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. . . but still faces incredible challenges.

Adversarial attacks
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. . . but still faces incredible challenges.

Adversarial attacks

Explainability

Real-world/training mismatch

Privacy
. . . and more!
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Categorical tools may help

LeNet, 1998

AlexNet, 2012

GoogLeNet, 2014

InceptionV3, 2015
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Outline

1 Feedforward and recurrent neural networks

2 Statefulness, categorically

3 Differentiation, categorically

4 Training recurrent neural networks, categorically



6/24

Feedforward neural networks

A neural network is a function taking data inputs (from the
environment) and parameters (from us). Diagrammatically:

φparameters: θ ∈ Rk output: y ∈ Rm
data inputs: x ∈ Rn

Training a neural network means finding θ∗ : 1→ Rk so that

φ
x̂i

yi ≈ ŷi
θ∗

Gradient-based training algorithms are based on the insight that
∂φ
∂θ is a good approximation for the change in y that results from a
small change in θ. This allows us to make smart updates to θ∗.

Backpropagation (Rumelhart ‘86) is an algorithm that finds
derivatives of functions f : Rn → Rm, with excellent performance
when n� m.
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Recurrent neural networks

Recurrent neural networks (RNNs) process lists of inputs using
state, which is stored in registers:

ψ
i

Operationally, these work as you expect:
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Unrollings and backpropagation through time (BPTT)

How do we train an RNN?

Usually, we use its unrollings:

U0Ψ : ψi

U1Ψ : ψi

ψ

U2Ψ : ψi

ψ
ψ

x0

x0

x0
x1
x2

x1

y0

y1

y2

Backpropagation through time (Werbos ‘90): Whenever the
derivative of Ψ is needed at an input of length k + 1, the
derivative of UkΨ is used instead.
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Key questions

BPTT is useful in practice and makes sense with these operational
semantics.

However, some basic theoretical properties went
unaddressed in the literature:

1 Uk(Ψ ◦Φ) 6= UkΨ ◦ UkΦ. Can we save the chain rule? What
properties of derivatives hold for BPTT?

2 UkΨ and Uk+1Ψ have a lot in common; can we use this fact
to get a more compact representation for the derivative of Ψ?

Besides these, is it possible to incorporate differentiation directly
within a categorical framework?
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Delayed trace

This loop-with-register is a
like a trace (Joyal+ ‘96)—we
call it a delayed trace,
meaning it satisfies the trace
axioms except yanking and
dinaturality.

ψ : S ×X → S × Y ψ

dtrSi (ψ) : X → Y ψ
i

S/T naturality: ψ
i

φ
= ψ

i

φφ′ φ′

Superposition: ψ
i

φ

= ψ
i

φ

Vanishing ×: ψ
i

j = ψ 〈i, j〉
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St(C) construction

We give a construction extending a Cartesian category C to
another St(C) with a designated delayed trace, which models the
operational semantics for RNNs.

(Think of C as feedforward
networks and St(C) as recurrent networks.)

Proposition: Normal forms for St(C)
Every Ψ ∈ St(C)(A,B) can be written as Ψ = dtrSi (ψ) for some
ψ ∈ C(S ×A,S ×B) and i : 1→ S.

Adding state to computations is common:

1 Bicategorically—Katis, Sabadini, & Walters ‘97

2 Digital circuits—Ghica & Jung, ‘16

3 Signal flow graphs—Bonchi, Sobociński, & Zanasi, ‘14
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Cartesian differential categories [Blute, Cockett, Seely ’09]

Cartesian differential categories are the tool we use to introduce
differentiation into our categorical framework.

In detail, C is a
Cartesian differential category means:

1 C is Cartesian (has × and a terminal object 1),
2 every object has a chosen commutative monoid structure,

meaning there are 0X : 1→ X and +X : X ×X → X
satisfying:

+X ◦ (0X × idX) = idX

+X ◦ σX,X = +X ,

3 this commutative monoid structure interacts nicely with the
Cartesian structure:

0X×Y = 0X × 0Y
+X×Y = (+X ×+Y ) ◦ (idX × σY,X × idY ), and

4 there is a Cartesian differential operator on morphims sending
f : X → Y to Df : X ×X → Y satisfying seven axioms. . .
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Cartesian differential operator axioms

A Cartesian differential operator sending f : X → Y to
Df : X ×X → Y satisfies these axioms:

CD1. Ds =
s

for s ∈ {idX , σX,Y , !X ,∆X , 0X ,+X}.

CD2. Df
0

=
0

CD3. Df
+

= Df

Df
+

CD4. D( =
f

Df
Dgf g )

CD5. =
Dg

Df
D(

f

g
)
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Cartesian differential operator axioms, continued

CD6. DDf0 = Df

CD7. DDf = DDf

Example

Objects of the category Euc∞ are Rn for n ∈ N, maps are smooth
functions between them. Euc∞ is a Cartesian differential category
with the (curried) Jacobian sending f : Rn → Rm to
Df : (∆x, x) 7→ Jf |x ×∆x.

Suppose C is a Cartesian differential category. Can we give St(C)
a differential operator as well?
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Differentiating RNN unrollings

D( =)ψi Dψ
i

0

D( =)
Dψ

i

0

ψi
ψ

ψ
Dψ

D( =)
Dψ

i

0

ψi
ψ

ψ
Dψ

ψ

ψ
Dψ
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What could this be the unrolling of?

D( =)
Dψ

i

0

ψi
ψ

ψ
Dψ

ψ

ψ
Dψ

Enough staring suggests the recurrence rule:

D∗ ,ψ
i

D∗ψ
ψ

0

i
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Main contributions

Theorem: causal differentiation

If C is a Cartesian differential category with differential operator D,
then St(C) is also Cartesian differential with a related operator D∗.

(The differential operator D∗ is basically D augmented with the
recurrence rule.)

Theorem: categorical BPTT

DUk(Ψ) = Uk(D∗Ψ) ◦ zk for all k ∈ N and Ψ ∈ St(C)(A,B).
(z : (

∏
Xi)× (

∏
Yi)→

∏
(Xi × Yi) is a zipping isomorphism.)

Upshot: All the properties of derivatives in Cartesian differential
categories hold for backpropagation through time!
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Example: stateful chain rule

φ
i

ψ
jD∗( )
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ψ
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φ
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ψ
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Example: stateful chain rule

D∗φ

φ
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φ
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φ

i

ψ
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φ
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ψ
jD∗( )

=

=

) =
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Messages

1 Given a Cartesian differential category C, we can construct
St(C), another CDC with stateful functions (delayed trace).

2 Differentiation for stateful functions includes a recurrence rule:

D∗ ,ψ
i

D∗ψ
ψ

0

i

3 Stateful differentiation is connected to BPTT, and we can
find many useful properties of BPTT with this connection.

4 Category theory and compositionality can be useful tools to
organize and find structure in machine learning.
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organize and find structure in machine learning.
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Future questions (roughly theoretical to practical)

1 Categorical properties of St(−)?

2 D∗ and infinite-dimensional derivatives?

3 Bisimulations and extensional equality?

4 Basic results for delayed trace categories?

5 Extra structure for reverse-mode AD?

6 Probabilistic/nondeterministic causal functions?

7 Partial functions with differential restriction categories?

8 Iterations I: RNN parameters in St(St(C))?

9 Iterations II: RNN hyperparameters in St(St(St(C)))?

10 Measuring complexity with string diagrams?

11 What happens when φ ∈ {LSTM,GRU, . . .}?
12 Implementation/plugin to neural net library?
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