)(∆σ) = [−1]× σ−1 × σ−1 ×∆σ.

Proof.

Since σ × σ−1 = [1], their derivatives must also be equal.

[0] = D∗[1] = D∗(σ × σ−1)(∆σ)

= σ × (D∗(·)−1)(σ)(∆σ) + ∆σ × (σ−1)

using the causal product rule.

Similarly, there is a causal quotient rule much like the ordinary
quotient rule.
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Causal functions defined by recurrence

Knowing a fact about σ−1 helped us find its derivative. But what
if we don’t have a nice algebraic property for a causal function,
only a defining recurrence?

If g : Rn × Rm → Rm and i ∈ Rm, then the causal function
reci(g) : (Rn)ω → (Rm)ω is defined by the recurrence relation

[reci(g)(σ)]k =

{
g(σk, i) if k = 0

g(σk, reci(g)(σ)k−1) if k > 0

Example: The unary running product function
∏

: Rω → Rω can
be defined by a recurrence relation:

∏
(σ) = τ ⇔

{
τ0 = σ0 · 1
τk+1 = σk+1 · τk

Here g is multiplication of reals and i = 1.
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The recurrence rule

Theorem (causal recurrence rule)

Let g : Rn × Rm → Rm be differentiable and i ∈ Rm. Then
reci(g) : (Rn)ω → (Rm)ω is causal differentiable and its derivative
satisfies the following recurrence:

D∗reci(g)(σ)(∆σ) = ∆τ ⇔


τ0 = g(σ0, i)

τk+1 = g(σk+1, τk)

∆τ0 = Jg(σ0, i)(∆σ0, 0Rm)

∆τk+1 = Jg(σk+1, τk)(∆σk+1,∆τk)
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Recurrence rule example

Let’s find the derivative of the running product function:

∏
(σ) = τ ⇔

{
τ0 = σ0 · 1
τk+1 = σk+1 · τk

Since J(·)(x, y)(∆x,∆y) = ∆x · y + x ·∆y, the recurrence rule
tells us D∗

∏
(σ)(∆σ) = ∆τ if and only if ∆τ satisfies

τ0 = g(σ0, 1)

τk+1 = g(σk+1, τk)

∆τ0 = Jg(σ0, 1)(∆σ0, 0)

∆τk+1 =

Jg(σk+1, τk)(∆σk+1,∆τk)

=


τ0 = σ0

τk+1 = σk+1 · τk
∆τ0 = ∆σ0

∆τk+1 = ∆σk+1 · τk + σk+1 ·∆τk
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Outline

1 Causal functions

2 Definition of causal derivatives

3 Rules of causal derivatives

4 Example application: Elman networks
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Elman networks

An Elman network is a simple kind of recurrent neural network,
introduced by Elman in 1990. It looks like:

Figure: from Wikipedia


~y0 = φ1(W~x0 +~b1)

~yk+1 = φ1(W~xk+1 + U~yk +~b1)

~z0 = φ2(V ~y0 +~b2)

~zk+1 = φ2(V ~yk+1 +~b2)

We choose the weight matrices
W,U, V and bias vectors b1, b2 to
drive the network to some desired
behavior. Usually the “activation
functions” φ1, φ2 are fixed.
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Training an Elman network, I

Take all vectors to be length 1, and fix activation functions to be
sigmoids: φi(x) = φ(x) := 1

1+e−x . Then the Elman network
structure becomes

E(x) = z ⇔


y0 = φ(wx0 + b1)

yk+1 = φ(wxk+1 + uyk + b1)

z0 = φ(vy0 + b2)

zk+1 = φ(vyk+1 + b2)

Let’s imagine we are training our network, and currently
w = u = v = 1, b1 = 0.1 and b2 = −0.1. Let’s also imagine our
trained network should satisfy
Ê(1, 1, 1, 1 . . .) = (0.60, 0.63, 0.64, 0.64, . . .). Currently,
E(1, 1, 1, 1 . . .) ≈ (0.65707, 0.68226, 0.68503, 0.68533, . . .). How
should we adjust w?



30/33

Training an Elman network, I

Take all vectors to be length 1, and fix activation functions to be
sigmoids: φi(x) = φ(x) := 1

1+e−x . Then the Elman network
structure becomes

E(x) = z ⇔


y0 = φ(wx0 + b1)

yk+1 = φ(wxk+1 + uyk + b1)

z0 = φ(vy0 + b2)

zk+1 = φ(vyk+1 + b2)

Let’s imagine we are training our network, and currently
w = u = v = 1, b1 = 0.1 and b2 = −0.1. Let’s also imagine our
trained network should satisfy
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Training an Elman network, II

With the current parameters and using the fact that x̂k ∼= 1,
y0 = φ(wx̂0 + b1)

yk+1 = φ(wx̂k+1 + uyk + b1)

z0 = φ(vy0 + b2)

zk+1 = φ(vyk+1 + b2)

=


y0 = φ(1 + 0.1)

yk+1 = φ(1 + yk + 0.1)

z0 = φ(y0 − 0.1)

zk+1 = φ(yk+1 − 0.1)

Using causal derivatives, we get a recurrence:
yk+1 = φ(yk + 1.1) sf y0 = φ(1.1)

zk+1 = φ(yk+1 − 0.1) sf z0 = φ(y0 − 0.1)

∆yk+1 = φ′(yk + 1.1) · (∆wk+1 + ∆yk) sf ∆y0 = φ′(1.1) ·∆w0

∆zk+1 = φ′(yk+1 − 0.1) ·∆yk+1 sf ∆z0 = φ′(y0 − 0.1) ·∆y0

(Check out the demo.)



31/33

Training an Elman network, II

With the current parameters and using the fact that x̂k ∼= 1,
y0 = φ(wx̂0 + b1)

yk+1 = φ(wx̂k+1 + uyk + b1)

z0 = φ(vy0 + b2)

zk+1 = φ(vyk+1 + b2)

=


y0 = φ(1 + 0.1)

yk+1 = φ(1 + yk + 0.1)

z0 = φ(y0 − 0.1)

zk+1 = φ(yk+1 − 0.1)

Using causal derivatives, we get a recurrence:
yk+1 = φ(yk + 1.1) sf y0 = φ(1.1)

zk+1 = φ(yk+1 − 0.1) sf z0 = φ(y0 − 0.1)

∆yk+1 = φ′(yk + 1.1) · (∆wk+1 + ∆yk) sf ∆y0 = φ′(1.1) ·∆w0

∆zk+1 = φ′(yk+1 − 0.1) ·∆yk+1 sf ∆z0 = φ′(y0 − 0.1) ·∆y0

(Check out the demo.)



31/33

Training an Elman network, II

With the current parameters and using the fact that x̂k ∼= 1,
y0 = φ(wx̂0 + b1)

yk+1 = φ(wx̂k+1 + uyk + b1)

z0 = φ(vy0 + b2)

zk+1 = φ(vyk+1 + b2)

=


y0 = φ(1 + 0.1)

yk+1 = φ(1 + yk + 0.1)

z0 = φ(y0 − 0.1)

zk+1 = φ(yk+1 − 0.1)

Using causal derivatives, we get a recurrence:
yk+1 = φ(yk + 1.1) sf y0 = φ(1.1)

zk+1 = φ(yk+1 − 0.1) sf z0 = φ(y0 − 0.1)

∆yk+1 = φ′(yk + 1.1) · (∆wk+1 + ∆yk) sf ∆y0 = φ′(1.1) ·∆w0

∆zk+1 = φ′(yk+1 − 0.1) ·∆yk+1 sf ∆z0 = φ′(y0 − 0.1) ·∆y0

(Check out the demo.)
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Recap & future work

Today we talked about:

a definition for the derivative of a causal function

rules for the causal differential calculus

a unique rule for causal calculus—the recurrence rule

training Elman networks with causal derivatives

Future work might include:

formalizing this as a Cartesian differential restriction category

causal automatic differentiation

causal integral calculus

generalizing from sequences to other infinite data shapes
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Thanks!
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