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Abstract—In the field of quality assurance of hybrid systems
(that combine continuous physical dynamics and discrete digital
control), Platzer’s differential dynamic logic (dL) is widely recog-
nized as a deductive verification method with solid mathematical
foundations and sophisticated tool support. Motivated by bench-
marks provided by our industry partner, we study relational
extension of dL, aiming to formally prove statements such
as “earlier deployment of emergency brake decreases collision
speed.” A main technical challenge here is to relate two states
of two dynamics at different time points. Our main contribution
is a theory of a suitable simulation notion (a relational extension
of differential invariant that is a central proof method in dL),
and a derived technique of time stretching. The latter features
particularly high applicability, since the user does not have to
synthesize a simulation out of the air. We derive new inference
rules for dL from these notions, and demonstrate their use using
a couple of automotive case studies.

Index Terms—hybrid system, cyber-physical system, formal
verification, theorem proving, dynamic logic, differential equa-
tion, relational reasoning

I. INTRODUCTION

A. Hybrid Systems

It has been more than a decade since the term cyber-physical
system (CPS) was coined and became a target of ever-growing
research efforts. In particular, quality assurance of CPS is
attracting renewed attention in the last few years, with the
rise of automated driving. In the foreseeable future, millions
of cars will be driving on streets with the degree of automation
that is greater than ever by magnitudes. Ensuring safety and
reliability of those automated driving systems is therefore a
pressing social and economic challenge.

Quality assurance of CPS poses a unique academic chal-
lenge, too, namely the combination of continuous physical
dynamics and discrete digital control. This important aspect
of CPS has been referred to as hybrid system. In the research
efforts on hybrid systems, two communities have naturally
joined forces: control theory whose traditional application
domain is continuous dynamics, and formal methods that
have mainly focused on the analysis of software systems.
The collaboration has produced a number of novel scientific
observations and practical techniques. They include the use
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of formal methods techniques in control (bisimilarity [7],
temporal logic specification [6], and so on), and conversely,
transfer of control theory notions (such as Lyapunov functions)
to formal methods. See e.g. [20].

B. Deductive Verification of Hybrid Systems

In the formal methods community, a traditional classifica-
tion of techniques consists of model checking (that is usually
automata-based and automatic), and deductive verification
(that is based on logic and can be automated or interactive).1

The applicability of automated model checking techniques
is naturally limited for hybrid systems, since the latter has
continuous state spaces and thus the search spaces become
uncountable. This has led to the active study of discrete
abstraction of hybrid dynamics, where a principal method is
the use of approximate bisimulations derived from suitable
Lyapunov functions. See e.g. [7].

The deductive approach, in contrast, is not necessarily
prohibited for hybrid systems. Logical formulas can stand
for infinitely many states thanks to their free variables; and
formal deduction of those formulas is no less valid even if the
semantic domain is the set of reals, for example.

That said, it is still a hard task to design a deductive system
that is actually useful in hybrid system verification. Such a
system should come with concise and intuitive syntax for
expressing continuous-time dynamics (i.e. differential equa-
tions), as well as powerful and versatile reasoning principles
for such dynamics.

Platzer’s differential dynamic logic dL [15] adequately
meets these criteria. Its syntax is systematic and intuitive,
extending the classic formalism of dynamic logic [8] with
differential equations as programs. Its proof rules encapsulates
several essential proof principles about differential equations,
notable among which are differential invariant (DI) for univer-
sal properties and side deduction for existential properties. The
logic dL has served as a general platform that accommodates
a variety of techniques, including those which come from real
algebraic geometry. See e.g. [16], where Grönwall’s inequality
is used to derive the so-called Darboux inequality rule. Fur-
thermore, dL comes with sophisticated tool support: the latest
tool KEYMAERA X [12] comes with graphical interface for
interactive proving and a number of automation heuristics.

1The classification is not definite: there are some works that eagerly aim
at integration of (logic- or type system-based) theorem proving and model
checking, including [10].
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Fig. 1. An ad-hoc proof for Example I.1

C. Relational Reasoning on Hybrid Systems

In this work, we aim at a new direction in the field of
deductive verification for hybrid systems. We are motivated
by the following example; it came up in our collaboration
with automotive industry.

Example I.1 (leading example: collision speed). Consider two
cars C and C♯, whose positions and velocities are denoted by
x,x♯ and v, v♯, respectively. Their dynamics are governed by
the following differential equations.

ẋ = v, v̇ = 1; ẋ♯ = v♯, v̇♯ = 2. (1)

We assume that they both start at the same position (x = x♯ =
0), with the initial velocity v = v♯ = 0, and they both drive
towards a wall at the position x = x♯ = 1. Our question is:
which car has a greater collision speed?

A natural answer is the second car C♯ that accelerates harder
(see (1)). Therefore we aim to prove the following claim.

The two dynamics in (1), with the initial states x =
x♯ = v = v♯ = 0, exhibit v ≤ v♯ when x = x♯ = 1.

(2)

We further aim to prove the claim in a formal and modular
manner, so that the proof methods we use apply to other
examples of the same nature. Therefore, differential dynamic
logic dL is naturally a platform of our choice.

It turns out that this relational reasoning that compares two
different dynamics is not easy in dL. Giving an ad-hoc proof
is not hard: see Figure 1, where the proof relies on the closed-
form solutions of the dynamics. However, we prefer not to use
closed-form solutions (that are not always available).

Moreover, it is desirable that our proof is solely by local
reasoning, without inspecting the global properties of the
dynamics. The logic dL offers a powerful rule for that purpose,
namely the differential invariant (DI) rule. The rule roughly
says: if g(x) is initially nonnegative, and the time derivative
of g (along the dynamics—it is given by the Lie derivative)
is nonnegative, then g(x) stays nonnegative no matter how
long the dynamics runs. Note that a global safety property is
reduced to a local property about a Lie derivative; the DI rule

is a continuous-time analogue of the celebrated proof method
by loop invariants.

The discussion so far already suggests a viable strategy:
instead of (differential) invariants for unary safety proofs,
in relational reasoning we can use “binary invariants,” that
is, (bi)simulations. Our main contribution of this paper is
to develop a theory about simulations and related notions
between continuous-time dynamics, and to embody the theory
in the form of concise and useful proof rules in dL.

Note that such simulations necessarily relate different time
points of the two dynamics. For example, in Figure 1, com-
paring v and v♯ at the same time point does not suffice: at
t = t♯ = 1, the car C♯ hits the wall but C does not yet. Although
it is easy to see that v < v♯ at time 1, C continues driving, in
the course of which C’s velocity v keeps growing.

D. Technical Contributions

In this paper we make the following technical contributions.

1) (Formulation of relational reasoning in dL) We for-
mulate the problem of relational reasoning in differential
dynamic logic dL. We focus on comparing different
continuous-time dynamics (therefore comparing different
discrete-time controls is currently out of our scope). We
observe that this problem is expressible in the syntax
of dL (e.g. in [14], [16]); nevertheless we introduce a
syntactic shorthand for readability (§III-A).

2) (Simulation and the (SIM) rule) We define simulation
between two dynamics, and formulate its soundness result
for relational reasoning (§III-B). The latter result gives
rise to a syntactic proof rule (SIM), in §III-C.

3) (Time stretching and the (TS) rule) While foundational,
our theory up to this point does not answer the question
of how to find a simulation. Restricting to so-called
equational exit conditions, we devise a syntactic method
for synthesizing a simulation-like notion, called time
stretch function. In §IV we develop the theory, eventually
leading to a succinct proof rule (TS).
We find the (TS) rule powerful: it synchronizes two
dynamics and reduces relational reasoning to common
proof obligations dL. For the latter, we can fully exploit
the advanced proof rules already developed in dL.

4) (Additional rules including the (DII) rule) Besides the
two principal new rules (SIM) and (TS), we introduce
some dL rules that we needed for our case studies (§V).
Notable is what we call the different inductive invariant
(DII) rule; it is much like the differential invariant (DI)
rule in dL (see e.g. [16]) but it allows to additionally
assume the target inequality itself in an evolution domain
constraint.
These rule seem to be new, although they might be
derivable from the comprehensive calculus in [14].

5) (Case studies) In addition to Example I.1, we conduct
three case studies that are more complex (§VI). They are
inspired by our industry collaboration.
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E. Relational Reasoning in Industry Practice

The current work stemmed out of our collaboration with an
industry partner. From this experience, we argue that relational
reasoning on hybrid systems has ample practical significance.

Firstly, monotonicity properties as exemplified in Exam-
ple I.1 abound even in real-world examples. Monotonic-
ity properties take the following form: we are given a
parametrized model M(p); and we aim to show that

p1 < p2 implies M(p2) is less safe than M(p1). (3)

These properties occur often especially in the context of
product lines, such as Euro car segments A–F.

Secondly, proof goals in relational reasoning (such as mono-
tonicity) tend to be easier to establish, compared to (unary,
non-relational) safety specifications. The proof of the latter is
generally hard, requiring inspection of every small detail of the
system. Therefore we expect that, in relational reasoning, the
general difficulty of scaling deductive methods to real-world
examples is less of a problem.

Thirdly, relational reasoning (especially on monotonicity)
can serve as a powerful technique in test-case reduction. As we
discussed previously, it can happen that a real-world example
is too complex for its safety property to be deductively verified.
In this situation, one would turn to empirical quality assurance
methods (i.e. testing). If a monotonicity property (such as (3))
can be deductively established (it is often easier than safety),
the monotonicity property allows us to focus our testing efforts
to the extreme case M(pmax). This spares all the test cases
that we would have spent for M(p) with smaller p’s.

F. Related Work

We already mentioned some related works, including those
on dL. Some other related works are discussed here.

Simulink (from the Mathworks, Inc.) is the industry stan-
dard in modeling hybrid systems; therefore, any quality assur-
ance method is desired to be able to take Simulink models
as its input. This is not easy for formal verification methods,
notably because Simulink models do not have rigorous seman-
tics. The recent work [11] tackles this problem, identifying a
fragment of Simulink, and devising a translator from Simulink
models to dL programs. Their translation is ingenious, and
their tool is capable of proving rather complicated properties
when used in combination with KEYMAERA X [12].

This work is about relational extension of dL. Relational
extension of the Floyd–Hoare logic—as the discrete-time pro-
totype of dL—has been energetically pursued, too, especially
in the context of differential privacy. See e.g. [1], [3], [4].

In deductive verification of hybrid systems, an approach
alternative to Platzer’s dL uses nonstandard analysis [17] and
regards continuous dynamics as if it is discrete [18], [19]. The
logic built on top is literally the same as the classic Floyd–
Hoare logic, whose soundness in the extended hybrid setting is
shown by a model-theoretic result called the transfer principle.
Its tool support has been pursued, too [9].

G. Organization and Notations

In §II we recall the differential dynamic logic dL: its
syntax, semantics and some proof rules. Our target problem of
relational reasoning is formulated in §III, where we introduce
a syntactic shorthand [⟪δ ∣ δ♯⟫E]B. The theory of simulation
and the (SIM) proof rule are introduced there, too. The theory
(and its limitation in applicability) motivates our theory of
time stretching in §IV, where we restrict to equational exit
conditions. The resulting (TS) rule, combined with some
additional rules that we introduce in §V, are exploited in the
three case studies in §VI. We conclude in §VII.

II. PRELIMINARIES: THE LOGIC dL

We base ourselves on differential dynamic logic (dL) [13],
[14]. While some key concepts and proof rules are recalled
here, the reader is referred to [13], [14] for full details.

A. Syntax

We assume a set of variables that are denoted by x, y, . . . ,
and a set of function symbols f, g, . . . that come with the
arity information. We write x for a vector of variables
x1, . . . , xn (following [16]), and write f(x) for the appli-
cation of an n-ary function symbol f to these variables.
Finally, we write boldface f(x) to designate a vector f(x) =
( f1(x), . . . , fm(x) ) of function applications.

We first introduce hybrid programs.

Definition II.1 (hybrid programs, differential dynamics). Hy-
brid programs are defined by the following BNF expression.
Here x is a vector of variables, f(x) is a vector of function
applications where all the function symbols in f has the arity
∣x∣, and P,Q are formulas of real arithmetic.

α1, α2 ∶∶= ?P ∣ ẋ = f(x) &Q ∣ α1;α2 ∣ α1 ∪ α2

Hybrid programs in the form ẋ = f(x) & Q are called
differential dynamics, where ẋ = f(x) is called its differential
equation system and the formula Q is called its evolution
domain constraint. We write simply ẋ = f(x) instead of
ẋ = f(x) & TRUE.

The hybrid programs here include standard constructs such
as tests (?P ), sequential compositions and non-deterministic
branchings. The assignment and iteration constructs (i.e. x ∶=
f(x) and α∗) in dL are dropped for simplicity, since we do
not use them in this paper. Such constructs can, however, be
included if necessary.

In this paper, we are especially interested in analyzing
differential dynamics ẋ = f(x) & Q. The intention is that
the dynamics develops according to the differential equation
ẋ = f(x), as long as the evolution domain constraint Q is
satisfied.

Definition II.2 (dL formulas). Formulas are defined by the
following grammar, where f1 (resp. f2) is a function symbol
with arity ∣x1∣ (resp. ∣x2∣), x is a variable, α is a hybrid
program and ∼ ∈ {<,≤,>,≥,=} is a comparison operator.

ϕ,ϕ1, ϕ2 ∶∶= f1(x1) ∼ f2(x2) ∣ ¬ϕ ∣ ϕ1 ∧ ϕ2 ∣ ∀x.ϕ ∣ [α]ϕ ∣ ⟨α⟩ϕ
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Although dL could allow arbitrary formulas in tests ?P and
as evolution domain constraints Q, we limit ourselves to first-
order formulas in those constructs. This is also done in [16].

B. Semantics

In this section we briefly recall the interpretation of a dL
formula ϕ from Definition II.2, following [14], [16].

Let V = {x1, . . . , xn} be the set of variables that occur in
the given formula. A state ω ∈ RV is then an assignment of a
real value to each variable in V . An interpretation I assigns,
to each function symbol f of arity m, a continuous function
I(f) ∶ Ω→ R, where the domain Ω ⊆ Rm is an open subset.

Remark II.3. For the semantics of dL, not much is required
about the interpretation I(f). It is however common to require
that the differential equation ẋ = f(x) has a unique maximal
solution. While the local Lipschitz property is enough (Picard–
Lindelöf’s theorem), we can also impose a stronger property,
such as C1, rationals, polynomials, etc. For the purpose of this
paper, any of these suffices, although in the polynomial case
we will need some trick to accommodate the canonical time
stretch function (that is rational per se, see §IV).

From now on, for simplicity, we assume that I(f) is C1.

Given a formula ϕ, we write I JϕK for the set of all
states in which ϕ holds in the interpretation I . The semantics
of comparison operations and first order formulas are then
defined as usual, e.g. ω ∈ I Jf1(y1, . . . , yk)) ≤ f2(z1, . . . , zl)K
if I(f1)(ω(y1), . . . , ω(yk)) ≤ I(f2)(ω(z1), . . . , ω(zl)), and
ω ∈ I J¬ϕK if ω ∉ I JϕK.

The semantics of hybrid programs are given as transition
relations on states, i.e. I JαK ⊆ Rn ×Rn.

Definition II.4 (hybrid program semantics). The semantics of
hybrid programs are given inductively as follows.

(1) I J?P K = {(ω,ω) ∣ ω ∈ I JP K}.
(2) I Jẋ = f(x) &QK = {(ω1, ω2) ∣ ∃t ∈ R≥0. ω1 = ψ(0) ∧

ω2 = ψ(t) ∧ ∀t′ ∈ [0, t]. ψ(t′) ∈ I JQK} where ψ is a
solution of the dynamics ẋ = I(f)(x) on [0, t].

(3) I Jα1 ∪ α2K = I Jα1K ∪ I Jα2K,
(4) I Jα1;α2K = I Jα1K ○ I Jα2K.

The semantics of the modal formula I J[α]ϕK are then given
as {ω ∣ (ω,ω′) ∈ I JαK implies ω′ ∈ I JϕK}. For the dual
operator: I J⟨α⟩ϕK = I J¬[α]¬ϕK. These are all as in [16].

To ease notation, we write simply JϕK or JαK instead of
I JϕK or I JαK respectively, the interpretation I being implicit.

C. Proof Rules

In this paper we use several dL proof rules taken from the
literature; see e.g. [14], [16]. In particular, we heavily use
those rules which deal with differential dynamics, such as the
differential invariant (DI) and the differential cut (DC) rules.

Definition II.5 (some dL proof rules). One can use the
following proof rules in dL, where (∼,≃) ∈ { (=,=), (>,≥), (≥
,≥)} and Lfg(x) denotes the Lie derivative of the function

symbol g with arity x with respect to the dynamics given by
ẋ = f(x) [16].

Γ,Q ⊢ g(x) ∼ 0 Γ ⊢ [ẋ = f(x) &Q]Lfg(x) ≃ 0

Γ ⊢ [ẋ = f(x) &Q] g(x) ∼ 0
DI

Γ ⊢ [ẋ = f(x) &Q]C Γ ⊢ [ẋ = f(x) & (Q ∧C)]ϕ
Γ ⊢ [ẋ = f(x) &Q]ϕ DC

Q ⊢ ϕ
Γ ⊢ [ẋ = f(x) &Q]ϕ DW

The differential invariant rule (DI) is the central rule for
proving safety properties [14], [16]: it reduces a global prop-
erty of the dynamics to local reasoning by the means of Lie
derivatives. The differential cut rule (DC) on the other hand
allows the evolution domain constraint Q to be strengthened
by a proposition C that is proven to be invariant throughout
the dynamics. The differential weakening rule (DW) allows
to prove the postcondition directly from the evolution domain
constraint, disregarding the differential dynamics.

III. RELATIONAL REASONING IN DIFFERENTIAL DYNAMIC
LOGIC, AND SIMULATIONS

We formulate the kind of relational reasoning in dL that we
are interested in. It turns out that no extension of the syntax
is needed, although we introduce a syntactic shorthand for
readability. After doing so in §III-A, we present our theory of
simulation in §III-B, eventually leading to a syntactic proof
rule (SIM) in §III-C.

A. Relational Differential Dynamics (RDD) Formulas

Definition III.1 (relational differential dynamics (RDD) for-
mula). A dL formula A is called a relational differential
dynamics formula (RDD formula) if it is of the following form:

A ≡ ( [ẋ = f(x) &Q(x); ẋ♯ = f ♯(x♯) &Q♯(x♯); ?E]B ),

where we require that the variables in x and those in x♯ are
disjoint. The expressions E and B are dL formulas containing
variables from both x and x♯.

To improve readability we introduce the following syntax
denoting the above dL formula:

A ≡ [⟪ ẋ = f(x) &Q(x)
ẋ♯ = f ♯(x♯) &Q♯(x♯) ⟫E]B. (4)

It is also written horizontally as:

A ≡ [⟪δ ∣ δ♯⟫E]B,
where δ ≡ (ẋ = f(x) &Q(x)) and

δ♯ ≡ (ẋ♯ = f ♯(x♯) &Q♯(x♯)) .
(5)

The formula E is called the exit condition; the formula B is
called the postcondition.

Our interpretation of the RDD formula A in Definition III.1
is that δ and δ♯ run in parallel and get synchronized at the end
by means of the exit condition E. It is important that the two
dynamics can take different amounts of time; see §I-C.
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Notation III.2 (solutions ψ,ψ♯). In the setting of Defini-
tion III.1, by Picard-Lindelöf’s theorem, the differential equa-
tion ẋ = f(x) in δ has a unique maximal solution, for the
initial state x0, and its interval of definition is of the form
[0, Tx0), with Tx0 ∈ R≥0 ∪ {∞}. This unique solution of
ẋ = f(x) from x0 is denoted by

ψ(x0,−) ∶ [0, Tx0) Ð→ R∣x∣.

Similarly, the unique solution of ẋ♯ = f ♯(x♯) in δ♯ from x♯0
is denoted by ψ♯(x♯0,−)∶ [0, T ♯x♯0) → R∣x♯∣. In case the initial
state is obvious, we write simply ψ(t) and ψ♯(t).

Example III.3 (collision speed). The problem in Exam-
ple I.1 is expressed as the following RDD formula: A ≡
[⟪δ ∣ δ♯⟫E]B, where

δ ≡ (ẋ = v, v̇ = 1), δ♯ ≡ (ẋ♯ = v♯, v̇♯ = 2),
E ≡ (x = x♯ = 1), and B ≡ (v ≤ v♯).

B. Simulations for RDD Formulas

Our simulation notion for RDD formulas is based on the
following transition system Tδ induced by δ.

Definition III.4 (transition system Tδ). Let
δ ≡ (ẋ = f(x) &Q(x)) be a differential dynamics. It
gives rise to a transition system Tδ = (R∣x∣,

TδÐ→), where the
state space is the set R∣x∣ of vectors, and the transition relation
TδÐ→ ⊆ R∣x∣ ×R∣x∣ is defined as follows:

x1
TδÐ→ x2

def.⇐⇒ (x1,x2) ∈ JδK .

The definition can be described using the solution ψ of δ ≡
(ẋ = f(x) &Q(x)) as follows (cf. Notation III.2): x1

TδÐ→
x2 if and only if there exists t ∈ [0, Tx1) such that 1) x2 =
ψ(x1, t), and 2) ψ(x1, t

′) ∈ JQ(x)K for each t′ ∈ [0, t].

Definition III.5 (simulation). Let A ≡ [⟪δ ∣ δ♯⟫E]B be the
RDD formula in Definition III.1. A relation R ⊆ R∣x∣ ×R∣x♯∣ is
a simulation between δ and δ♯ if, for any pair (x0,x♯0) ∈ R
and for any x1 such that x0

TδÐ→ x1, there exists x♯1 such that

x♯0
Tδ♯ÐÐ→ x♯1 and (x1,x♯1) ∈ R.

The following properties will be needed in our use of
simulations. See Proposition III.7 later.

Definition III.6. We say a simulation R supports B under E
if we have R ∩ JEK ⊆ JBK.

We say an exit condition E is essentially included in a
simulation R if we have

JEK ∩ {(x1,x
♯

1) ∣ ∃(x0,x
♯

0) ∈ R.x0
Tδ
Ð→ x1,x

♯

0

Tδ♯
ÐÐ→ x♯1} ⊆ R.

Here are some intuitions. The support condition guarantees
that, as long as we stay in the simulation R, the postcondition
B holds when we exit. The intention behind the essential
inclusion condition is that JEK should be included in R, so
that R speaks about every possible exit situation. However, the
proper inclusion JEK ⊆ R is too much to ask, especially when

we happen to choose a lax E. Therefore essential inclusion
restricts the inclusion requirement to the reachable part.

Proposition III.7 (relational reasoning by simulations). Let
A ≡ [⟪δ ∣ δ♯⟫E]B be the RDD formula in Definition III.1,
and let R be a simulation relation between δ and δ♯.

Assume that R supports the postcondition B under the
exit condition E, and that E is essentially included in R
(Definition III.6). Then we have

R ⊆ JAK .

Proof. Let (x0,x♯0) ∈ R be arbitrary and let x1 be such that
x0

TδÐ→ x1. Let us now consider an arbitrary x♯1 such that

x♯0
Tδ♯ÐÐ→ x♯1 and (x1,x♯1) ∈ JEK. We can assume such x♯1

to exist as otherwise, (x0,x♯0) Jδ; δ♯; ?EK = ∅. Since E is
essentially included in R, we have also (x1,x♯1) ∈ R. Finally,
since R supports B under E, (x1,x♯1) ∈ R ∩ JEK ⊆ JBK.

Example III.8 (collision speed). Let us illustrate how we
can prove RDD formulas using simulations by solving our
leading example on collision speed (Example I.1). Recall the
formal representation A ≡ [⟪δ ∣ δ♯⟫E]B of the problem from
Example III.3; our goal is to prove that the RDD formula A
is true under the initial condition Γ ≡ (x = x♯ = 0∧v = v♯ = 0).

By Proposition III.7, it is enough to construct a simulation
R ⊆ R2 × R2 that supports the postcondition B ≡ (v ≤ v♯),
such that the exit condition E ≡ (x = x♯ = 1) is essentially
included in R. We moreover need that R contains the initial
condition Γ, i.e., ( (0,0), (0,0) ) ∈ R.

We use the closed-form solutions of the dynamics at hand
to construct R, namely

ψ ∶ R≥0 → R2, ψ(t) = ( t2/2, t ); and

ψ♯ ∶ R≥0 → R2, ψ♯(t♯) = ( (t♯)2, 2t♯ ).

As explained earlier, we want to compare the speeds of
those two dynamics at the same position, not at the same time.
Thus we want to define R by

R = {(ψ(t), ψ♯(t♯)) ∣ π1(ψ(t)) = π1(ψ♯(t♯))},

where π1 is the first projection (extracting positions). Solving
t2

2
= π1(ψ(t)) = π1(ψ♯(t♯)) = (t♯)2, we obtain

R = {( (t2/2, t), (t2/2,
√

2t) ) ∣ t ∈ R≥0 }

It is then easy to check that R is indeed a simulation that
satisfies the assumptions of Proposition III.7.

C. Simulation Based Proof Rule

Using Proposition III.7, we formulate a syntactic dL proof
rule which allows proving an RDD formula using a simulation.

Definition III.9 (simulation proof rule (SIM)). The simulation
rule is given as follows, using four premises.

R ⊢ [δ] ⟨δ♯⟩R R,E ⊢ B R ⊢ [⟪δ ∣ δ♯⟫E]R
Γ ⊢ [?Q(x) ∧Q♯(x♯)]R

Γ ⊢ [⟪δ ∣ δ♯⟫E]B SIM
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Note that, to be precise, R here is a dL formula whose
interpretation is indented to be a simulation.

The first premise expresses the simulation condition on R;
the second is for the support of B under E; the third is the
essential inclusion of E in R; and the last demands that R
holds in the initial states.

We observe that, in the (SIM) rule, the conditions required
of R in Proposition III.7 are succinctly expressed in the dL
syntax. In particular, the deft expression R ⊢ [δ] ⟨δ♯⟩R of the
simulation condition by the combination of two modalities
demonstrates the versatility of dL.

Theorem III.10. The simulation proof rule (SIM) in Defini-
tion III.9 is sound.

Remark III.11. How useful the rule (SIM) is depends on the
expressivity of the logic dL, that is, how many simulations
R we can express in the logic. Given the close tie between
the theory of (bi)simulations and that of fixed points (such
as the Knaster–Tarski theorem), we expect it be useful to
be able to express fixed points in dL. A possible example
is an extension of the dL syntax that has the least and greatest
fixed operators: a user writes a function Φ and the expression
µx.Φ(x) designates its fixed point. Such extension of dL is
future work.

IV. TIME STRETCH FUNCTIONS AND REASONING
THEREBY

Although theoretically simple and foundational, the simula-
tion rule (SIM) introduced in Definition III.9 is largely generic
making it impractical for many properties. In particular, the
proof of the first premise, showing that R is in fact a
simulation, is likely to require explicit solution of (some) of
the differential equations.

To avoid the need for explicit solutions, and following the
intuitions that we developed in §III, we introduce another
construction which, although only usable under constrained
circumstances, provides a nice way to compare two different
dynamics. If simulations compare states, this new construction
features a function that relates the elapsed times of the two
dynamics. It is called a time stretch function. The main goal
of this section is to describe this semantical tool in order to
design a proof rule in dL allowing us to prove relational differ-
ential dynamics formulas. After some semantical preparations,
describing some fundamental properties of time stretching –
much as synchronizing two dynamics according some exit
conditions – we prove the soundness of our rule.

We will illustrate the usefulness of this rule in §VI, by solv-
ing examples inspired by our collaboration with the industry.

A. Time Stretch Functions

A time stretch function is just a monotonic rescaling of time:

Definition IV.1 (time stretch function). Let T ∈ R≥0. A
function k∶ [0, T ] → R≥0 is called a time stretch function if
k is C1, k(0) = 0 and k̇(t) > 0 for each t ∈ [0, T ].

Remark IV.2. In particular, k is strictly increasing. Then k
is a bijection from [0, T ] to [0, k(T )]. We denote the inverse
from [0, k(T )] to [0, T ] by k−1.

B. Stretched Dynamics

Our main interest of a time stretch function is to relate
states of two different dynamics, much as those of a relational
differential dynamics formula A ≡ [⟪δ ∣ δ♯⟫E]B. More
precisely, a time stretch function will relate a time of one
dynamics to the a time of the other. This will allow us to
combine two dynamics (with two different time scales) into
one (with a unique time scale). In this section, we look at how
to rescale a dynamic by using a time stretch function and that
the dynamics produced by this process visits the same states
as the initial dynamics, but at a different time.

Definition IV.3 (stretched dynamics δ♯k). Let A be the RDD
formula in Definition III.1, and let k be a time stretch function
(Definition IV.1). From a dynamics δ♯ ≡ (ẋ♯ = f ♯(x♯) &
Q♯(x♯)), we obtain a new dynamics

δ♯k ≡ ((ẋ♯ = f ♯(x♯) ⋅ k̇(t)) &Q♯(x♯)). (6)

The dynamics δ♯k is called the dynamics stretched by k.

Definition IV.3 of the stretched dynamics relies on the time
t. This is not a real problem, as we will not use this stretched
dynamics inside dL, but only to help our proofs, the continuity
of the derivative of k being enough to apply Picard-Lindelöf’s
theorem. We can, however, use it inside dL by assuming t to
be a part of the x vector and requiring k to be smooth enough,
e.g., C2.

Provided the solution ψk of the stretched system exists at
the relevant interval, it retains the results of the solutions of
the original system:

Lemma IV.4. Let A be the RDD formula in Definition III.1,
k be a time stretch function and x♯0 ∈ R∣x♯∣. Let T ∈ R≥0 be
arbitrary such that δ♯ has a solution ψ♯ on [0, k(T )]. Then the
function that maps t to ψ♯(k(t)) is a solution of the stretched
dynamics δk.

Reciprocally, if the stretched dynamics δk has a solution ψk
on [0, T ], then the function that maps t♯ to ψk(k−1(t♯)) is a
solution of δ♯ on [0, k(T )], with k−1 being the inverse of k
(see Remark IV.2).

Proof. Both directions boils down in deriving the candidate
solutions:

● For the first direction, dψ♯(k(t))
dt

(s) = k̇(s) ⋅ ψ̇♯(k(s)) =
k̇(s) ⋅ f ♯(ψ♯(k(s))).

● For the other direction, dψk(k
−1

(t))
dt

(s) = ˙k−1(s) ⋅
ψ̇k(k−1(s)) = 1

k̇(k−1(s))
⋅ k̇(k−1(s)) ⋅ f ♯(ψk(k−1(s))) =

f ♯(ψk(k−1(s)).

C. Canonical Time Stretching, Semantically

For the moment, the time stretch function arbitrarily relates
states of two dynamics, keeping the same solutions. Now, we
would like to construct particular time stretch functions so that
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the two dynamics synchronize their exit time. Given an RDD
formula A as in Definition III.1, we restrict the exit condition
to a single equality E ≡ (g(x) = g♯(x♯)) with g and g♯ strictly
monotonic in some sense. We show it is possible to obtain a
time stretch function k from δ, δ♯, g and g♯.

Definition IV.5 (monotonic exit condition). Let A be an RDD
formula as in Definition III.1. Assume that the exit condition
E ≡ (g(x) = g♯(x♯)) is an equality, with g and g♯ smooth
enough (e.g., C2).

Given (x0,x♯0), let us define the following two functions:

gf ∶ [0, Tx0) Ð→ R, gf(t) = g(ψ(x0, t));
g♯
f♯
∶ [0, Tx♯0

) Ð→ R, g♯
f♯
(t♯) = g♯(ψ♯(x♯0, t♯)).

We say that the exit condition E in A is monotonic at (x0,x♯0)
if the derivatives of gf and g♯

f♯
are both strictly positive or both

strictly negative.

Definition IV.6 (canonical time stretch function). Let
(x0,x♯0) be some initial states, and A be an RDD formula
as in Definition III.1. Assume that the exit condition E ≡
(g(x) = g♯(x♯)) is monotonic at (x0,x♯0) (Definition IV.5)
and that g(x0) = g♯(x♯0). Assume given t, t♯ ∈ R≥0 with
g(ψ(x0, t)) = g♯(ψ♯(x♯0, t♯)). Then we define the function:

k∶ [0, t] Ð→ [0, t♯], k(s) = (g♯
f♯
)−1 ○ gf(s)

called the canonical time stretch function.

Proposition IV.7. In the setting of Definition IV.6, k is a time
stretch function with k(t) = t♯.
Proof. First, let us prove that k is well-defined. Since g♯

f♯
is

strictly monotonic on [0, t♯], it has an inverse h = (g♯
f♯
)−1,

defined from g♯
f♯
([0, t♯]) to [0, t♯]. By assumption, g♯

f♯
(0) =

gf(0) and g♯
f♯
(t♯) = gf(t), so that h is defined from gf([0, t])

to [0, t♯]. Then k is defined from [0, t] to [0, t♯]. Furthermore,
since g and g♯ are continuously differentiable and f and f ♯

are continuous, k is C1. Since g(x0) = g♯(x♯0), then k(0) = 0.
Finally,

k̇(s) = ġf(s)ḣ(gf(s)) derivation of h ○ gf
= ġf (s)

˙g♯
f♯

(k(s))
derivation of h = (gf)−1

which is strictly positive by monotonicity of the exit condition.

D. Towards a Syntactic Representation

From now on, we aim at a syntactic representation of the
reasoning with time stretch functions inside dL. We answer the
following question: Is there any suitable sound rule that we
can use to prove RDD formulas, using time stretch functions?

The main idea is to combine the two dynamics δ and δ♯

using the canonical time stretch function k, in order to get a
unique dynamics, and do proofs in dL on this new dynamics
instead. A natural way to combine δ and δ♯ would be to study
the stretched dynamics by k (Definition IV.3):

ẋ = f(x), ẋ♯ = f ♯(x♯) ⋅ k̇(t) &Q(x) ∧Q♯(x♯)

When we expand the definition of k we obtain the following:

ẋ = f(x), ẋ♯ = Lfg(ψ(x0, t))
Lf♯g♯(ψ♯(x♯0, k(t)))

⋅f ♯(x♯)&Q(x)∧Q♯(x♯)

The problem is that this dynamics is not practical as it
depends on the initial conditions and the actual solutions of
the dynamics. However, using Lemma IV.4, we can replace
the solution ψ♯(x♯0, k(t)) by x♯ and, by construction, we can
replace the solution ψ(x0, t) by x, which leads to:

Definition IV.8. In the setting of Definition IV.6, we define:

δA ≡ ((ẋ = f(x), ẋ♯ = Lfg(x)
Lf♯g♯(x♯)

⋅f ♯(x♯))&Q(x)∧Q♯(x♯))

called the synchronized dynamics.

Remark IV.9. Observe that, since g and g♯ are C2, the
function that maps x,x♯ to Lfg(x)

Lf♯g
♯(x♯)

⋅f ♯(x♯) is C1, as required
in Remark II.3.

The following will be the main argument of the proof of
soundness of our dL rule, stating that, much as the stretched
dynamics, the combined dynamics preserves the visited states.

Proposition IV.10. Assume given x0 ∈ R∣x∣ and x♯0 ∈ Rx
♯

such
that g(x0) = g♯(x♯0), and the exit condition is monotonic.

Assume t, t♯ ∈ R≥0 with g(ψ(x0, t)) = g♯(ψ♯(x♯0, t♯)). Then
the function which maps s ∈ [0, t] to

(ψ(x0, s), ψ♯(x♯0, k(s)))

is a solution of the synchronized dynamics on [0, t], with the
initial condition (x0,x♯0).

Reciprocally, assume that (Φ,Φ♯) is a solution of δA on
[0, T ], with the initial condition (x0,x♯0), then Φ, Φ♯ allow
the presentation:

Φ = ψ(x0, ) Φ♯ = ψ♯(x♯0, k̄( ))

where k̄ is some time stretch function. Furthermore, for every
s ∈ [0, T ], g(Φ(s)) = g♯(Φ♯(s)).

Proof. For the first direction, the only thing to prove is that
θ(s) = ψ♯(x♯0, k(s)) is solution of ẋ♯ = Lfg (x)

Lf♯g
♯ (x♯)

f ♯(x♯):

θ̇(s) = k̇(s)f ♯(ψ♯(x♯0, k(s)))
= ġf (s)

˙g♯
f♯

(k(s))
f ♯(ψ♯(x♯0, k(s)))

= Lfg (ψ(x0,s))

Lf♯g
♯ (ψ♯(x♯0,k(s)))

f ♯(ψ♯(x♯0, k(s)))

For the other direction, let us first observe that Φ = ψ(x0, )
is obvious by unicity of the solution. Now, let us construct
k̄. It is defined as the unique primitive of the function
h(s) = Lfg(Φ(s))

Lf♯g
♯(Φ♯(s))

such that k̄(0) = 0. To prove that k̄ is
a time stretch function, it only remains to prove that it is
strictly increasing, that is, is derivative h is strictly positive.
h(0) = Lfg(x0)

Lf♯g
♯(x♯0))

, which is strictly positive by monotonicity
of the exit condition. Since Φ = ψ(x0, ), and again by
monotonicity of the exit solution, we know that h never takes
the values 0. Finally, since h is continuous, it is always strictly
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positive. So then, we can look at the stretched dynamics δ♯
k̄
.

By construction, Φ♯ is a solution of δ♯
k̄

on [0, t], so we can
conclude using Lemma IV.4. Finally, the last requirement is
proved as follows. Define the following continuously derivable
functions on [0, T ]:

r(s) = g(Φ(s)), r♯(s) = g♯(Φ♯(s)).

Those functions are equal because: r(0) = g(x0) = g♯(x♯0) =
r♯(0), and ṙ(s) = Lfg(Φ(s)) = ṙ♯(s).

E. Time Stretch Function Based Proof Rule

Now, we have all the semantical ingredients to describe our
dL rule and prove its soundness. We call it the time stretch rule
(TS); it utilizes the synchronized dynamics to combine the two
differential dynamics. Once the dynamics are synchronized,
the time stretch rule may be easily followed by other dL rules
previously developed for non-relational reasoning. The rule
derives an equivalence, much as the (DI) rule as presented
in [14].

Definition IV.11 (time stretch proof rule). Let A ≡
[⟪δ ∣ δ♯⟫E]B be the RDD formula in Definition III.1; assume
that the exit condition E ≡ (g(x) = g♯(x♯)) is monotonic.

The time stretch proof rule for A is defined as follows.

Γ ⊢ [?Q(x) ∧Q♯(x♯)]E Γ ⊢ [δ; δ♯] Lfg(x)

Lf♯g
♯(x♯)

> 0

Γ ⊢ [⟪δ ∣ δ♯⟫E]B ⇐⇒ [δA]B
TS

Note that the time stretch rule (TS) uses the standard dL
syntax and is therefore readily integrable with the rest of the
dL proof rules and into the theorem prover KEYMAERA X.

Theorem IV.12. The time stretch proof rule (TS) as defined
in Definition IV.11 is sound.

Proof. Assume that the premises hold. Assume given
(x0,x♯0) ∈ JΓK. Both directions of the (TS) rule are conse-
quences of Proposition IV.10, since the premises imply its
assumptions.

V. DIFFERENTIAL INDUCTIVE INVARIANTS AND OTHER
AUXILIARY PROOF RULES

Here we introduce some auxiliary proof rules that we find
crucial in many examples of relational reasoning in dL.

A. Differential Inductive Invariants

It turns out that the differential invariant rule (DI) as
introduced in Definition II.5, although powerful, falls short of
being able to capture some invariant properties. As we have
encountered such properties in our case studies, we propose an
inductive version of the differential invariant, which, although
slightly less general, provides more power by including the
postcondition in the evolution domain constraint.

Definition V.1. Fix n ≥ 1. The n-th order differential inductive
invariant (DIIn) proof rule is given as follows, assuming that f

is Cn−1 and g are Cn and δ is a shorthand for the differential
dynamics δ ≡ ẋ = f(x) &Q ∧ g(x) ≥ 0:

Γ,Q ⊢ g(x) ≥ 0 Γ ⊢ [δ]Dng(x)
Γ ⊢ [ẋ = f(x) &Q] g(x) ≥ 0

DIIn

where

Dng(x) ≡
n−1

⋁
p=0

p

⋀
k=1

L(k)
f g(x) ≥ 0 ∧ L(p+1)

f g(x) > 0

and L(k)
f g is the k-th Lie derivative of g with respect to f .

In particular, (DII1) will be of particular use:

Γ,Q ⊢ g(x) ≥ 0 Γ ⊢ [δ]Lfg(x)
Γ ⊢ [ẋ = f(x) &Q] g(x) ≥ 0

DII1

Theorem V.2. The differential inductive invariant rules (DIIn)
in Definition V.1 are sound.

B. Auxiliary Relational Rules

The following rules, while many of them are rather straight-
forward, play essential roles in many examples of relational
reasoning. We may further identify two main categories of
the auxiliary rules, first, rules that allow us to manipulate or
introduce (monotonic) equality exit conditions; second, rules
that facilitate relational reasoning in the standard syntax of dL.

1) Monotonic Condition Swap: First auxiliary rule we
introduce is the monotonic condition swap rule (MSC). MSC
swaps the exit condition with the postcondition, given the post-
condition is given as inequality and some monotonicity criteria
are satisfied. Swapping the exit condition and the postcondition
is useful for obtaining exit condition with simpler derivatives
(as illustrated in §VI-A) or to align the exit condition with
initial condition (§VI-B).

The MSC rule comes in several variations based on the
direction of the monotonicity of the functions involved in
the exit condition and postcondition. The variation for all
functions increasing is given in Figure 2.

Theorem V.3. The monotonic condition swap (MSC) rule as
given in Figure 2 is sound.

2) Generating Exit Conditions: The other proof rules de-
signed to manipulate equality exit conditions are the relational
differential cut (RDC) and exit condition propagation (ECP)
rules. RDC introduces new equality exit condition based on
other tests in style of differential cut rule (DC). ECP allows
to copy the exit condition to an earlier place in the dynamics
under some monotonicity conditions.

Definition V.4 (relational differential cut rule). The relational
differential cut rule is given as follows, where δ ≡ (ẋ = f(x)&
Q(x)) and δ♯ ≡ (ẋ♯ = f ♯(x♯) & Q♯(x♯)) are differential
dynamics, α and β are shorthands for the hybrid programs:

α ≡ δ; δ♯; ?g(x) = g♯(x♯); ?P β ≡ δ; δ♯; ?P

Γ ⊢ [α]ϕ Γ ⊢ [β] g(x) = g♯(x♯)
Γ ⊢ [δ; δ♯; ?P ]ϕ RDC
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Γ ⊢ [⟪ ẋ = f(x) &Q(x)
ẋ♯ = f ♯(x♯) &Q♯(x♯) ⟫h(x) = h♯(x♯)] g(x) ≥ g♯(x♯)

Γ ⊢ [?Q(x) ∧Q♯(x♯)]h(x) ≤ h♯(x♯) Γ ⊢ [ẋ = f(x) &Q(x)]Lfg(x) > 0

Γ ⊢ [ẋ = f(x) &Q(x)]Lfh(x) ≥ 0 Γ ⊢ [ẋ♯ = f ♯(x♯) &Q♯(x♯)]Lf♯h
♯(x♯) ≥ 0

Γ ⊢ [⟪ ẋ = f(x) &Q(x)
ẋ♯ = f ♯(x♯) &Q♯(x♯) ⟫ g(x) = g♯(x♯)]h(x) ≤ h♯(x♯)

MCS

Fig. 2. Proof rule for monotonic condition swap for relations using monotonically increasing functions.

Theorem V.5. The relational differential cut (RDC) rule is
sound.

Definition V.6 (exit condition propagation rule). The exit
condition propagation rule is given as follows, where δ ≡
(ẋ = f(x) & Q(x)), δ♯1 ≡ (ẋ♯ = f ♯1(x♯) & Q♯

1(x♯)) and
δ♯2 ≡ (ẋ♯ = f ♯2(x♯) & Q♯

2(x♯)) are differential dynamics,
and α is a shorthand for the hybrid program:

α ≡ δ; δ♯1; ?g(x) = g♯(x♯); ?P (x♯); δ; δ♯2; ?g(x) = g♯(x♯)

Γ ⊢ [α]ϕ
Γ ⊢ [δ♯1]Lf♯1

g♯(x♯) ≥ 0 Γ ⊢ [δ♯1; δ♯2]Lf♯2
g♯(x♯) ≥ 0

Γ ⊢ [δ; δ♯1; ?P (x♯); δ♯2; ?g(x) = g♯(x♯)]ϕ ECP

Theorem V.7. The exit condition propagation rule (ECP) is
sound.

C. Commutation and Absorption

Finally, we introduce rather straightforward, but convenient
rules which allow us to comfortably manipulate relational
differential dynamics formulas within the classical syntax of
dL. The sequential composition commutativity rule (SCC)
allows us to swap hybrid program acting on different variables,
as they are independent of each other. The merge identical
dynamics rule (MID) simply allows to merge two identical
differential dynamics which directly follow each other.

Definition V.8 (sequential composition commutativity rule).
The sequential composition commutativity rule is given as
follows in two versions (one for each modality), where α(x)
denotes a hybrid program which acts on variables in x only.

Γ ⊢ [α♯(x♯);α(x)]ϕ
Γ ⊢ [α(x);α♯(x♯)]ϕ

SCC[−]

Γ ⊢ ⟨α♯(x♯);α(x)⟩ϕ
Γ ⊢ ⟨α(x);α♯(x♯)⟩ϕ

SCC⟨−⟩

Theorem V.9. The sequential composition commutativity rules
(SCC[−] and SCC⟨−⟩) are sound.

Definition V.10 (merge identical dynamics rule). The merge
identical dynamics rule is given as follows in two versions
(one for each modality), where δ ≡ (ẋ = f(x) &Q(x)) is a
differential dynamics (Definition II.1).

Γ ⊢ [δ]ϕ
Γ ⊢ [δ; δ]ϕ

MID[−]

Γ ⊢ ⟨δ⟩ϕ
Γ ⊢ ⟨δ; δ⟩ϕ

MID⟨−⟩

Theorem V.11. The merge identical dynamics rules (MID[−]

and MID⟨−⟩) are sound.

VI. CASE STUDIES

A. Collision Speed (Constant Acceleration)

In this section we apply the time stretch rule to an example
from industry. For this example we consider two ”identical”
dynamics ẋ = v, v̇ = a and ẋ♯ = v♯, v̇♯ = a♯. Both dynamics
represent a car with constant acceleration. The relational
formula of interest specifies that if acceleration is larger in
the second system, then the second car must necessarily travel
faster after covering the same distance as the first car. Thus
namely, upon collision with an equally distant obstacle. The
formula ϕC is given formally as follows.

0 = x = x♯ ∧ 0 < v = v♯ ∧ 0 < a < a♯

Ô⇒ [⟪ ẋ = v, v̇ = a
ẋ♯ = v♯, v̇♯ = a♯ ⟫x = x♯] v ≤ v♯

(7)

One may remark that the dynamics considered in the
formula ϕC are relatively simple and the explicit solution is
therefore readily available. As the main strength of differential
dynamic logic lies in the ability to prove properties of differ-
ential dynamics without explicit solution, however, we present
a proof which, thanks to the time stretch rule, does not rely
on any differential equation solutions.

Let us first mention that we treat the left side of the
implication in (7) as the initial condition:

(0 = x = x♯ ∧ 0 < v = v♯ ∧ 0 < a < a♯)

The proof, given in Figure 3, begins with a technical
differential cut immediately followed by the time stretch rule.
This is the most crucial step as it allows us to exploit the
exit condition x = x♯ without computing explicit solution, an
option that does not readily present itself otherwise.

The result of the time stretch rule is the formula with only
one dynamics, synchronized by x = x♯. Standard dL rules may
be thus applied to this formula, such as differential invariant
(DI). (DI) rule is, however, too general for our case. To this
end we employ the differential inductive invariant (DII1) rule,
which yields the crucial v ≤ v♯ in the evolution domain
constraint at the price of strict inequality in the derivation.

The rest of the proof beyond the application of (DII1)
rule is mostly technical. The differential cut rule allows us
to get rid of the fraction in our postcondition, thus paving
way for another application of differential invariant, this time
regular differential invariant (DI) rule is preferable. As one
may remark, the second derivation yields the initial claim
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0 = x = x♯,0 < v = v♯,0 < a < a♯ ⊢ [⟪
ẋ = v, v̇ = a

ẋ♯ = v♯, v̇♯ = a♯
⟫x = x♯]v ≤ v♯

The target formula. Derived from (9) and (10) by the (DC){v > 0}

(8)

0 = x,0 < v,0 < a ⊢ [ẋ = v, v̇ = a]v > 0

differential invariant (DI) and arithmetic fact
(9)

0 = x = x♯,0 < v = v♯,0 < a < a♯ ⊢ [⟪
ẋ = v, v̇ = a& v > 0

ẋ♯ = v♯, v̇♯ = a♯
⟫x = x♯]v ≤ v♯

(11), (12) and (15) by TS (Definition IV.11)
(10)

0 = x = x♯,0 < v = v♯,0 < a < a♯ ⊢ x = x♯

arithmetic fact
(11)

0 = x = x♯,0 < v = v♯,0 < a < a♯ ⊢ [⟪
ẋ = v, v̇ = a& v > 0

ẋ♯ = v♯, v̇♯ = a♯
⟫]

v

v♯
> 0

(13) and (14), by DW and DC{w > 0}

(12)

0 < a < a♯,0 < v♯, v > 0 ⊢ [v̇♯ = a♯]v♯ > 0

(DI) and arithmetic fact
(13)

0 < a < a♯,0 < v♯, v > 0 ⊢ [v̇♯ = a♯ & v♯ > 0]
v

v♯
> 0

(DW) and arithmetic fact
(14)

0 = x = x♯,0 < v = v♯,0 < a < a♯

⊢ [ẋ = v, v̇ = a, ẋ♯ =
v♯ ⋅ v

v♯
, v̇♯ =

a♯ ⋅ v

v♯
& v > 0]v ≤ v♯

(16) and (17), by (DII1) (Definition V.1)

(15)

0 = x = x♯,0 < v = v♯,0 < a < a♯ ⊢ v ≤ v♯

arithmetic fact
(16)

0 = x = x♯,0 < v = v♯,0 < a < a♯

⊢ [ẋ = v, v̇ = a, ẋ♯ =
v♯ ⋅ v

v♯
, v̇♯ =

a♯ ⋅ v

v♯
& (v > 0 ∧ v ≤ v♯)]a <

a♯ ⋅ v

v♯

(18) and (19), by (DC){a ⋅ v♯ < a♯ ⋅ v}

(17)

0 = x = x♯,0 < v = v♯,0 < a < a♯

⊢ [ẋ = v, v̇ = a, ẋ♯ =
v♯ ⋅ v

v♯
, v̇♯ =

a♯ ⋅ v

v♯
& (v > 0 ∧ v ≤ v♯ ∧ a ⋅ v♯ < a♯ ⋅ v)]

a <
a♯ ⋅ v

v♯

(DW) and arithmetic fact
(18)

0 = x = x♯,0 < v = v♯,0 < a < a♯

⊢ [ẋ = v, v̇ = a, ẋ♯ =
v♯ ⋅ v

v♯
, v̇♯ =

a♯ ⋅ v

v♯
& (v > 0 ∧ v ≤ v♯)]a ⋅ v♯ < a♯ ⋅ v

(DI), (DW) and arithmetic fact

(19)

Fig. 3. The derivation of formula ϕC (7) in dL.

v ≤ v♯, which is, however, already guaranteed to hold thanks
to the differential inductive invariant.

In Appendix C, an alternative proof of ϕC is given, utilizing
the monotonic condition swap (MSC) rule before applying
the time stretch rule. Although the proof has more branches,
it no longer requires the (DII1) rule, resulting in an overall
shorter proof. Moreover, using MSC allows us to relax the
initial condition, namely, we may consider a ≤ a♯ instead of
the sharp inequality a < a♯.

B. Collision Speed (Decaying Acceleration)

In this section we consider an extended version of the
collision speed comparison from Section VI-A. In particular,
instead of considering the cars to have constant acceleration,
we consider the acceleration to “decay” when speed exceeds
certain value. This decay represents the inability of the engine
to supply enough power to overshadow the drag once the car
reaches sufficiently high speed.

The acceleration decay at high speeds effectively translates
to change in dynamics once sufficient speed is reached. More-
over, we consider the obstacle may be any distance from the
starting point, including the possibility of the obstacle being
too close for one or both of the cars to reach the speed at which
the acceleration starts decaying (differential dynamics change)
before collision. These two factors combined require us to
consider the possibility of collision given any combination of
dynamics. The formula ϕD, given in Figure 4, therefore grows
quickly, however, retains the basic structure: Either collision
happens or one of the cars reaches high enough speed to start
losing acceleration, after which either the collision happens or
the second car reaches high enough speed for acceleration to
decay.

Again, we consider the left hand side of the implication
in ϕD, to be the precondition and we further have Γ ≡
(0 < a < a♯ ∧ 1 ≤ V ) denote the static part of the precondition.

Due to the scale of the formula, we do not give a fully
formal proof. Instead, we provide the proof strategy and
highlight the crucial proof steps to give the reader enough
intuition for the retrieval of the formal proof.

We start the proof by repeatedly expanding the nondetermin-
istic choices α0 ∪ α1 using rule ([∪]) [14]. The expansion of
nondeterministic choice yields a conjunction of five formulas
representing the cases of collision before either v or v♯ reaches
V , collision after only v reaches V , collision after both v and
v♯ reach V but v reaches it first, etc.

One may remark that the two cases when both v and v♯

reach V before collision only differ in the order in which v and
v♯ reach V . By treating the formulas with the auxiliary rules
(SCC[−]) (Definition V.8) and (MID[−]) (Definition V.10), we
show that the two order-dependent formulas are in fact syntac-
tically equivalent. We give the four formulas after treatment
with (SCC[−]) and (MID[−]) rules in Figure 5 in the forms we
use to prove each individually.

Observe that the first formula (20) is identical to the constant
acceleration case in Section VI-A limited by evolution domain
constraints. Indeed, the formula (20) can be proven in with the
techniques used in Section VI-A.

One may remark that as a result of the proof of the first
formula (20), the second formula (21) is meaningless as we
know v = V Ô⇒ v♯ ≥ V . The formula still covers the case
v = v♯, however, and requires a proof, which turns out to be
surprisingly challenging.

To prove that the postcondition v ≤ v♯ holds after the second
pair of dynamics, we first have to show it holds after the first
pair of dynamics. To achieve this, we need to synchronize
the first pair of dynamics, and therefore supply them with an
equality exit condition. This is conducted by the exit condition
propagation (ECP) rule from Definition V.6.

We may then introduce the condition v ≤ v♯ into the
evolution domain constraint of the synchronized dynamics by
the differential cut rule (DC). The proof of v ≤ v♯ after the
synchronized dynamics corresponds to (15) in the proof of the
constant acceleration case (Figure 3).
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0 = x = x♯ ∧ 0 < v = v♯ ∧ 0 < a < a♯ ∧ 1 ≤ V Ô⇒
⎡⎢⎢⎢⎢⎣
⟪ ẋ = v, v̇ = a& v ≤ V
ẋ♯ = v♯, v̇♯ = a♯ & v♯ ≤ V ⟫(?x = x♯) ∪

(?v = V ;⟪ ẋ = v, v̇ = a⋅V
v

ẋ♯ = v♯, v̇♯ = a♯ & v♯ ≤ V ⟫(?x = x♯) ∪ (?v♯ = V ;⟪ ẋ = v, v̇ = a⋅V
v

ẋ♯ = v♯, v̇♯ = a♯⋅V
v♯

⟫x = x♯)) ∪

(?v♯ = V ;⟪ ẋ = v, v̇ = a& v ≤ V
ẋ♯ = v♯, v̇♯ = a♯⋅V

v♯

⟫(?x = x♯) ∪ (?v = V ;⟪ ẋ = v, v̇ = a⋅V
v

ẋ♯ = v♯, v̇♯ = a♯⋅V
v♯

⟫x = x♯))
⎤⎥⎥⎥⎥⎦
v ≤ v♯

Fig. 4. Formula ϕD stating that a car with lower acceleration will collide with an obstacle at a set distance at lower speed than a car with higher acceleration.
The acceleration is considered to decrease with increasing speed once sufficiently high speed it reached.

[⟪ ẋ = v, v̇ = a& v ≤ V
ẋ♯ = v♯, v̇♯ = a♯ & v♯ ≤ V ⟫x = x♯] v ≤ v♯ (20)

[⟪ ẋ = v, v̇ = a& v ≤ V
ẋ♯ = v♯, v̇♯ = a♯ & v♯ ≤ V ⟫ v = V ] [⟪ ẋ = v, v̇ = a⋅V

v

ẋ♯ = v♯, v̇♯ = a♯ & v♯ ≤ V ⟫x = x♯] v ≤ v♯ (21)

[⟪ ẋ = v, v̇ = a& v ≤ V
ẋ♯ = v♯, v̇♯ = a♯ & v♯ ≤ V ⟫ v♯ = V ] [ẋ♯ = v♯, v̇♯ = a

♯ ⋅ V
v♯

; ?x = x♯] v ≤ v♯ (22)

[⟪ ẋ = v, v̇ = a& v ≤ V
ẋ♯ = v♯, v̇♯ = a♯ & v♯ ≤ V ⟫ v = V ∧ v♯ = V ] [⟪ ẋ = v, v̇ = a⋅V

v

ẋ♯ = v♯, v̇♯ = a♯⋅V
v♯

⟫x = x♯] v ≤ v♯ (23)

Fig. 5. Decomposition of φD into formulas specifying that the speed inequality holds for all combination of dynamics.

The following formula, obtained by extracting the crucial
condition v ≤ v♯ by differential weakening (DW) rule, remains
to be proven.

Γ, v ≤ V, v♯ ≤ V, v ≤ v♯, x = x♯, v = V

⊢ [⟪ ẋ = v, v̇ = a⋅V
v

ẋ♯ = v♯, v̇♯ = a♯ & v♯ ≤ V ⟫x = x♯] v ≤ v♯

The proof again consists of synchronization by (TS) rule
followed by the differential inductive invariant (DII1) rule and
a classical differential invariant (DI) rule.

The third formula (22) may be proven without any relational
reasoning. We abstract the first pair of dynamics by the use
of (DW) rule. The crucial part being to obtain v ≤ V in the
precondition. The second dynamics on x♯ are subsequently
also abstracted by weakening, after using differential cut (DC)
rule to introduce v♯ ≥ V into the evolution domain constraint,
thus capturing the monotonicity of v♯. The constraints v ≤ V
and v♯ ≥ V are enough to secure the coveted result v ≤ v♯.

Finally, the fourth formula (23) showcases a nice application
of relational reasoning. Similarly to the second formula (21),
we need to synchronize the first pair of dynamics. This time we
introduce an exit condition v = v♯ by the means of relational
differential cut (RDC) rule. The synchronization of the first
pair of Dynamics is again conducted with the purposes of
introducing a precondition for the second pair of dynamics,
in this case x ≥ x♯. Thus, the application of (TS), (DC) and

(DW) rules leaves us with

Γ, v ≤ V, v♯ ≤ V,x ≥ x♯, v = v♯, v = V, v♯ = V

⊢ [⟪ ẋ = v, v̇ = a⋅V
v

ẋ♯ = v♯, v̇♯ = a♯⋅V
v♯

⟫x = x♯] v ≤ v♯
(24)

and, additionally, the proof of the side condition of (DC) rule:

Γ, v ≤ V, v♯ ≤ V,x ≥ x♯, v = v♯, v = V, v♯ = V

⊢ [⟪ ẋ = v, v̇ = a⋅V
v

ẋ♯ = v♯, v̇♯ = a♯⋅V
v♯

⟫ v = v♯]x ≥ x♯

which is proved by applying (DI) rule twice.
At this stage, (TS) rule is not applicable to the obtained

formula (24) since the exit condition x = x♯ does not neces-
sarily hold initially (we only have x ≥ x♯). Observe, however,
that v = v♯ is guaranteed. We therefore utilize the monotonic
condition swap (MCS) rule, to switch the exit condition x = x♯
with the postcondition v ≤ v♯.

0 = x = x♯,0 < v = v♯,Γ

⊢ [ẋ = v, v̇ = a, ẋ♯ = v
♯ ⋅ a
a♯

, v̇♯ = a& (v ≤ V ∧ v♯ ≤ V )]x ≥ x♯

The proof is then finished by application of (TS) rule
followed by a combination of (DC) and (DI) rules.

C. Collision Speed under Drag

Consider the differential equation ẋ = v, v̇ = −vp. When
p = 2, the dynamics is the usual drag equation in fluid
dynamics (modulo constant multiplication). The case with
p = 1 corresponds to the so-called linear drag or viscous
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resistance; this modeling is known to be suited for objects
moving slowly through a fluid that has no turbulence.

Our goal here is to derive the following sequent.

x = x♯ = 0 ∧ v = v♯ > 1

⊢ [⟪ ẋ = v, v̇ = −v
ẋ♯ = v♯, v̇♯ = −(v♯)2 ⟫x = x♯] v♯ ≤ v

∨v♯ ≤ 1

(25)

It models the following scenario: we roll two balls from the
same height, and observe how hard they hit a wall after
traveling the same distance. The two balls move in different
fluids (i.e. with p = 1 and p♯ = 2). It is natural to expect
that the latter ball undergoes stronger drag, hence v♯ ≤ v. The
extra disjunct v♯ ≤ 1 is needed in the postcondition because,
when v and v♯ are small enough, the effect of the parameters
p and p♯ in the dynamics gets inverted. The sequent (25)
is derived in dL as shown in Fig. 6. In (40) we introduce
the differential conditional cut rule (DCC). Its soundness is
straightforward: due to its second promise, once a trajectory
leaves C, it never satisfies C henceforth, therefore C ⇒ φ is
trivially true. We expect that the (DCC) rule is derivable from
the calculus in [14], but we have not yet managed to do so.

We note that, while the differential equations here have
closed-form solutions v = v(0) ⋅ e−t and v♯ = 1

t♯+v♯(0)−1
, our

proof in Fig. 6 does not use them at all. Our reasoning is purely
local, firstly synchronizing the two dynamics with respect to
the exit condition x = x♯, and then reasoning with differential
invariants (the (DI) and (DII1) rules).

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we extended the well-developed framework of
differential dynamic logic dL [14]–[16] to relational reason-
ing. Towards the goal of obtaining modular and local proof
principles (much like the (DI) rule in dL), we introduced
the theory of simulation and time stretching (Sections III–
IV), which allows us to successfully relate different time
points of two dynamics. The resulting proof rules ((SIM)
and (TS)) are concise, and our case studies (inspired by
industry collaboration) demonstrate their usefulness. We also
introduced some additional proof rules (§V), among which is
the differential inductive invariant (DII) rule.

One imminent direction of future work is the integration of
the new rules in the theorem prover KEYMAERA X [12]. We
are already working on it and our preliminary observations
have been promising.

We are eager to further pursue practical application of rela-
tional reasoning about hybrid systems—especially in test-case
reduction—as we laid out in §I-E. This will require integration
with testing methods, whose example is falsification (i.e.
search-based by optimization) methods that recently attract
attention. See e.g. [2], [5], [21]. Towards industry application,
another requirement is accommodation of Simulink models as
input. The work [11] suggests this is feasible.

On the theoretical side, our future work is to extend our
framework so that we can relate different discrete control
structures. We believe the existing work on relational Hoare
logic such as [1], [3], [4] will be useful.

x = x♯ = 0 ∧ v = v♯ > 1

⊢ [⟪
ẋ = v, v̇ = −v

ẋ♯ = v♯, v̇♯ = −(v♯)2
⟫x = x♯]

v♯ ≤ v
∨v♯ ≤ 1

The ultimate goal. Derived from (27), by the (?) rule in [14]

(26)

x = x♯ = 0 ∧ v = v♯ > 1

⊢ [⟪
ẋ = v, v̇ = −v

ẋ♯ = v♯, v̇♯ = −(v♯)2
⟫x = x♯] [?v♯ > 1] v♯ ≤ v

(28), (29), (35), the (TS) rule

(27)

x = x♯ = 0 ∧ v = v♯ > 1 ⊢ x = x♯

arithmetic fact
(28)

x = x♯ = 0 ∧ v = v♯ > 1

⊢ [
ẋ = v, v̇ = −v;

ẋ♯ = v♯, v̇♯ = −(v♯)2
]
v

v♯
> 0

(30), (33)

(29)

v > 0 ⊢ [v̇ = −v] v > 0

(31), the Darboux inequality (dbx>) rule shown in (32)
(30)

⊢ −v ≥ −1 ⋅ v

arithmetic fact
(31)

Q ⊢ Lfh ≥ gh

h > 0 ⊢ [ẋ = f(x) &Q]h > 0
dbx> (g is a polynomial)

the Darboux inequality rule from [16]

(32)

v♯ > 0 ⊢ [v̇♯ = −(v♯)
2
] v♯ > 0

(34), the (dbx>) rule shown in (32)
(33)

⊢ −(v♯)
2
≥ −v♯ ⋅ v♯

arithmetic fact
(34)

x = x♯ = 0 ∧ v = v♯ > 1

⊢ [ẋ = v, v̇ = −v, ẋ♯ = v♯ ⋅ v
v♯
, v̇♯ = −(v♯)2 ⋅ v

v♯
] [?v♯ > 1] v♯ ≤ v

(36), the (?) rule in [14]

(35)

x = x♯ = 0 ∧
v = v♯ > 1

⊢ [
ẋ = v, v̇ = −v,

ẋ♯ = v♯ ⋅ v
v♯
, v̇♯ = −(v♯)2 ⋅ v

v♯
] v♯ > 1⇒ v♯ ≤ v

(37), the (DC) rule. The other premise of the rule is discharged much like (30)
(36)

x = x♯ = 0 ∧
v = v♯ > 1

⊢

⎡
⎢
⎢
⎢
⎢
⎢
⎣

ẋ = v, v̇ = −v,

ẋ♯ = v♯ ⋅ v
v♯
, v̇♯ = −(v♯)2 ⋅ v

v♯

&(v > 0 ∧ v♯ > 0)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

v♯ > 1⇒ v♯ ≤ v

(38), (39), and the differential conditional cut rule (DCC) presented in (40)

(37)

x = x♯ = 0 ∧
v = v♯ > 1

⊢

⎡
⎢
⎢
⎢
⎢
⎢
⎣

ẋ = v, v̇ = −v,

ẋ♯ = v♯ ⋅ v
v♯
, v̇♯ = −(v♯)2 ⋅ v

v♯

& (v > 0 ∧ v♯ > 1)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

v♯ ≤ v

(41), the (;) rule from [14]

(38)

v > 0 ∧ v♯ > 0 ∧ v♯ ≤ 1 ⊢

⎡
⎢
⎢
⎢
⎢
⎢
⎣

ẋ = v, v̇ = −v,

ẋ♯ = v♯ ⋅ v
v♯
, v̇♯ = −(v♯)2 ⋅ v

v♯

& (v > 0 ∧ v♯ > 0)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

v♯ ≤ 1

the (DI) rule and an arithmetic fact

(39)

Γ ⊢ [ẋ = f(x) & (Q ∧C)]ϕ Q,¬C ⊢ [ẋ = f(x) &Q] ¬C

Γ ⊢ [ẋ = f(x) &Q] (C ⇒ ϕ)
DCC

The differential conditional cut rule

(40)

x = x♯ = 0 ∧
v = v♯ > 1

⊢

⎡
⎢
⎢
⎢
⎢
⎢
⎣

ẋ = v, v̇ = −v,

ẋ♯ = v♯ ⋅ v
v♯
, v̇♯ = −(v♯)2 ⋅ v

v♯

& v > 0 ∧ v♯ > 1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

v♯ ≤ v

(42), the (DII1) rule. The first premise of the rule is immediately discharged

(41)

x = x♯ = 0∧
v = v♯ > 1

⊢

⎡
⎢
⎢
⎢
⎢
⎢
⎣

ẋ = v, v̇ = −v,

ẋ♯ = v♯ ⋅ v
v♯
, v̇♯ = −(v♯)2 ⋅ v

v♯

& v > 0 ∧ v♯ > 1 ∧ v♯ ≤ v

⎤
⎥
⎥
⎥
⎥
⎥
⎦

−(v♯)2 ⋅ v
v♯

< −v

(43), the (DW) rule

(42)

v > 0 ∧ v♯ > 1 ∧ v♯ ≤ v ⊢ −(v♯)
2
⋅
v

v♯
< −v

arithmetic fact
(43)

Fig. 6. The drag example: a derivation of the sequent (25) in dL
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APPENDIX A
PROOF OF SOUNDNESS OF THE DIFFERENTIAL INDUCTIVE

INVARIANT (DIIn)

To prove the soundness of this rule, we have to use some
properties of higher derivatives of real functions:

Lemma A.1. Fix n ≥ 1. Let h ∶ [0, t] Ð→ R, where t ∈ R>0 be
a function of class Cn, and let t̃ ∈ [0, t) be such that:

● ∀0 ≤ k < n. h(k)(t̃) ≥ 0,
● h(n)(t̃) > 0.

Then, there exists a t̃ < t′ < t such that for all t̃ < t′′ ≤ t′,
h(t′′) > 0.

Proof. We conduct the proof by induction on n.
● case n = 1: By definition, the derivative ḣ(t̃) of h at time
t̃ is the following right limit approaching t̃:

ḣ(t̃) = lim
t′→t̃+

h(t′) − h(t̃)
t′ − t̃

Thus in particular, for every ε > 0, there exists η > 0 such
that t̃ < t′ < min(t̃+η, t) implies ḣ(t̃)−ε < h(t′)−h(t̃)

t′−t̃
. Let

us now fix arbitrary ε < ḣ(t̃) and t̃ < t′ < min(t̃ + η, t).
Such ε and t′ exist since ḣ(t̃) > 0 and t > t̃. Then, for
every t̃ < t′′ ≤ t′, h(t′′) > (ḣ(t̃) − ε)(t′′ − t̃) + h(t̃) > 0
and t̃ < t′ < t.

● case n > 1: Applying the induction hypothesis on ḣ we
obtain time t̃ < t′ < t such that for every t̃ < t′′ ≤ t′,
ḣ(t′′) > 0. By Lagrange remainder’s theorem, for any
such t̃ < t′′ ≤ t′, there exists t̃ < t′′′ < t′′ such that h(t′′) =
h(t̃) + ḣ(t′′′) ⋅ (t′′ − t̃) > 0.

Now, we are all set for proving the soundness of differential
inductive invariant rules:
Proof (Of Theorem V.2). Fix n ≥ 1. We conduct the proof
by contraposition. Let x0 be an initial state such that x0 ⊧ Γ
and let there exist a time t ∈ R≥0 such that g(ψ(t)) < 0 and
(x0, ψ(t)) ∈ Jẋ = f(x) &QK. Finally, let h ∶ [0, t] → R be
the following Cn function:

t′ → g(ψ(t′))

Thus by definition h(k)(t′) = L(k)
f g(ψ(t′)), for all k ≤ n.

Since Jẋ = f(x) &QK is non-empty, we know Q(x0) and
therefore, by x0 ⊧ Γ, Γ,Q ⊢ 0 ≤ g(x) = h(0).

Let us now prove that the set:

U = {t′ ∈ [0, t] ∣ ∀t′′ ≤ t′. h(t′′) ≥ 0}

is closed in [0, t]. Since [0, t] is a complete metric space, it is
enough to prove that U is closed under limits. Let us thus con-
sider a sequence (tn)n∈N ⊆ UN that converges to t∞ ∈ [0, t].
We want to prove that for every t′′ ≤ t∞, h(t′′) ≥ 0. First,
since h is continuous, h−1([0,∞)) is closed. Furthermore,
since tn ∈ U ⊆ h−1([0,∞)), we have t∞ ∈ h−1([0,∞)) and
thus h(t∞) ≥ 0. Now let us take 0 ≤ t′′ < t∞ arbitrary. Since
(tn)n converges to t∞, there exists an integer n such that
∣t∞− tn∣ < ε for every ε > 0. Thus by choosing 0 < ε < t∞− t′′,

there is an integer n such that t′′ < tn. Then, since tn ∈ U ,
h(t′′) ≥ 0. Consequently, U is non-empty and compact in R,
and thus has a maximal element t̃. Observe that t̃ < t due to
g(ψ(t)) < 0.

We now show that ψ(t̃) falsifies the second premise.
Since 0 < t̃ < t and t̃ ∈ U we know (x0, ψ(t̃)) ∈
Jẋ = f(x) &Q ∧ g(x) ≥ 0K. We now prove that Dng(ψ(t̃))
does not hold by contradiction. This means that we assume
that there is p < n such that for all k ≤ p, h(k)(t̃) ≥ 0 and
h(p+1)(t̃) > 0. Then by Lemma A.1, there is t̃ < t′ < t such that
for all t̃ < t′′ ≤ t′, h(t′′) > 0. Thus, t′ ∈ U , which contradicts
the maximality of t̃.

APPENDIX B
PROOF OF SOUNDNESS OF AUXILIARY RELATIONAL

RULES §V-B

A. Soundness of Monotonic Condition Swap (MSC)

Let (x0,x♯0) ⊧ Γ be an arbitrary initial state satisfying the
premises.

We conduct the proof by contradiction. Let thus x1 and x♯1

be such that x0
TδÐ→ x1, x♯0

Tδ♯ÐÐ→ x♯1, g(x1) = g♯(x♯1) and
h(x1) > h♯(x♯1).

Let us now consider x2 such that h(x2) = h♯(x♯1). We
know such x2 exists as h(x0) ≤ h♯(x♯0) and both h and h♯ are
increasing. Moreover, by h(x0) ≤ h(x2) and h(x2) < h(x1)
we have x0

TδÐ→ x2 and x2
TδÐ→ x1.

Since h(x2) = h♯(x♯1), we can use the first premise to get
g(x2) ≥ g♯(x♯1). Finally, since g is strictly increasing, we
get g(x1) > g(x2) ≥ g♯(x♯1) which is a contradiction with
g(x1) = g♯(x♯1).

B. Soundness of Relational Differential Cut (RDC)

Let (x0 ⋅ x♯0,x1 ⋅ x♯1) ∈ Jδ; δ♯; ?P K such that (x0,x♯0)
satisfies the premises. From the second premise we obtain
g(x1) = g♯(x♯1). Thus, in turn, the first premise yields
B(x0,x♯0).

C. Soundness of Exit Condition Propagation (ECP)

We conduct the proof for version where ∼ stands for ≥, the
version with ≤ is symmetric.

Let (x0,x♯0) be an arbitrary initial state satisfying the
premise and let x♯1 be such that (x♯0,x♯1) ∈ Jδ♯1K such that
P (x♯1). Since Lf♯1

g♯ ≥ 0 at any δ♯1-reachable state, we know
g♯(x♯0) ≤ g♯(x♯1).

Let further x2 and x♯2 be such that (x♯0,x♯2) ∈ Jδ♯2K,
(x0,x2) ∈ JδK and E(x2,x♯2). Since Lf♯2

g♯ ≥ 0 at any δ♯2-
reachable state, we know g♯(x♯1) ≤ g♯(x♯2).

Let now x1 be such that g(x1) = g♯(x♯1). Then, by g(x0) =
g♯(x♯0) and g(x2) = g♯(x♯2) we also have g(x0) ≤ g(x1) ≤
g(x2). From continuity of g, such x1 must thus be reachable
by δ from x0 and x2 has to be reachable by δ from x1. Then,
by the first premise, (x2,x♯2) ⊧ ϕ
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0 < a ≤ a♯,0 = x = x♯,0 < v = v♯ ⊢ [⟪
ẋ = v, v̇ = a

ẋ♯ = v♯, v̇♯ = a♯
⟫x = x♯]v ≤ v♯

(45), (46), (47), (48) and (49), by (MSC) (Figure 2)
(44)

0 < a ≤ a♯,0 = x = x♯,0 < v = v♯ ⊢ v ≤ v♯

arithmetic fact
(45)

0 < a ≤ a♯,0 = x = x♯,0 < v = v♯ ⊢ [ẋ = v, v̇ = a]v > 0

(DI) and arithmetic fact
(46)

0 < a ≤ a♯,0 = x = x♯,0 < v = v♯ ⊢ [ẋ = v, v̇ = a]a ≥ 0

(DW) and arithmetic fact
(47)

0 < a ≤ a♯,0 = x = x♯,0 < v = v♯ ⊢ [ẋ♯ = v♯, v̇♯ = a♯]a♯ ≥ 0

(DW) and arithmetic fact
(48)

0 < a ≤ a♯,0 = x = x♯,0 < v = v♯ ⊢ [⟪
ẋ = v, v̇ = a

ẋ♯ = v♯, v̇♯ = a♯
⟫v = v♯]x ≥ x♯

(50), (51), (52), by (TS) (Definition IV.11)
(49)

0 < a ≤ a♯,0 = x = x♯,0 < v = v♯ ⊢ v = v♯

arithmetic fact
(50)

0 < a ≤ a♯,0 = x = x♯,0 < v = v♯ ⊢ ⟪
ẋ = v, v̇ = a

ẋ♯ = v♯, v̇♯ = a♯
⟫
a

a♯
> 0

(DW) and arithmetic fact
(51)

0 < a ≤ a♯,0 = x = x♯,0 < v = v♯

⊢ [ẋ = v, v̇ = a, ẋ♯ =
v♯ ⋅ a

a♯
, v̇♯ =

a♯ ⋅ a

a♯
]x ≥ x♯

(DI) twice and arithmetic fact

(52)

Fig. 7. The derivation of formula ϕC (7) in dL using the (MSC) rule.

D. Soundness of Sequential Composition Commutativity
(SCC)

We can interpret α and α♯ solely in their respective variables
x and x♯ with any additional variables having no effect
on the outcome. Thus, if (x0,x1) ∈ Jα(x)K, we also have
(x0 ⋅ x♯0,x1 ⋅ x♯0) ∈ Jα(x)K for arbitrary x♯0. Similarly,
(x♯0,x♯1) ∈ Jα♯(x♯)K gives us (x0 ⋅ x♯0,x0 ⋅ x♯1) ∈ Jα♯(x♯)K
for arbitrary x0.

E. Soundness of Merge Identical Dynamics (MID)

Let (x0,x1) ∈ JδK be arbitrary. Surely, Q(x1) holds,
thus we also have (x1,x1) ∈ JδK. Therefore, by definition
of interpretation of sequential composition (Definition II.4),
(x0,x1) ∈ Jδ; δK.

APPENDIX C
PROOF OF COLLISION SPEED WITH CONSTANT

ACCELERATION USING MSC

The alternative proof of the formula ϕC (7) in Section VI-A
which relies on (MSC) (Figure 2) instead of (DII1) is given
in Figure 7.

The simplicity of the proof has been achieved chiefly by
v and v♯, which are swapped into the exit condition, having
constant valued Lie derivatives.
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