
1/24

Differentiable causal computations
via delayed trace

Shin-ya Katsumata and David Sprunger*
National Institute of Informatics, Japan

ERATO MMSD

LICS 2019
SFU, Vancouver, CA

June 24, 2019

2/24

Machine learning has made incredible progress. . .

Image: Yonhap/Reuters

2/24

Machine learning has made incredible progress. . .

Image: Yonhap/Reuters Image: Alex Castro

2/24

Machine learning has made incredible progress. . .

Image: Yonhap/Reuters Image: Alex Castro

Image: Kundu, Vineet, Koltun

3/24

. . . but still faces incredible challenges.

Adversarial attacks

3/24

. . . but still faces incredible challenges.

Adversarial attacks Real-world/training mismatch

3/24

. . . but still faces incredible challenges.

Adversarial attacks

Explainability

Real-world/training mismatch

3/24

. . . but still faces incredible challenges.

Adversarial attacks

Explainability

Real-world/training mismatch

Privacy

3/24

. . . but still faces incredible challenges.

Adversarial attacks

Explainability

Real-world/training mismatch

Privacy
. . . and more!

4/24

Categorical tools may help

LeNet, 1998

AlexNet, 2012

GoogLeNet, 2014

InceptionV3, 2015

Images: Joseph Paul Cohen

5/24

Outline

1 Feedforward and recurrent neural networks

2 Statefulness, categorically

3 Differentiation, categorically

4 Training recurrent neural networks, categorically

6/24

Feedforward neural networks

A neural network is a function taking data inputs (from the
environment) and parameters (from us). Diagrammatically:

φparameters: θ ∈ Rk output: y ∈ Rm
data inputs: x ∈ Rn

Training a neural network means finding θ∗ : 1→ Rk so that

φ
x̂i

yi ≈ ŷi
θ∗

Gradient-based training algorithms are based on the insight that
∂φ
∂θ is a good approximation for the change in y that results from a
small change in θ. This allows us to make smart updates to θ∗.

Backpropagation (Rumelhart ‘86) is an algorithm that finds
derivatives of functions f : Rn → Rm, with excellent performance
when n� m.

6/24

Feedforward neural networks

A neural network is a function taking data inputs (from the
environment) and parameters (from us). Diagrammatically:

φparameters: θ ∈ Rk output: y ∈ Rm
data inputs: x ∈ Rn

Training a neural network means finding θ∗ : 1→ Rk so that

φ
x̂i

yi ≈ ŷi
θ∗

Gradient-based training algorithms are based on the insight that
∂φ
∂θ is a good approximation for the change in y that results from a
small change in θ. This allows us to make smart updates to θ∗.

Backpropagation (Rumelhart ‘86) is an algorithm that finds
derivatives of functions f : Rn → Rm, with excellent performance
when n� m.

6/24

Feedforward neural networks

A neural network is a function taking data inputs (from the
environment) and parameters (from us). Diagrammatically:

φparameters: θ ∈ Rk output: y ∈ Rm
data inputs: x ∈ Rn

Training a neural network means finding θ∗ : 1→ Rk so that

φ
x̂i

yi ≈ ŷi
θ∗

Gradient-based training algorithms are based on the insight that
∂φ
∂θ is a good approximation for the change in y that results from a
small change in θ. This allows us to make smart updates to θ∗.

Backpropagation (Rumelhart ‘86) is an algorithm that finds
derivatives of functions f : Rn → Rm, with excellent performance
when n� m.

6/24

Feedforward neural networks

A neural network is a function taking data inputs (from the
environment) and parameters (from us). Diagrammatically:

φparameters: θ ∈ Rk output: y ∈ Rm
data inputs: x ∈ Rn

Training a neural network means finding θ∗ : 1→ Rk so that

φ
x̂i

yi ≈ ŷi
θ∗

Gradient-based training algorithms are based on the insight that
∂φ
∂θ is a good approximation for the change in y that results from a
small change in θ. This allows us to make smart updates to θ∗.

Backpropagation (Rumelhart ‘86) is an algorithm that finds
derivatives of functions f : Rn → Rm, with excellent performance
when n� m.

7/24

Recurrent neural networks

Recurrent neural networks (RNNs) process lists of inputs using
state, which is stored in registers:

ψ
i

Operationally, these work as you expect:

7/24

Recurrent neural networks

Recurrent neural networks (RNNs) process lists of inputs using
state, which is stored in registers:

ψ
i

Operationally, these work as you expect:

2

3

4

× 1

...

7/24

Recurrent neural networks

Recurrent neural networks (RNNs) process lists of inputs using
state, which is stored in registers:

ψ
i

Operationally, these work as you expect:

2

3

4

×

1

...

7/24

Recurrent neural networks

Recurrent neural networks (RNNs) process lists of inputs using
state, which is stored in registers:

ψ
i

Operationally, these work as you expect:

×

1

22

3

4
...

7/24

Recurrent neural networks

Recurrent neural networks (RNNs) process lists of inputs using
state, which is stored in registers:

ψ
i

Operationally, these work as you expect:

×

1

2

2

2
2

3

4
...

7/24

Recurrent neural networks

Recurrent neural networks (RNNs) process lists of inputs using
state, which is stored in registers:

ψ
i

Operationally, these work as you expect:

× 2

1

2

2

2
22

3

4
...

7/24

Recurrent neural networks

Recurrent neural networks (RNNs) process lists of inputs using
state, which is stored in registers:

ψ
i

Operationally, these work as you expect:

2

× 2

2

3

4
...

7/24

Recurrent neural networks

Recurrent neural networks (RNNs) process lists of inputs using
state, which is stored in registers:

ψ
i

Operationally, these work as you expect:

×

2

22

3

4
...

7/24

Recurrent neural networks

Recurrent neural networks (RNNs) process lists of inputs using
state, which is stored in registers:

ψ
i

Operationally, these work as you expect:

×

2

6

22

3

4
...

7/24

Recurrent neural networks

Recurrent neural networks (RNNs) process lists of inputs using
state, which is stored in registers:

ψ
i

Operationally, these work as you expect:

×

2

6

6

6

22

3

4
...

7/24

Recurrent neural networks

Recurrent neural networks (RNNs) process lists of inputs using
state, which is stored in registers:

ψ
i

Operationally, these work as you expect:

× 6

2

6

6

6

2

6

2

3

4
...

7/24

Recurrent neural networks

Recurrent neural networks (RNNs) process lists of inputs using
state, which is stored in registers:

ψ
i

Operationally, these work as you expect:

× 6

2

6

2

3

4
...

7/24

Recurrent neural networks

Recurrent neural networks (RNNs) process lists of inputs using
state, which is stored in registers:

ψ
i

Operationally, these work as you expect:

× 24

2

6

24
...

2

3

4
...

8/24

Unrollings and backpropagation through time (BPTT)

How do we train an RNN?

Usually, we use its unrollings:

U0Ψ : ψi

U1Ψ : ψi

ψ

U2Ψ : ψi

ψ
ψ

x0

x0

x0
x1
x2

x1

y0

y1

y2

Backpropagation through time (Werbos ‘90): Whenever the
derivative of Ψ is needed at an input of length k + 1, the
derivative of UkΨ is used instead.

8/24

Unrollings and backpropagation through time (BPTT)

How do we train an RNN? Usually, we use its unrollings:

U0Ψ : ψi

U1Ψ : ψi

ψ

U2Ψ : ψi

ψ
ψ

x0

x0

x0
x1
x2

x1

y0

y1

y2

Backpropagation through time (Werbos ‘90): Whenever the
derivative of Ψ is needed at an input of length k + 1, the
derivative of UkΨ is used instead.

8/24

Unrollings and backpropagation through time (BPTT)

How do we train an RNN? Usually, we use its unrollings:

U0Ψ : ψi

U1Ψ : ψi

ψ

U2Ψ : ψi

ψ
ψ

x0

x0

x0
x1
x2

x1

y0

y1

y2

Backpropagation through time (Werbos ‘90): Whenever the
derivative of Ψ is needed at an input of length k + 1, the
derivative of UkΨ is used instead.

9/24

Key questions

BPTT is useful in practice and makes sense with these operational
semantics.

However, some basic theoretical properties went
unaddressed in the literature:

1 Uk(Ψ ◦Φ) 6= UkΨ ◦ UkΦ. Can we save the chain rule? What
properties of derivatives hold for BPTT?

2 UkΨ and Uk+1Ψ have a lot in common; can we use this fact
to get a more compact representation for the derivative of Ψ?

Besides these, is it possible to incorporate differentiation directly
within a categorical framework?

9/24

Key questions

BPTT is useful in practice and makes sense with these operational
semantics. However, some basic theoretical properties went
unaddressed in the literature:

1 Uk(Ψ ◦Φ) 6= UkΨ ◦ UkΦ. Can we save the chain rule? What
properties of derivatives hold for BPTT?

2 UkΨ and Uk+1Ψ have a lot in common; can we use this fact
to get a more compact representation for the derivative of Ψ?

Besides these, is it possible to incorporate differentiation directly
within a categorical framework?

9/24

Key questions

BPTT is useful in practice and makes sense with these operational
semantics. However, some basic theoretical properties went
unaddressed in the literature:

1 Uk(Ψ ◦Φ) 6= UkΨ ◦ UkΦ. Can we save the chain rule? What
properties of derivatives hold for BPTT?

2 UkΨ and Uk+1Ψ have a lot in common; can we use this fact
to get a more compact representation for the derivative of Ψ?

Besides these, is it possible to incorporate differentiation directly
within a categorical framework?

9/24

Key questions

BPTT is useful in practice and makes sense with these operational
semantics. However, some basic theoretical properties went
unaddressed in the literature:

1 Uk(Ψ ◦Φ) 6= UkΨ ◦ UkΦ. Can we save the chain rule? What
properties of derivatives hold for BPTT?

2 UkΨ and Uk+1Ψ have a lot in common; can we use this fact
to get a more compact representation for the derivative of Ψ?

Besides these, is it possible to incorporate differentiation directly
within a categorical framework?

9/24

Key questions

BPTT is useful in practice and makes sense with these operational
semantics. However, some basic theoretical properties went
unaddressed in the literature:

1 Uk(Ψ ◦Φ) 6= UkΨ ◦ UkΦ. Can we save the chain rule? What
properties of derivatives hold for BPTT?

2 UkΨ and Uk+1Ψ have a lot in common; can we use this fact
to get a more compact representation for the derivative of Ψ?

Besides these, is it possible to incorporate differentiation directly
within a categorical framework?

10/24

Outline

1 Feedforward and recurrent neural networks

2 Statefulness, categorically

3 Differentiation, categorically

4 Training recurrent neural networks, categorically

11/24

Delayed trace

This loop-with-register is a
like a trace (Joyal+ ‘96)—we
call it a delayed trace,
meaning it satisfies the trace
axioms except yanking and
dinaturality.

ψ : S ×X → S × Y ψ

dtrSi (ψ) : X → Y ψ
i

S/T naturality: ψ
i

φ
= ψ

i

φφ′ φ′

Superposition: ψ
i

φ

= ψ
i

φ

Vanishing ×: ψ
i

j = ψ 〈i, j〉

11/24

Delayed trace

This loop-with-register is a
like a trace (Joyal+ ‘96)—we
call it a delayed trace,
meaning it satisfies the trace
axioms except yanking and
dinaturality.

ψ : S ×X → S × Y ψ

dtrSi (ψ) : X → Y ψ
i

S/T naturality: ψ
i

φ
= ψ

i

φφ′ φ′

Superposition: ψ
i

φ

= ψ
i

φ

Vanishing ×: ψ
i

j = ψ 〈i, j〉

11/24

Delayed trace

This loop-with-register is a
like a trace (Joyal+ ‘96)—we
call it a delayed trace,
meaning it satisfies the trace
axioms except yanking and
dinaturality.

ψ : S ×X → S × Y ψ

dtrSi (ψ) : X → Y ψ
i

S/T naturality: ψ
i

φ
= ψ

i

φφ′ φ′

Superposition: ψ
i

φ

= ψ
i

φ

Vanishing ×: ψ
i

j = ψ 〈i, j〉

11/24

Delayed trace

This loop-with-register is a
like a trace (Joyal+ ‘96)—we
call it a delayed trace,
meaning it satisfies the trace
axioms except yanking and
dinaturality.

ψ : S ×X → S × Y ψ

dtrSi (ψ) : X → Y ψ
i

S/T naturality: ψ
i

φ
= ψ

i

φφ′ φ′

Superposition: ψ
i

φ

= ψ
i

φ

Vanishing ×: ψ
i

j = ψ 〈i, j〉

12/24

St(C) construction

We give a construction extending a Cartesian category C to
another St(C) with a designated delayed trace, which models the
operational semantics for RNNs.

(Think of C as feedforward
networks and St(C) as recurrent networks.)

Proposition: Normal forms for St(C)
Every Ψ ∈ St(C)(A,B) can be written as Ψ = dtrSi (ψ) for some
ψ ∈ C(S ×A,S ×B) and i : 1→ S.

Adding state to computations is common:

1 Bicategorically—Katis, Sabadini, & Walters ‘97

2 Digital circuits—Ghica & Jung, ‘16

3 Signal flow graphs—Bonchi, Sobociński, & Zanasi, ‘14

12/24

St(C) construction

We give a construction extending a Cartesian category C to
another St(C) with a designated delayed trace, which models the
operational semantics for RNNs. (Think of C as feedforward
networks and St(C) as recurrent networks.)

Proposition: Normal forms for St(C)
Every Ψ ∈ St(C)(A,B) can be written as Ψ = dtrSi (ψ) for some
ψ ∈ C(S ×A,S ×B) and i : 1→ S.

Adding state to computations is common:

1 Bicategorically—Katis, Sabadini, & Walters ‘97

2 Digital circuits—Ghica & Jung, ‘16

3 Signal flow graphs—Bonchi, Sobociński, & Zanasi, ‘14

12/24

St(C) construction

We give a construction extending a Cartesian category C to
another St(C) with a designated delayed trace, which models the
operational semantics for RNNs. (Think of C as feedforward
networks and St(C) as recurrent networks.)

Proposition: Normal forms for St(C)
Every Ψ ∈ St(C)(A,B) can be written as Ψ = dtrSi (ψ) for some
ψ ∈ C(S ×A,S ×B) and i : 1→ S.

Adding state to computations is common:

1 Bicategorically—Katis, Sabadini, & Walters ‘97

2 Digital circuits—Ghica & Jung, ‘16

3 Signal flow graphs—Bonchi, Sobociński, & Zanasi, ‘14

12/24

St(C) construction

We give a construction extending a Cartesian category C to
another St(C) with a designated delayed trace, which models the
operational semantics for RNNs. (Think of C as feedforward
networks and St(C) as recurrent networks.)

Proposition: Normal forms for St(C)
Every Ψ ∈ St(C)(A,B) can be written as Ψ = dtrSi (ψ) for some
ψ ∈ C(S ×A,S ×B) and i : 1→ S.

Adding state to computations is common:

1 Bicategorically—Katis, Sabadini, & Walters ‘97

2 Digital circuits—Ghica & Jung, ‘16

3 Signal flow graphs—Bonchi, Sobociński, & Zanasi, ‘14

13/24

Outline

1 Feedforward and recurrent neural networks

2 Statefulness, categorically

3 Differentiation, categorically

4 Training recurrent neural networks, categorically

14/24

Cartesian differential categories [Blute, Cockett, Seely ’09]

Cartesian differential categories are the tool we use to introduce
differentiation into our categorical framework.

In detail, C is a
Cartesian differential category means:

1 C is Cartesian (has × and a terminal object 1),
2 every object has a chosen commutative monoid structure,

meaning there are 0X : 1→ X and +X : X ×X → X
satisfying:

+X ◦ (0X × idX) = idX

+X ◦ σX,X = +X ,

3 this commutative monoid structure interacts nicely with the
Cartesian structure:

0X×Y = 0X × 0Y
+X×Y = (+X ×+Y) ◦ (idX × σY,X × idY), and

4 there is a Cartesian differential operator on morphims sending
f : X → Y to Df : X ×X → Y satisfying seven axioms. . .

14/24

Cartesian differential categories [Blute, Cockett, Seely ’09]

Cartesian differential categories are the tool we use to introduce
differentiation into our categorical framework. In detail, C is a
Cartesian differential category means:

1 C is Cartesian (has × and a terminal object 1),

2 every object has a chosen commutative monoid structure,
meaning there are 0X : 1→ X and +X : X ×X → X
satisfying:

+X ◦ (0X × idX) = idX

+X ◦ σX,X = +X ,

3 this commutative monoid structure interacts nicely with the
Cartesian structure:

0X×Y = 0X × 0Y
+X×Y = (+X ×+Y) ◦ (idX × σY,X × idY), and

4 there is a Cartesian differential operator on morphims sending
f : X → Y to Df : X ×X → Y satisfying seven axioms. . .

14/24

Cartesian differential categories [Blute, Cockett, Seely ’09]

Cartesian differential categories are the tool we use to introduce
differentiation into our categorical framework. In detail, C is a
Cartesian differential category means:

1 C is Cartesian (has × and a terminal object 1),
2 every object has a chosen commutative monoid structure,

meaning there are 0X : 1→ X and +X : X ×X → X
satisfying:

+X ◦ (0X × idX) = idX

+X ◦ σX,X = +X ,

3 this commutative monoid structure interacts nicely with the
Cartesian structure:

0X×Y = 0X × 0Y
+X×Y = (+X ×+Y) ◦ (idX × σY,X × idY), and

4 there is a Cartesian differential operator on morphims sending
f : X → Y to Df : X ×X → Y satisfying seven axioms. . .

14/24

Cartesian differential categories [Blute, Cockett, Seely ’09]

Cartesian differential categories are the tool we use to introduce
differentiation into our categorical framework. In detail, C is a
Cartesian differential category means:

1 C is Cartesian (has × and a terminal object 1),
2 every object has a chosen commutative monoid structure,

meaning there are 0X : 1→ X and +X : X ×X → X
satisfying:

+X ◦ (0X × idX) = idX

+X ◦ σX,X = +X ,

3 this commutative monoid structure interacts nicely with the
Cartesian structure:

0X×Y = 0X × 0Y
+X×Y = (+X ×+Y) ◦ (idX × σY,X × idY), and

4 there is a Cartesian differential operator on morphims sending
f : X → Y to Df : X ×X → Y satisfying seven axioms. . .

14/24

Cartesian differential categories [Blute, Cockett, Seely ’09]

Cartesian differential categories are the tool we use to introduce
differentiation into our categorical framework. In detail, C is a
Cartesian differential category means:

1 C is Cartesian (has × and a terminal object 1),
2 every object has a chosen commutative monoid structure,

meaning there are 0X : 1→ X and +X : X ×X → X
satisfying:

+X ◦ (0X × idX) = idX

+X ◦ σX,X = +X ,

3 this commutative monoid structure interacts nicely with the
Cartesian structure:

0X×Y = 0X × 0Y
+X×Y = (+X ×+Y) ◦ (idX × σY,X × idY), and

4 there is a Cartesian differential operator on morphims sending
f : X → Y to Df : X ×X → Y satisfying seven axioms. . .

15/24

Cartesian differential operator axioms

A Cartesian differential operator sending f : X → Y to
Df : X ×X → Y satisfies these axioms:

CD1. Ds =
s

for s ∈ {idX , σX,Y , !X ,∆X , 0X ,+X}.

CD2. Df
0

=
0

CD3. Df
+

= Df

Df
+

CD4. D(=
f

Df
Dgf g)

CD5. =
Dg

Df
D(

f

g
)

16/24

Cartesian differential operator axioms, continued

CD6. DDf0 = Df

CD7. DDf = DDf

Example

Objects of the category Euc∞ are Rn for n ∈ N, maps are smooth
functions between them. Euc∞ is a Cartesian differential category
with the (curried) Jacobian sending f : Rn → Rm to
Df : (∆x, x) 7→ Jf |x ×∆x.

Suppose C is a Cartesian differential category. Can we give St(C)
a differential operator as well?

16/24

Cartesian differential operator axioms, continued

CD6. DDf0 = Df

CD7. DDf = DDf

Example

Objects of the category Euc∞ are Rn for n ∈ N, maps are smooth
functions between them. Euc∞ is a Cartesian differential category
with the (curried) Jacobian sending f : Rn → Rm to
Df : (∆x, x) 7→ Jf |x ×∆x.

Suppose C is a Cartesian differential category. Can we give St(C)
a differential operator as well?

16/24

Cartesian differential operator axioms, continued

CD6. DDf0 = Df

CD7. DDf = DDf

Example

Objects of the category Euc∞ are Rn for n ∈ N, maps are smooth
functions between them. Euc∞ is a Cartesian differential category
with the (curried) Jacobian sending f : Rn → Rm to
Df : (∆x, x) 7→ Jf |x ×∆x.

Suppose C is a Cartesian differential category. Can we give St(C)
a differential operator as well?

17/24

Differentiating RNN unrollings

D(=)ψi Dψ
i

0

D(=)
Dψ

i

0

ψi
ψ

ψ
Dψ

D(=)
Dψ

i

0

ψi
ψ

ψ
Dψ

ψ

ψ
Dψ

18/24

What could this be the unrolling of?

D(=)
Dψ

i

0

ψi
ψ

ψ
Dψ

ψ

ψ
Dψ

Enough staring suggests the recurrence rule:

D∗ ,ψ
i

D∗ψ
ψ

0

i

18/24

What could this be the unrolling of?

D(=)
Dψ

i

0

ψi
ψ

ψ
Dψ

ψ

ψ
Dψ

Enough staring suggests the recurrence rule:

D∗ ,ψ
i

D∗ψ
ψ

0

i

19/24

Main contributions

Theorem: causal differentiation

If C is a Cartesian differential category with differential operator D,
then St(C) is also Cartesian differential with a related operator D∗.

(The differential operator D∗ is basically D augmented with the
recurrence rule.)

Theorem: categorical BPTT

DUk(Ψ) = Uk(D∗Ψ) ◦ zk for all k ∈ N and Ψ ∈ St(C)(A,B).
(z : (

∏
Xi)× (

∏
Yi)→

∏
(Xi × Yi) is a zipping isomorphism.)

Upshot: All the properties of derivatives in Cartesian differential
categories hold for backpropagation through time!

19/24

Main contributions

Theorem: causal differentiation

If C is a Cartesian differential category with differential operator D,
then St(C) is also Cartesian differential with a related operator D∗.

(The differential operator D∗ is basically D augmented with the
recurrence rule.)

Theorem: categorical BPTT

DUk(Ψ) = Uk(D∗Ψ) ◦ zk for all k ∈ N and Ψ ∈ St(C)(A,B).
(z : (

∏
Xi)× (

∏
Yi)→

∏
(Xi × Yi) is a zipping isomorphism.)

Upshot: All the properties of derivatives in Cartesian differential
categories hold for backpropagation through time!

19/24

Main contributions

Theorem: causal differentiation

If C is a Cartesian differential category with differential operator D,
then St(C) is also Cartesian differential with a related operator D∗.

(The differential operator D∗ is basically D augmented with the
recurrence rule.)

Theorem: categorical BPTT

DUk(Ψ) = Uk(D∗Ψ) ◦ zk for all k ∈ N and Ψ ∈ St(C)(A,B).
(z : (

∏
Xi)× (

∏
Yi)→

∏
(Xi × Yi) is a zipping isomorphism.)

Upshot: All the properties of derivatives in Cartesian differential
categories hold for backpropagation through time!

20/24

Example: stateful chain rule

φ
i

ψ
jD∗()

20/24

Example: stateful chain rule

D∗φ
φ

0

i

D∗ψ
ψ

0

j

φ i

φ
i

ψ
jD∗() =

20/24

Example: stateful chain rule

φ

i

ψ
jD∗(

D∗φ
φ

0

i

D∗ψ
ψ

0

j

φ i

φ
i

ψ
jD∗()

=

=

)

20/24

Example: stateful chain rule

φ

i

ψ
jD∗(

D∗φ
φ

0

i

D∗ψ
ψ

0

j

φ i

φ
i

ψ
jD∗()

=

=

)

20/24

Example: stateful chain rule

D∗φ

φ

0

D∗ψ
0

φ

i

ψ
jD∗(

φ

i

ψ
j

D∗φ
φ

0

i

D∗ψ
ψ

0

j

φ i

φ
i

ψ
jD∗()

=

=

) =

20/24

Example: stateful chain rule

D∗φ

φ

0

D∗ψ
0

φ

i

ψ
jD∗(

φ

i

ψ
j

D∗φ
φ

0

i

D∗ψ
ψ

0

j

φ i

φ
i

ψ
jD∗()

=

=

) =

=

21/24

Messages

1 Given a Cartesian differential category C, we can construct
St(C), another CDC with stateful functions (delayed trace).

2 Differentiation for stateful functions includes a recurrence rule:

D∗ ,ψ
i

D∗ψ
ψ

0

i

3 Stateful differentiation is connected to BPTT, and we can
find many useful properties of BPTT with this connection.

4 Category theory and compositionality can be useful tools to
organize and find structure in machine learning.

21/24

Messages

1 Given a Cartesian differential category C, we can construct
St(C), another CDC with stateful functions (delayed trace).

2 Differentiation for stateful functions includes a recurrence rule:

D∗ ,ψ
i

D∗ψ
ψ

0

i

3 Stateful differentiation is connected to BPTT, and we can
find many useful properties of BPTT with this connection.

4 Category theory and compositionality can be useful tools to
organize and find structure in machine learning.

21/24

Messages

1 Given a Cartesian differential category C, we can construct
St(C), another CDC with stateful functions (delayed trace).

2 Differentiation for stateful functions includes a recurrence rule:

D∗ ,ψ
i

D∗ψ
ψ

0

i

3 Stateful differentiation is connected to BPTT, and we can
find many useful properties of BPTT with this connection.

4 Category theory and compositionality can be useful tools to
organize and find structure in machine learning.

21/24

Messages

1 Given a Cartesian differential category C, we can construct
St(C), another CDC with stateful functions (delayed trace).

2 Differentiation for stateful functions includes a recurrence rule:

D∗ ,ψ
i

D∗ψ
ψ

0

i

3 Stateful differentiation is connected to BPTT, and we can
find many useful properties of BPTT with this connection.

4 Category theory and compositionality can be useful tools to
organize and find structure in machine learning.

22/24

Future questions (roughly theoretical to practical)

1 Categorical properties of St(−)?

2 D∗ and infinite-dimensional derivatives?

3 Bisimulations and extensional equality?

4 Basic results for delayed trace categories?

5 Extra structure for reverse-mode AD?

6 Probabilistic/nondeterministic causal functions?

7 Partial functions with differential restriction categories?

8 Iterations I: RNN parameters in St(St(C))?

9 Iterations II: RNN hyperparameters in St(St(St(C)))?

10 Measuring complexity with string diagrams?

11 What happens when φ ∈ {LSTM,GRU, . . .}?
12 Implementation/plugin to neural net library?

23/24

References
R.F. Blute, J.R.B. Cockett, and R.A.G. Seely.
Cartesian differential categories.
Theory and Applications of Categories, 22(23):622–672, 2009.

F. Bonchi, P. Sobociński, and F. Zanasi.
A categorical semantics of signal flow graphs.
In CONCUR 2014, 2014.

C. Elliott.
The simple essence of automatic differentiation.
PACMPL, 2(ICFP):70:1–70:29, 2018.

B. Fong, D. Spivak, and R. Tuyéras.
Backprop as functor: A compositional perspective on supervised learning.
See arxiv.org/abs/1711.10455, 2017.

D.R. Ghica and A. Jung.
Categorical semantics of digital circuits.
FMCAD ’16, Austin, TX, 2016.

P. Katis, N. Sabadini, and R.F.C. Walters.
Bicategories of processes.
Journal of Pure and Applied Algebra, 115(2):141–178, Feb 1997.

P.J. Werbos.
Backpropagation through time: what it does and how to do it.
Proceedings of the IEEE, 78(10):1550–1560, Oct 1990.

arxiv.org/abs/1711.10455

24/24

Thanks!

	Feedforward and recurrent neural networks
	Statefulness, categorically
	Differentiation, categorically
	Training recurrent neural networks, categorically

