Differentiation of stateful functions

David Sprunger (with Shin-ya Katsumata, +)

Shonan Meeting on Diagrammatic Methods
January 8, 2019
Motivation: differentiation is compositional

Classic songs from *Newton’s Greatest Hits, vol. 2*:

- sum rule: \(D(f + g)(x) = Df(x) + Dg(x) \)
- chain rule: \(D(f \circ g)(x) = Df(g(x)) \circ Dg(x) \)
- “cross rule”: \(D(f \times g)(x, y) = Df(x) \times Dg(y) \)

Compositionality is useful for training (stateless) neural nets.

![Neural network diagram](image-url)
Motivation: is “differentiation” compositional?

When training recurrent neural nets, we want gradients for:

\[
\begin{align*}
U(f) &= (f_0: i_0 \mapsto o_0, f_1: (i_0, i_1) \mapsto o_1, \ldots) \\
D(U(f)) &= (Df_0, Df_1, \ldots)
\end{align*}
\]
Motivation: is “differentiation” compositional?

When training recurrent neural nets, we want gradients for:

![Diagram of a recurrent neural network]

Usually this is done via “unrolling”…

\[U(tr(f)) = (f_0 : i_0 \mapsto o_0, f_1 : (i_0, i_1) \mapsto o_1, \ldots) \]
Motivation: is “differentiation” compositional?

When training recurrent neural nets, we want gradients for:

\[
\begin{array}{c}
\text{Motivation: is “differentiation” compositional?} \\
\text{When training recurrent neural nets, we want gradients for:}
\end{array}
\]

\[
\begin{array}{c}
\text{Usually this is done via “unrolling”…}
\end{array}
\]

\[
\begin{array}{c}
U(tr(f)) = (f_0 : i_0 \mapsto o_0, f_1 : (i_0, i_1) \mapsto o_1, \ldots)
\end{array}
\]

and differentiating the resulting function sequence pointwise:

\[
\begin{array}{c}
D(tr(f)) = map(D)(U(tr(f))) = (Df_0, Df_1, \ldots)
\end{array}
\]
Motivation: is “differentiation” compositional?

When training recurrent neural nets, we want gradients for:

\[
U(\text{tr}(f)) = (f_0 : i_0 \mapsto o_0, f_1 : (i_0, i_1) \mapsto o_1, \ldots)
\]

and differentiating the resulting function sequence pointwise:

\[
D(\text{tr}(f)) = \text{map}(D)(U(\text{tr}(f))) = (Df_0, Df_1, \ldots)
\]

Questions: Is this “differentiation”? What are we differentiating?
Background: Cartesian differential categories

[Blute, Cockett, and Seely, 2009]

A *Cartesian differential category* is:

- a Cartesian category \((\mathcal{C}, \times, 1)\), where
- every object has a chosen commutative bialgebra structure,
- (or, commutative monoid \(0_X : 1 \to X, +_X : X \times X \to X\))
- a *differential operator* on morphisms,
 \[D[f : X \to Y] = Df : X \times X \to Y \]
- (and \(D\) satisfies seven axioms...)

Intuition: In the standard case, \(Df(\Delta x, x_0) = J_f |_{x_0} \times \Delta x\).
Background: Cartesian differential categories

[Blute, Cockett, and Seely, 2009]

A *Cartesian differential category* is:

- a Cartesian category \((\mathbb{C}, \times, 1)\), where
- every object has a chosen commutative bialgebra structure,
- (or, commutative monoid \(0_X : 1 \to X, +_X : X \times X \to X\))
- a *differential operator* on morphisms,
 \(D[f : X \to Y] = Df : X \times X \to Y\)
- (and \(D\) satisfies seven axioms . . .

Intuition: In the standard case, \(Df(\Delta x, x_0) = Jf|_{x_0} \times \Delta x\).
Goal

Starting from a CDC representing stateless computation, construct a CDC representing stateful computation.

Our plan:

1. Start with Cartesian structure, separate states and values.
2. Compose along states to get stateful computations.
3. Add bialgebra structure.
4. Add differential operator.
Separating states and values with double categories

Start with a (strict) Cartesian category \((\mathcal{C}, \times, 1)\).

Form a double category \(\text{Sq}(\mathcal{C})\):

Horizontal comp. is “along values”. Vertical is “along states”.

...
Sequences of squares

A sequence of squares is an infinite sequence of 2-cells that is vertically composable:
Sequences of squares

A *sequence of squares* is an infinite sequence of 2-cells that is vertically composable:

The *nth truncation* of a sequence is the composite of the first n cells followed by state discard:
Sequences of squares

Two sequences of squares are *equivalent* if all of their truncations are equal when considered as morphisms in \mathbb{C}.

For example,
Composition of sequences of squares

Compose two sequences by composing 2-cells along values:
Stateful computations: $\text{Seq}(\mathbb{C})$

Definition

$\text{Seq}(\mathbb{C})$ is the category where:
- objects are infinite sequences of objects of \mathbb{C}: (X_0, X_1, X_2, \ldots)
- morphisms are (equivalence classes of) sequences of squares

Structures from \mathbb{C} are largely inherited by $\text{Seq}(\mathbb{C})$.

Proposition

If \mathbb{C} is Cartesian, then $\text{Seq}(\mathbb{C})$ is Cartesian.
If \mathbb{C} is left additive, then $\text{Seq}(\mathbb{C})$ is left additive.
Delayed trace in $\text{Seq}(\mathbb{C})$

$\text{Seq}(\mathbb{C})$ supports a tracelike operation:

$$
\text{tr}_{[S_i]}(\quad) \triangleq
$$

Proposition This operation satisfies the axioms of trace except yanking and dinaturality.
Delayed trace in \(\text{Seq}(\mathbb{C})\)

\(\text{Seq}(\mathbb{C})\) supports a tracelike operation:

\[
\text{tr}_{[S_i]}(\quad) \quad \triangleq \quad \text{X}_0 \quad \text{Y}_0 \quad S_0 \quad \times \quad T_0 \quad f_0 \\
\text{X}_1 \quad \text{Y}_1 \\
\text{X}_2 \quad \text{Y}_2 \\
\text{X}_3 \quad \text{Y}_3 \\
\vdots
\]

Proposition

This operation satisfies the axioms of trace except yanking and dinaturality.
Yanking \rightarrow (uninitialized) delay

\[tr_{[X]}(\cdot) = \]

\[\cdot \]
Dinaturality \rightarrow Retiming
Delayed trace, generally

Definition

A *delayed (?) trace* on a symmetric monoidal category satisfies the trace axioms except yanking and dinaturality.

Idea: Given a delayed trace, *define* the delay morphism as the trace of symmetry.
Delayed trace, generally

Definition

A _delayed_ trace on a symmetric monoidal category satisfies the trace axioms except yanking and dinaturality.

Idea: Given a delayed trace, _define_ the delay morphism as the trace of symmetry.

Extracting the abstract essence of this sequence construction is a strong interest of ours. Can you help?
Circuit applications: $\text{Seq}_0(\mathbb{C}) \hookrightarrow \text{Seq}(\mathbb{C})$

Definition

$\text{Seq}_0(\mathbb{C})$ is the subcategory of $\text{Seq}(\mathbb{C})$ where:

- objects have the form $(1, X, X, X, X, \ldots)$
- sequences have the form (i, f, f, \ldots) where $i : (1, 1) \Rightarrow (S, 1)$

$\text{Seq}_0(\mathbb{C})$ is still Cartesian and retains left additive structure.
Circuit applications: $\text{Seq}_0(C) \hookrightarrow \text{Seq}(C)$

Definition

$\text{Seq}_0(C)$ is the subcategory of $\text{Seq}(C)$ where:

- objects have the form $(1, X, X, X, X, \ldots)$
- sequences have the form (i, f, f, \ldots) where $i : (1, 1) \Rightarrow (S, 1)$

$\text{Seq}_0(C)$ is still Cartesian and retains left additive structure.

The delayed trace described before does **not** restrict nicely to $\text{Seq}_0(C)$, but there are related delayed traces when initialization values are provided.
Circuit applications: $Seq_0(\mathcal{C}) \leftrightarrow Seq(\mathcal{C})$

Definition

$Seq_0(\mathcal{C})$ is the subcategory of $Seq(\mathcal{C})$ where:
- objects have the form $(1, X, X, X, X, \ldots)$
- sequences have the form (i, f, f, \ldots) where $i : (1, 1) \Rightarrow (S, 1)$

$Seq_0(\mathcal{C})$ is still Cartesian and retains left additive structure.

The delayed trace described before does **not** restrict nicely to $Seq_0(\mathcal{C})$, but there are related delayed traces when initialization values are provided.

Conjecture (in progress)

If \mathcal{C} has a differential operator, it lifts to $Seq_0(\mathcal{C})$.
Circuits and $Seq_0(\mathbb{C})$

Given the conjecture on the previous slide, we could say:

$$D(s_0^f) = s_0^f Df$$
Circuits and $\text{Seq}_0(\mathbb{C})$

Given the conjecture on the previous slide, we could say:

$$D(\text{Seq}_0(\mathbb{C})) = \text{Seq}_0(\mathbb{C})$$
Further questions (roughly easy to hard)

- Convert differential operators to gradient operators?
- Equational rewrites to optimize derivative network?
- Partial functions (differential restriction categories)?
- Truncation feels like observational equivalence, what is bisimulation?
- Is network training in $\text{Seq}_0(\text{Seq}_0(\mathbb{C}))$?
- Is hyperparameter tuning in $\text{Seq}_0(\text{Seq}_0(\text{Seq}_0(\mathbb{C})))$?
- Applications in circuit design?
- Applications in control theory?
- General theory behind delayed traces?
Thanks!