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Where we're heading

In February, | laid out a case for why the derivative of this function:

Is this:

Today, | will give a more direct route to this causal derivative,
inspired by traditional calculus and using less categorical machinery.



How we get there

@ Causal functions

@ Definition of causal derivatives

© Rules of causal derivatives

e Example application: Elman networks
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Causal functions on sequences

A¥ is the set of A-valued infinite sequences. The entries of
o€ A¥ are o, € Afor k €N, so 0 = (00,01,...,0k...).

Slicing extracts a finite list from an infinite sequence:

()jk 0= (04,0541,--.,0%)
(We also sometimes use slicing on finite lists.)

Definition

A function on sequences f : AY — B“ is causal if it satisfies

o0k = To:k — f(0)ok = f(7)ox for all input sequences o, 7 € A¥
and k € N.

Intuitively, the first k& outputs of f only depend on the first &
inputs.



Finite approximants

Lemma

The following are equivalent:
@ a causal function f : AY — BY,
@ a sequence of functions uy, : A¥*1 — B, and

© a sequence of functions ty, : A¥*1 — B¥t1 satisfying
tk($0:k) = [tk—&—l(x)]O:k for all x € AF+2,

Proof.

(1 = 2) The pointwise approximation of f is the sequence
Up(f)(z) = f(z: o) for z € A¥FL. (1 = 3) The stringwise
approximation of f is the sequence Tj(f)(z) £ f(x : 0)o. for
z € AFHL,

(2=1) f:ow 7iff 7, = up(oox). (3=2) Ukéﬂk-i-lotk- []
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Defining a causal function pointwise

Suppose (A,4+4,-4,04) is a vector space (over R). Then A% is
also an R-vector space using the following:

© Define + 4w : AY x AY — A¥ pointwise by

Uk(+a«)((00,70), (01, 71), - - . (Ok; T)) = Ok +4 Tk
@ For each r € R, define r - go (—) : AY — A“ pointwise by
Uk(?" T AW (—))(00,01, .o .,Uk) =T"-A0k.

© The zero sequence is 04 in each position.



Defining a causal function pointwise

Suppose (A,4+4,-4,04) is a vector space (over R). Then A% is
also an R-vector space using the following:

© Define + 4w : AY x AY — A¥ pointwise by

Uk(+a«)((00,70), (01,71); -, (Ok, Tk)) = Ok +4 i
@ For each r € R, define r - go (—) : AY — A“ pointwise by
Uk(’l" T AW (—))(00,01, .o .,Uk) =T"-A0k.

© The zero sequence is 04 in each position.

Note that + 4« defined above is really 4 40 : (A x A)¥ — A“. We
will use the isomorphisms like the one between (A x A)“ and
A¥ x A“ without pointing it out in the future.



Stringwise approximations are also useful

Lemma

The composition of two causal functions f : AY — B“ and

g : B¥ — C% is another causal function go f : AY — C%. Their
composite is also the unique causal function satisfying

Ti(go f) = Ti(g) o Ti(f).




Stringwise approximations are also useful

Lemma

The composition of two causal functions f : AY — B“ and

g : BY — CY is another causal function go f : AY — C%“. Their
composite is also the unique causal function satisfying

Ti(go f) = Ti(g) o Ti(f).

Characterizing the composition of causal functions using only
pointwise approximants is harder—they aren’'t composable on the
nose.



Outline

@ Definition of causal derivatives



Our goal: derivatives of causal functions

As a reminder, f : R™ — R is differentiable at € R™ means
there is a linear map J f(z) : R™ — R™ such that
flz+Az) = f(z) + Jf(z)(Az).
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Our goal: derivatives of causal functions

As a reminder, f : R" — R™ is differentiable at z € R™ means
there is a linear map J f(z) : R™ — R™ such that
flz+ Ax) =~ f(x) + Jf(x)(Ax). One way = is formalized is

i W@+ A2) = fl@) = Jf@)(Az)| _
Az—0 Az

Linear maps J f(x) : R — R are 1-1 with real numbers. Linear
maps J f(z) : R™ — R™ are (Jacobian) matrices:

15) 0 15)
g%(a:) g—g(x) %%L(az)
Tg(x) a—g(z) Wfi(x)
Ofm Ofm T
aim(x) aLm(x) 8J;n(a;)

What is J+(z,y) for + : R? — R? What about J(-)(z,y)?



Linear causal functions

The derivative of a causal function at a sequence will be an
appropriate linear map. We have already described a vector space
structure on (R™)“—this gives the appropriate notion of linear.

Definition
A function on sequences f : (R™)¥ — (R")% is a linear causal map

if it is (1) causal and (2) linear with respect to the natural vector
space structure on (R™)%.




Linear causal functions

The derivative of a causal function at a sequence will be an
appropriate linear map. We have already described a vector space
structure on (R™)“—this gives the appropriate notion of linear.

Definition
A function on sequences f : (R™)¥ — (R")% is a linear causal map

if it is (1) causal and (2) linear with respect to the natural vector
space structure on (R™)%.

Examples:
Q duppny : (R™)¥ — (R™)“ x (R")“ given by
Uk(dup(Rn)w)(Jg;k) = <(Tka0k>-
Q +rnyw : (R")Y x (R")¥ — (R")“ given by
Uk(+@ny« ) ({0, T)ok) = 0k + T
@ 0: (R")¥ — (R™)“ given by Ug(0)(c0.x) = 0.



Linear causal functions, continued

Lemma

Let f: (R")¥ — (R™)“ be a causal function. TFAE:
Q f is linear,
Q@ Ui(f): (R™M**L — R™ s linear for all k € N, and
Q Ti(f) : (RMFFL — (R™)*+1 s Jinear for all k € N.




Linear causal functions, continued

Lemma

Let f: (R")¥ — (R™)“ be a causal function. TFAE:
©Q f is linear,
Q@ Ui(f): (R™M**L — R™ s linear for all k € N, and
Q Ti(f) : (RMFFL — (R™)*+1 s Jinear for all k € N.

This lets us define linear causal functions by giving linear
approximants. That's the trick we need to define derivatives.



Derivatives of causal functions

Definition

A causal function f : (R™)¥ — (R™)% is differentiable at

o € (R")¥ if and only if Uy (f) : (R®)*+1 — R™ is differentiable at
og., for all k € N.

If f is differentiable at o, the derivative of f at o is the linear
causal function D*f(o) : (R™)* — (R™)“ satisfying
Ur(D* f(0)) = J(Uk(f))(o0:1)-




Derivatives of causal functions

Definition

A causal function f : (R™)¥ — (R™)% is differentiable at

o € (R")¥ if and only if Uy (f) : (R®)*+1 — R™ is differentiable at
og., for all k € N.

If f is differentiable at o, the derivative of f at o is the linear
causal function D* f(o) : (R™)¥ — (R™)“ satisfying
Ur(D* f(0)) = J(Uk(f))(o0:1)-

You could equally well use stringwise approximants in the above
definition. In that case, T, (D*f(0)) = J(Tk(f))(o0:k)-
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The causal function 4 : (R?)* — R¥ is its own derivative at every
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Example I: sequence sum

The causal function 4 : (R?)* — R¥ is its own derivative at every
point, meaning D*+(o,7) = +. By definition,

Ui(+)(00, 705 -+, Ok, Tk) = Ok + T. Then

J(Uk(+))(00,T0,. . .,Uk,Tk) = [0 ... 01 1], SO
J(Uk(+)) ({0, T)o:k) (Ao, AT)o.k) = Aoy + A1, This means
D*+(o,7)(Ac, AT) = Ao + AT.

An intuition which can also be useful is to think about
f(x+ Azx) — f(z). In this case, f is sequence sum:

(0 4+ Ac)+ (T+AT)] — [0+ 7] = Ao + AT



Example Il: Cauchy product

The Cauchy product of sequences x : (R?)* — RY is defined by
Uk (x)(00:k5 To:k) = Zf:(] 0 - T—;. Writing out the first few terms,

o x 1 = (o910,
o071 + 0170,

00Ty + 0171 + 0270, - . )



Example Il: Cauchy product

The Cauchy product of sequences x : (R?)* — RY is defined by
Uk (x)(00:k5 To:k) = Zf:(] 0 - T—;. Writing out the first few terms,

o x 1 = (o910,
o071 + 0170,

00Ty + 0171 + 0270, - . )

Now we find its causal derivative at (o, 7) € (R?)¥.

J(Ur(x))(00,70,--- 0k, Th) = [Tk Ok The1 Ok—1 ... To 00



Example Il: Cauchy product

The Cauchy product of sequences x : (R?)* — RY is defined by
Uk (x)(00:k5 To:k) = Zf:(] 0 - T—;. Writing out the first few terms,

o x 1 = (o910,
o071 + 0170,

00Ty + 0171 + 0270, - . )

Now we find its causal derivative at (o, 7) € (R?)¥.

J(Ur(x))(00,70,--- 0k, Th) = [Tk Ok The1 Ok—1 ... To 00

J(Ur () ({o, Tox) ((Ac, AT)o.1) ZAUZ The Z—I—Zm ATy



Example Il: Cauchy product

The Cauchy product of sequences x : (R?)* — RY is defined by
Uk (x)(00:k5 To:k) = Zf:(] 0 - T—;. Writing out the first few terms,

o x 1 = (o910,
o071 + 0170,

00Ty + 0171 + 0270, - . )

Now we find its causal derivative at (o, 7) € (R?)¥.

J(Ur(x))(00,70,--- 0k, Th) = [Tk Ok The1 Ok—1 ... To 00

J(Ur () ({o, Tox) ((Ac, AT)o.1) ZAUZ The Z—I—Zm ATy

D*x(o,7)(Ac,AT) = Ao X T+ 0 X AT.



Remark on definition

The uniqueness of the usual derivative is ensured by the norm
condition:

L A) — f(@) — Jf@)(Aa)|

=0
Az—0 HA.’B”

But our causal derivative doesn’'t use a norm on sequence spaces.
It does still have a canonical property though: it gives the unique
linear causal function whose approximants are the derivatives of
the approximants of the original function.



Remark on definition

The uniqueness of the usual derivative is ensured by the norm
condition:

L A) — f(@) — Jf@)(Aa)|

=0
Az—0 HA.’B”

But our causal derivative doesn’'t use a norm on sequence spaces.
It does still have a canonical property though: it gives the unique
linear causal function whose approximants are the derivatives of
the approximants of the original function.

It's also worth noting that our derivative probably cannot be
realized by a Fréchet derivative (the above definition, possibly in
infinite dimensions), since it does not need a norm.
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Overview of rules

There are three core rules to our differential calculus:
@ the causal chain rule,
@ the causal parallel rule, and

@ the causal linear rule.

With these three rules, we can derive many other standard-looking
rules as consequences, including:

@ the causal sum rule,
@ the causal product rule, and

@ the causal reciprocal rule.

Later, we will cover a special rule with no analogue in ordinary
calculus: the recurrence rule.



Causal chain rule

Theorem (causal chain rule)

Suppose f : (R™")¥ — (R™)“ and g : (R™)* — (RY)* are causal
differentiable at o € (R™)“ and f(o), respectively. Then h =go f
is causal differentiable at o and D*g(f(c)) o D* f(0).

v

Proof.
Let fk = Tk(f), g = Tk(g), and hk = Tk(h)

Tx(D*(g o f)(0)) = Jhi(o0k) = J(gk © fr)(o0:k)




Causal chain rule

Theorem (causal chain rule)

Suppose f : (R™")¥ — (R™)“ and g : (R™)* — (RY)* are causal
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Causal chain rule

Theorem (causal chain rule)

Suppose f : (R™")¥ — (R™)“ and g : (R™)* — (RY)* are causal

differentiable at o € (R™)“ and f(o), respectively. Then h =go f
is causal differentiable at o and D*g(f(c)) o D* f(0).

Proof.
Let fk = Tk(f), g = Tk(g), and hk = Tk(h)
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Causal chain rule

Theorem (causal chain rule)

Suppose f : (R™")¥ — (R™)“ and g : (R™)* — (RY)* are causal

differentiable at o € (R™)“ and f(o), respectively. Then h =go f

is causal differentiable at o and D*g(f(c)) o D* f(0).

v

Proof.
Let fk = Tk(f), g = Tk(g), and hk = Tk(h)

T (D*(g o f)(0)) = Jhi(ook) = J (g © fr)(00:)
= Jgr(fr(oox)) © J fr(oo:x)
= Jor(f(o)ox) o J fr(ook)
= T(D*g(f(0))) o Ti(D* f (o))

(%)




Causal chain rule

Theorem (causal chain rule)

Suppose f : (R™")¥ — (R™)“ and g : (R™)* — (RY)* are causal
differentiable at o € (R™)“ and f(o), respectively. Then h =go f
is causal differentiable at o and D*g(f(c)) o D* f(0).

v

Proof.
Let fk = Tk(f), g = Tk(g), and hk = Tk(h)

T (D*(g o f)(0)) = Jhi(ook) = J (g © fr)(00:)
= Jgr(fr(oox)) © J fr(oo:x) (*)
= Jgi(f(o)ok) © J fr(oo:k)
=T(D*g(f(o
=T(D*g(f(o

)) o Te(D* f(0))

)
) o D*f(0))




Causal parallel rule

Theorem (causal parallel rule)

Suppose f: (R")* — (R™)“ and h : (RP)¥ — (R%)“ are causal
differentiable at o € (R™)* and T € (RP)“, respectively. Then
fllh: (R™P) — (R™T9) s differentiable at (o, 7) € (R"TP)«
and its derivative is D* f (o)||D*h(T).

Proof.

Ti(D*(flIh) (o, 7)) = J(Tk(fl1P))(00:k; To:k)




Causal parallel rule

Theorem (causal parallel rule)

Suppose f: (R")* — (R™)“ and h : (RP)¥ — (R%)“ are causal
differentiable at o € (R™)* and T € (RP)“, respectively. Then
fllh: (R™P) — (R™T9) s differentiable at (o, 7) € (R"TP)«
and its derivative is D* f (o)||D*h(T).

Proof.

Te(D*(flh) (o, 7)) = J(Ti(flIR))(c0:k, To:k)
= J(Tk(HTk(h))(o0:k, To:k)




Causal parallel rule

Theorem (causal parallel rule)

Suppose f: (R")* — (R™)“ and h : (RP)¥ — (R%)“ are causal
differentiable at o € (R™)* and T € (RP)“, respectively. Then
fllh: (R™P) — (R™T9) s differentiable at (o, 7) € (R"TP)«
and its derivative is D* f (o)||D*h(T).

Proof.

T (D*(flIh)(o; 7))

J(T(fIR)) (00K, To:k)
(Tk (NI Tk (h))(00:k, To:x)
(Ti () (eo:R) I (T () (T0) ()
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Causal parallel rule

Theorem (causal parallel rule)

Suppose f: (R")* — (R™)“ and h : (RP)¥ — (R%)“ are causal
differentiable at o € (R™)* and T € (RP)“, respectively. Then
fllh: (R™P) — (R™T9) s differentiable at (o, 7) € (R"TP)«
and its derivative is D* f (o)||D*h(T).

Proof.

T (D*(flIh)(o; 7))

J (T (fII7))(o0:k5 To:)

(T () Tk (R))(00:, To:K)
(Tk(f)) (o) | T (Th(R)) (To:6) ()
Ty (D* f (o)) | Tk (D h(T))

J
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Causal parallel rule

Theorem (causal parallel rule)

Suppose f: (R")* — (R™)“ and h : (RP)¥ — (R%)“ are causal
differentiable at o € (R™)* and T € (RP)“, respectively. Then
fllh: (R™P) — (R™T9) s differentiable at (o, 7) € (R"TP)«
and its derivative is D* f (o)||D*h(T).

Proof.
T (D (fl|h)(o, 7)) = J(Ti(fl|R))(00:k, To:)
= J(Tr (/)| Tk(h))(o0:k, To:k)
= J(Ti(f))(0os) | I (Th(R)) (To:6) ()
= T3(D* f (o)) T(D*h (7))

D*f (o) D"h(7))




Causal linear rule

Theorem (causal linear rule)

If f: (R")¥ — (R™)% is a linear causal function, it is differentiable
at every o € (R™)¥ and its derivative is D* f(o) = f.

<

Proof.

f is linear causal if and only if Tj(f) is linear for all k£ € N. Linear
functions between finite vector spaces are always their own
derivatives, so f is its own derivative. O

4




Causal linear rule

Theorem (causal linear rule)

If f: (R")¥ — (R™)% is a linear causal function, it is differentiable
at every o € (R™)¥ and its derivative is D* f(o) = f.

Proof.

f is linear causal if and only if Tj(f) is linear for all k£ € N. Linear
functions between finite vector spaces are always their own
derivatives, so f is its own derivative. O

4

We can now derive many other standard rules using these three
rules.



Causal sum rule

Definition (sum of causal maps)
The sum of f,g: (R")* — (R™)¥ is f + g =+ o (f|g) o dup.




Causal sum rule

Definition (sum of causal maps)
The sum of f,g: (R")* — (R™)¥ is f + g2 + o (f||g) o dup.

Theorem (causal sum rule)

If f and g as above are both differentiable at o, so is f + g and its
derivative is D* f(o) + D*g(0).

4

Proof.
D*(f 4+ g)(0) = D*(+ o (fllg) o dup)(o)
=D*(+)((fllg o dup)(c)) o D*(f||g o dup)(o)
=+ o D*(fllg o dup)(0)
=+ o D*(fllg)(dup(c)) o D*(dup)(c)
=+0D*(fllg)(o,0) o dup
=+ 0 (D*f(0)|P*g(0)) o dup = D* f(0) + D*g(0)

_

il



Causal product rule

Definition (product of causal maps)

The product of f,g: R¥ = R¥ is f x g = x o (f]|g) o dup.




Causal product rule

Definition (product of causal maps)

The product of f,g: R¥ = R¥ is f x g = x o (f]|g) o dup.

Theorem (causal product rule)

If f and g as above are both differentiable at o, so is f x g and its
derivative is D* f(0)(Ac) x g(o) + f(o) x D*g(0)(Ao).

v

Proof.
Similar to the sum rule, using the derivative of Cauchy product we
found in the first section. 0




Stream inverse function

The stream inverse is the first partial causal function we will
consider. This operation is defined on ¢ € R“ such that g # 0
with the unbounded-order recurrence relation

L ifk=0

—_ A (O’n,i . [0'_1]1‘) ifk>0

Jan Rutten showed that o x o1 = [1] £ (1,0,0,0,...) for all &
satisfying op # 0 (2005). We can use this fact and the product
rule to find the derivative of stream inverse using implicit
differentiation.



Causal reciprocal rule

Theorem (causal reciprocal rule)

Stream inverse is differentiable everywhere it is defined, and its
derivative is D*(-) "1 (0)(Ac) = [-1] x 07! x 07! x Ao.

Proof.

Since o x o~ = [1], their derivatives must also be equal.

[0] = D*[1] = D*(0 x o 1)(Ao)
= o x (D*(-)")(0)(A0) + Ao x (o71)

using the causal product rule.




Causal reciprocal rule

Theorem (causal reciprocal rule)

Stream inverse is differentiable everywhere it is defined, and its
derivative is D*(-)71(0)(Ac) = [-1] x 07! x 07! x Ao.

Proof.

Since o x o~ = [1], their derivatives must also be equal.

[0] = D*[1] = D*(6 x 0 1)(A0)
=0 x (D*() Y (0)(Ac) + Ao x (67 1)

using the causal product rule.

Similarly, there is a causal quotient rule much like the ordinary
quotient rule.



Causal functions defined by recurrence

Knowing a fact about o' helped us find its derivative. But what
if we don't have a nice algebraic property for a causal function,
only a defining recurrence?



Causal functions defined by recurrence

Knowing a fact about o' helped us find its derivative. But what
if we don't have a nice algebraic property for a causal function,
only a defining recurrence?

If g : R®" x R™ — R™ and ¢ € R™, then the causal function
rec;(g) : (R™)* — (R™)“ is defined by the recurrence relation

g(ok, 1) ifk=0

[reci(g)(o)]kx = {g(ak,reci(g)(g)kl) if k>0



Causal functions defined by recurrence

Knowing a fact about o' helped us find its derivative. But what
if we don't have a nice algebraic property for a causal function,
only a defining recurrence?

If g : R®" x R™ — R™ and ¢ € R™, then the causal function
rec;(g) : (R™)* — (R™)“ is defined by the recurrence relation

o falond if k=0
[reci(g)(o)]k {g(ak,reci(g)(g)kl) if k>0

Example: The unary running product function [] : RY — R¥ can
be defined by a recurrence relation:

H<G)=T@{TO_UO'1

Tk+1 = Ok+1 " Tk

Here g is multiplication of reals and i = 1.



The recurrence rule

Theorem (causal recurrence rule)

Let g : R™ x R™ — R™ be differentiable and i € R™. Then
rec;(g) : (R™)¥ — (R™)“ is causal differentiable and its derivative
satisfies the following recurrence:

70 = g(00, 1)

Tht1 = 9(Ok+1, Tk)

Aty = Jg(00,7)(Aco, Orm)

Atpr1 = Jg(0k41, k) (Aoks1, ATg)

<

Drreci(g)(0)(Ao) = AT &




Recurrence rule example
Let’s find the derivative of the running product function:
To =001
H(O’) =ral® 0
Th+1 = Ok+1 " Tk

Since J(-)(z,y)(Az, Ay) = Az -y + x - Ay, the recurrence rule
tells us D* [[(0)(Ac) = AT if and only if A7 satisfies

T0 = 9(007 1)
To = 00
Tht1 = 9(Oh+1, Th) I
Aty = Jg(o0,1)(Acg,0) = FH T IR
AT() = AO’O
ATit1 = AT Ao T+ 0o AT
k+1 = A0ky1 - Tk k41 AT
J9(Okt1, k) (AOk11, ATy)



Outline

e Example application: Elman networks



Elman networks

An Elman network is a simple kind of recurrent neural network,
introduced by Elman in 1990. It looks like:

Jo = ¢1(Wio + by)

Tir1 = o1(W k1 + Ugi + b1)
Zo = ¢2(Vijo + bo)

o1 = $2(Vieg1 + b2)

We choose the weight matrices

W, U,V and bias vectors by, by to
drive the network to some desired
behavior. Usually the “activation

\ 5 / functions” ¢1, @2 are fixed.
N % |

Figure: from Wikipedia



Training an Elman network, |

Take all vectors to be length 1, and fix activation functions to be
sigmoids: ¢;(z) = ¢(z) := H% Then the ElIman network
structure becomes

Yo = ¢(wxo + b1)

Yk+1 = (w1 + uyy + b1)
20 = ¢(vyo + b2)

Zk+1 = P(VYk+1 + b2)

E(z)=z%



Training an Elman network, |

Take all vectors to be length 1, and fix activation functions to be
sigmoids: ¢;(z) = ¢(z) := H% Then the ElIman network
structure becomes

Yo = ¢(wxo + b1)

Yk+1 = (w1 + uyy + b1)
20 = ¢(vyo + b2)

Zk+1 = P(VYk+1 + b2)

E(z)=z%

Let's imagine we are training our network, and currently
w=u=v=1,b =0.1and by = —0.1. Let's also imagine our
trained network should satisfy

E‘(l, 1,1,1...) = (0.60,0.63,0.64,0.64, ...). Currently,
E(1,1,1,1...) = (0.65707,0.68226, 0.68503, 0.68533, . ..). How

should we adjust w?



Training an Elman network, Il

With the current parameters and using the fact that 2, = 1,

Yo = ¢(wg + by) Yo = ¢(1+0.1)
Yrr1 = QW Huyr +01) ) yrrr = ¢(1+yr +0.1)
20 = <z$(vy0 + bg) 20 = ¢(y0 — 0.1)

Zer1 = A(VYry1 + b2) Zer1 = ¢(Yry1 — 0.1)



Training an Elman network, Il

With the current parameters and using the fact that 2, = 1,

Yo = ¢(wEo + b1) Yo = (1 +0.1)

Yrr1 = QW Huyr +01) ) yrrr = ¢(1+yr +0.1)
20 = ¢(vyo + be) 20 = ¢(yo — 0.1)

zZk+1 = P(VYt1 + b2) Zk+1 = ¢(Yk+1 — 0.1)

Using causal derivatives, we get a recurrence:

Yer1 = ¢(yr + 1.1) sf yo = ¢(1.1)

Zk+1 = QS(ka — 0.1) sf zZ0 — ¢(y0 — 0.1)

Ayrr1 = ¢ (yp + 1.1) - (Awpgr + Ay) st Ayo = ¢'(1.1) - Awg
Azpy1 = ¢ (Yk41 — 0.1) - Ayt sf Azg = ¢'(yo — 0.1) - Ayo



Training an Elman network, Il

With the current parameters and using the fact that 2, = 1,

Yo = ¢(wEo + b1) Yo = (1 +0.1)

Yrr1 = QW Huyr +01) ) yrrr = ¢(1+yr +0.1)
20 = ¢(vyo + be) 20 = ¢(yo — 0.1)

zZk+1 = P(VYt1 + b2) Zk+1 = ¢(Yk+1 — 0.1)

Using causal derivatives, we get a recurrence:

Yer1 = ¢(yr + 1.1) sf yo = ¢(1.1)

Zk+1 = ¢(yk+1 — 0.1) sf zZ0 — ¢(y0 — 0.1)

Ayrr1 = ¢ (yp + 1.1) - (Awpgr + Ay) st Ayo = ¢'(1.1) - Awg
Azgi1 = ¢ (Yr+1 — 0.1) - Aygya sf Azg = ¢'(yo — 0.1) - Ayo

(Check out the demo.)



Recap & future work

Today we talked about:
@ a definition for the derivative of a causal function
@ rules for the causal differential calculus
@ a unique rule for causal calculus—the recurrence rule

@ training Elman networks with causal derivatives



Recap & future work

Today we talked about:
@ a definition for the derivative of a causal function
@ rules for the causal differential calculus
@ a unique rule for causal calculus—the recurrence rule

@ training Elman networks with causal derivatives

Future work might include:
o formalizing this as a Cartesian differential restriction category
@ causal automatic differentiation
@ causal integral calculus

@ generalizing from sequences to other infinite data shapes



Thanks!
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