
The ultimate guide to building modern CSS layouts with flexbox

UNRAVELING

FLEXBOX

Landon Schropp

Sample	Version	1.3

Copyright	©	2016	Landon	Schropp	LLC

All	Rights	Reserved

This	is	a	sample	of	Unraveling	Flexbox.	The	full	version	is

available	for	purchase	at	unravelingflexbox.com.

https://unravelingflexbox.com/?utm_source=Sample&utm_medium=PDF&utm_campaign=UnravelingFlexbox

INTRODUCTION

Have	you	ever	spent	hours	agonizing	over	a	CSS	layout	that

just	wouldn't	work?	Have	you	struggled	with	columns,

vertical	centering,	floats	or	inline	displays?	Have	you	even,

gasp,	given	up	and	used	tables	for	your	layouts?

It’s	time	to	say	goodbye	to	all	that	pain.	Flexbox	is	a	CSS

layout	specification	that	makes	it	easy	to	construct	dynamic

layouts.	It's	a	set	of	tools	that	gives	you	more	flexibility	and

power	with	CSS	than	you've	ever	had	before.	With	flexbox,

vertical	centering,	same-height	columns,	reordering,	and

direction	agnosticism	are	a	piece	of	cake.

There's	a	popular	myth	floating	around	that	flexbox	isn't

ready	for	prime	time	yet.	Wrong!	93%	of	people	are	now

running	a	browser	that	supports	flexbox,	and	that

number	is	growing	every	day.	That's	better	than	the

support	for	the	HTML5	<video>	element!	You	can	use

flexbox	today	and	it	will	work	almost	everywhere!

This	book	is	your	guide	to	mastering	flexbox.	It	will	teach

you	the	ins	and	outs	of	all	the	properties	and	how	they

interact	together.	More	importantly,	it	will	show	you	how	to

apply	them	to	real	layouts.

What's	in	the	Book?

This	book	is	about	teaching	you	to	use	flexbox	in	the	real

world.	The	examples	in	each	chapter	are	as	true	to	life	as	I

could	make	them.	Many	of	them	are	layouts	I've	previously

built	for	paying	clients.	You	can	use	what	you	learn	here

directly	in	your	projects.

Here's	the	breakdown:

Chapter	1:	Getting	Dicey

In	this	chapter,	you'll	build	your	very	first	layout,	the	faces	of

dice!

Chapter	2:	Crafting	Twelve-Column	Layouts

Learn	how	you	can	use	flexbox	to	build	twelve-column

layouts	you've	always	needed	a	grid	system	for	in	the	past.

Chapter	3:	Building	a	Video	Player

Build	a	video	player	with	flexbox	that'll	make	YouTube's

developers	jealous.

Chapter	4:	Say	Goodbye	to	Vendor	Prefixes

I’ll	show	you	how	to	set	up	your	environment	so	you	can

ignore	all	vendor	prefixes.	You’ll	write	your	code	once,	and	it

will	work	everywhere!

Chapter	5:	Breaking	Free	From	Twelve-Column

Layouts

You'll	go	beyond	twelve-columns	and	build	a	cool	calendar

layout	in	the	process.

Chapter	6:	Perfect	Pricing

Create	a	pricing	layout	that	will	feel	right	at	home	on	any

marketing	site.

Chapter	7:	Flexbox	Forms

Flexbox	isn't	just	for	full-page	layouts!	In	this	chapter,	you'll

learn	how	to	use	flexbox	to	build	small,	reusable	form

controls.

Chapter	8:	Responsive	Design

Learn	how	to	harness	flexbox	for	responsive	layouts	that

work	great	on	both	desktop	and	mobile.

Chapter	9:	Wrapping	Like	a	Boss

Say	goodbye	to	floats	and	clearfixes.	You'll	be	using	flexbox's

fantastic	wrapping	controls	from	now	on.

Chapter	10:	Progressive	Enhancement

You'll	learn	how	to	take	advantage	of	the	flexbox	goodness

and	still	support	Internet	Explorer	9	and	below!

Chapter	11:	Ordering

The	order	of	the	elements	on	your	screen	doesn't	have	to

match	the	order	in	the	HTML.	This	chapter	will	show	you

how	to	reorder	these	elements	with	flexbox.

Chapter	12:	Cross-Browser	Testing

You'll	learn	how	to	test	your	code	across	every	major	browser

and	device.

Chapter	13:	How	to	Write	a	Grid	System

Have	you	ever	wondered	how	grid	systems	like	960gs	work?

In	this	chapter	you'll	create	your	very	own	flexbox	grid

system.

Chapter	14:	Minesweeper

You'll	use	everything	you've	learned	in	this	book	to	build	an

awesome	Minesweeper	layout!

When	a	book	contains	too	many	details,	it's	difficult	to	catch

the	important	points.	In	this	book	I've	omitted	styles	that

don't	apply	to	flexbox,	such	as	typography,	colors	and

borders.	If	you'd	like	to	see	all	of	the	styles	for	a	chapter,

take	a	look	at	the	code	examples.

Code	Examples

The	examples	for	this	book	are	powered	by	Middleman,	a

static	site	generator	that	makes	it	easy	to	build	HTML	and

CSS	websites.	There	are	several	ways	for	you	to	access	the

example	code:

The	last	option	is	trickier	than	the	first	three,	so	I'd	only

recommend	it	if	you're	feeling	ambitious.	If	you're	a	Mac

user,	I've	recorded	a	video	to	make	the	installation	process

easier	for	you.	If	you're	a	Windows	user,	there's	currently	a

bug	in	Middleman	preventing	you	from	running	the

examples.

The	first	step	is	to	install	the	project's	dependencies:

View	the	source	on	GitHub.•

Download	the	compiled	build.•

Browse	the	hosted	examples.•

Run	the	example	server	yourself.•

Ruby•

Git•

NodeJS•

Bundler•

https://middlemanapp.com/
https://github.com/LandonSchropp/unraveling_flexbox
https://unravelingflexbox.com/downloads/build
https://example.unravelingflexbox.com
https://youtu.be/IuDtUXXXJl8
https://www.ruby-lang.org/en/documentation/installation/
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://nodejs.org/en/download/
http://bundler.io/

Next,	clone	the	project's	Git	repository	and	switch	into	that

directory.

git	clone	"https://github.com/"\

"LandonSchropp/unraveling_flexbox"

cd	unraveling_flexbox

Use	Bundler	to	install	the	project's	gem	dependencies.

bundle	install

Finally,	start	up	the	Middleman	server.

bundle	exec	middleman

If	everything's	set	up	correctly,	you	can	navigate	to

http://localhost:4567	to	view	the	examples.

Acknowledgements

I'd	like	to	thank	my	wife,	Danielle,	for	all	her	support	in

writing	this	book.	I've	spent	too	many	evenings	hunched

over	my	computer	instead	of	hanging	out	with	her.	Not	only

did	she	tolerate	my	insanity,	but	she	gave	a	large	portion	of

her	own	time	to	editing	this	book.	Love	you	Danielle!

http://localhost:4567

I'd	also	like	to	thank	my	beta	readers,	especially	Joshua,

Darrin,	Andrew,	Duc	and	Christine.	You	guys	made	a	huge

difference	in	the	quality	of	this	book,	and	I	really	appreciate

it!

Enough	Chitchat

Let's	dive	in.	Welcome	to	Unraveling	Flexbox!

CHAPTER 1

Getting Dicey

The	six	dice	faces

The	best	way	to	learn	flexbox	is	to	roll	up	your	sleeves	and

write	some	code.	In	this	chapter,	I’ll	walk	you	through	your

very	first	flexbox	layout:	the	faces	of	dice!

The	First	Face

A	standard	playing	die	consists	of	six	faces	(sides).	Each	face

has	a	number	of	pips	(dots)	which	determine	the	value	of	the

side.	The	first	side	consists	of	a	single	pip	in	the	center	of	the

face.

Let's	start	by	writing	the	HTML	for	the	first	face.

<div	class="first-face">

		

</div>

To	make	life	a	little	easier,	I’ve	added	the	basic	styles	for	the

faces	and	the	pips.	Here's	what	it	looks	like:

The	first	step	is	to	tell	the	browser	to	make	the	face	a	flexbox

container.

.first-face	{

		display:	flex;

}

It	doesn't	look	any	different,	but	there's	a	lot	going	on	under

the	hood.

The	flexbox	container's	main	axis	and	cross	axis

The	first-face	container	now	has	a	horizontal	main	axis.

The	main	axis	of	a	flex	container	can	be	horizontal	or

vertical.	The	default	is	horizontal.	If	we	added	another	pip	to

the	face,	it	would	show	up	to	the	right	of	the	first	one.	The

container	also	has	a	vertical	cross	axis.	The	cross	axis	is

always	perpendicular	to	the	main	axis.

The	justify-content	property	defines	the	alignment	along

the	main	axis.	Since	we	want	to	center	the	pip	along	the

main	axis,	we'll	use	the	center	value.

.first-face	{

		display:	flex;

		justify-content:	center;

}

All	right!	Since	the	main	axis	is	horizontal,	the	pip	is	now

centered	in	the	parent	element.

The	align-items	property	dictates	how	the	items	are	laid

out	along	the	cross	axis.	Because	we	want	the	pip	to	center

along	this	axis,	use	the	center	value	here	too.

.first-face	{

		display:	flex;

		justify-content:	center;

		align-items:	center;

}

And	just	like	that,	the	pip	is	centered!	Horizontally	and

Vertically	centering	an	element	was	one	of	the	hardest	tricks

to	accomplish	in	CSS	before	flexbox,	and	you've	done	it	in	a

few	lines	of	code!

Getting	Trickier

On	the	second	face	of	a	die,	the	first	pip	is	in	the	top	left

corner	and	the	second	is	in	the	bottom	right.	That's	also

pretty	easy	to	do	with	flexbox!

Again,	start	with	the	markup	and	the	basic	CSS.

<div	class="second-face">

		

		

</div>

.second-face	{

		display:	flex;

}

Now	you	have	two	pips	right	next	to	each	other.	This	time

around,	the	pips	should	be	on	opposite	sides	of	the	face.

There's	a	value	for	justify-content	that	will	let	us	do	just

that:	space-between.

The	space-between	value	evenly	fills	the	space	between	flex

items.	Since	there	are	only	two	pips,	this	pushes	them	away

from	each	other.

.second-face	{

		display:	flex;

		justify-content:	space-between;

}

Here's	where	we	run	into	a	problem.	Unlike	before,	you	can't

set	align-items	because	it	will	affect	both	pips.	Luckily,

flexbox	includes	align-self.	This	handy	property	lets	you

align	individual	items	in	a	flex	container	along	the	cross

axis!	The	value	you	want	for	this	property	is	flex-end.

.second-face	{

		display:	flex;

		justify-content:	space-between;

}

.second-face	.pip:nth-of-type(2)	{

		align-self:	flex-end;

}

Looks	good!

Horizontal	and	Vertical	Nesting

Let's	skip	the	third	face	and	tackle	the	fourth.	This	one	is	a

little	trickier	than	the	others	because	we	need	to	support	two

columns,	each	with	two	pips.

There	are	two	things	about	flexbox	that	will	save	you	here:

flex	containers	can	have	vertical	or	horizontal	content,	and

flex	containers	can	be	nested.

Unlike	before,	the	markup	will	now	include	columns.

<div	class="fourth-face">

		<div	class="column">

				

				

		</div>

		<div	class="column">

				

				

		</div>

</div>

Since	you	want	the	two	columns	to	be	on	opposite	sides,	go

ahead	and	use	justify-content:	space-between	like	you

did	before.

.fourth-face	{

		display:	flex;

		justify-content:	space-between;

}

Next,	you	need	to	make	the	columns	flex	containers.	It	might

seem	like	they	already	are,	but	remember	that	you	haven't

set	display:	flex	yet.	You	can	use	the	flex-direction

property	to	to	set	the	direction	of	the	main	axis	to	column.

.fourth-face	{

		display:	flex;

		justify-content:	space-between;

}

.fourth-face	.column	{

		display:	flex;

		flex-direction:	column;

}

It	doesn't	look	any	different,	but	the	columns	are	now	flex

containers.	Notice	how	you	stuck	a	flex	container	directly

inside	another	flex	container?	That's	okay!	Flexbox	doesn't

care	if	the	containers	are	nested.

The	final	step	is	to	space	the	pips	apart	from	each	other.

Since	the	main	axis	for	the	columns	is	vertical,	you	can	use

justify-content	again.

.fourth-face	{

		display:	flex;

		justify-content:	space-between;

}

.fourth-face	.column	{

		display:	flex;

		flex-direction:	column;

		justify-content:	space-between;

}

Note:	This	face	could	have	been	built	without	columns	by	using

wrapping.	I'll	cover	wrapping	in	more	detail	in	Chapter	9.

Wrapping	Up

Woohoo!	Three	faces	down	and	three	to	go.	At	this	point,

you	have	everything	you	need	to	build	the	other	three.	Give

it	a	shot!	When	you're	done,	take	a	look	at	the	code	examples

for	the	answers.

CHAPTER 2

Crafting Twelve-Column Layouts

In	a	twelve-column	layout,	the	page	is	broken	apart	into

twelve	invisible	columns.	These	columns	have	small

amounts	of	space	between	them,	called	gutters.	The	page	is

divided	into	rows,	and	the	containers	in	the	rows	take	up	a

certain	number	of	columns.

A	twelve-column	grid	with	columns	and	gutters

If	you	look	for	them,	you'll	start	to	see	twelve-column

layouts	everywhere.	Take	a	look	at	these	landing	pages	from

Heroku,	ChowNow	and	Square.	Notice	how	the	sections	are

broken	up	into	halves,	thirds	and	fourths?

In	this	chapter,	I'll	show	you	how	to	use	the	flex-grow,

flex-shrink	and	flex-basis	properties	to	build	twelve-

column	layouts,	without	the	need	for	a	library!

https://www.heroku.com/
https://www.chownow.com/
https://squareup.com/

Examples	of	twelve-column	layouts	from	Heroku,	ChowNow	and	Square

Setting	Up	the	Container

Let's	say	you	want	each	of	the	<div>	elements	in	the

following	HTML	to	take	up	a	third	of	the	<section>.

<section>

		<div	class="column">First</div>

		<div	class="column">Second</div>

		<div	class="column">Third</div>

</section>

By	default,	the	<section>	element	takes	up	100%	of	the

width	of	the	screen.	Start	by	limiting	its	width	to	740	pixels.

While	you're	at	it,	also	add	gutters	around	the	columns.

section	{

		max-width:	740px;

		margin:	0	auto;

}

.column	{

		margin:	10px;

}

Pop	open	the	code	examples	and	try	dragging	your	browser

window	until	it's	smaller	than	740	pixels.	Notice	how	the

<section>	gets	smaller	as	the	screen	shrinks,	but	stays	fixed

when	the	screen	is	larger	than	740	pixels?

Flexin'	It	Up

Make	the	<section>	a	flex	container	like	you	did	in

Chapter	1.

section	{

		max-width:	740px;

		margin:	0	auto;

		display:	flex;

}

By	default,	flexbox	sets	the	widths	of	the	columns	to	the	size

of	their	content.	You	can	change	this	behavior	by	using	the

flex-grow	and	flex-shrink	properties.

The	flex-grow	property	tells	flexbox	how	to	grow	the	item

to	take	up	additional	space,	if	necessary.	flex-shrink	tells

flexbox	how	to	shrink	when	necessary.	Since	we	want	the

columns	to	behave	the	same	while	growing	and	shrinking,

set	both	of	these	properties	to	1.

.column	{

		margin:	10px;

		flex-grow:	1;

		flex-shrink:	1;

}

Woohoo!	The	flexbox	container	now	fills	up	three	columns.

The	values	for	flex-grow	and	flex-shrink	are	proportional,

meaning	they	change	relative	to	other	items	in	the	flex

container.	Flexbox	adds	the	values	for	the	properties	and

then	divides	each	column's	value	by	that	sum.	So	each

column	takes	up	1	÷	(1	+	1	+	1),	or	⅓	of	the	total	space.

What	happens	if	one	of	the	columns	has	a	different	value?

.column:first-of-type	{

		flex-grow:	2;

		flex-shrink:	2;

}

The	first	column	takes	up	the	same	amount	of	space	as	the

other	two.	That's	because	the	values	add	up	to	4,	so	the	first

column	is:

2	÷	(2	+	1	+	1)	=	½

The	other	two	are:

1	÷	(2	+	1	+	1)	=	¼

All	About	That	Basis

If	you	look	closely	at	the	last	example,	you'll	notice	that	the

first	column	doesn't	quite	cover	half	of	the	container.	If	you

add	more	content	to	the	third	column,	you	can	really	see	the

problem.

<section>

		<div	class="column">First</div>

		<div	class="column">Second</div>

		<div	class="column">

				The	third	column,	with	more	content	than

				before!

		</div>

</section>

What's	going	on?	Why	is	flexbox	not	flexing	correctly?

It	turns	out	flexbox	doesn't	distribute	space	evenly	to	each

column.	It	figures	out	how	much	space	each	column	starts

with,	specified	by	the	flex-basis	property.	Then,	the

remaining	space	is	distributed	using	the	flex-grow	and

flex-shrink	properties.

This	might	seem	confusing,	and	that's	because	it	is.	The	way

this	stuff	adds	up	is	really	damn	complicated,	but	don't

worry,	you	don't	need	to	understand	the	nuances	to	use

flexbox.

Since	we	don't	care	about	how	much	space	the	content

originally	takes	up,	set	flex-basis	to	0.

http://chriswrightdesign.com/experiments/flexbox-adventures/

.column	{

		margin:	10px;

		flex-grow:	1;

		flex-shrink:	1;

		flex-basis:	0;

}

.column:first-of-type	{

		flex-grow:	2;

		flex-shrink:	2;

		flex-basis:	0;

}

Tah-dah!	It	works!	Well,	kind	of—there's	one	last	thing	to

fix.

More	Flex	Basis

If	you	add	another	section	below	the	first,	you	can	see	the

problem.

<section>

		<div	class="column">First</div>

		<div	class="column">Second</div>

		<div	class="column">Third</div>

</section>

<section>

		<div	class="column">First</div>

		<div	class="column">Second</div>

		<div	class="column">Third</div>

		<div	class="column">Fourth</div>

</section>

.column	{

		margin:	10px;

		flex-grow:	1;

		flex-shrink:	1;

		flex-basis:	0;

}

section:first-of-type	.column:first-of-type	{

		flex-grow:	2;

		flex-shrink:	2;

		flex-basis:	0;

}

Why	don't	the	columns	line	up?	It's	because	flexbox	includes

the	padding,	border	and	margin	in	the	basis	when	it

calculates	how	big	the	item	should	be.

The	first	and	second	columns	in	the	second	row	have	22

pixels	between	them	(20	pixels	for	the	gutter	and	2	pixels	for

the	borders).	We	can	add	this	missing	space	to	the	first

column	in	the	first	row	by	setting	flex-basis	to	22px.

section:first-of-type	.column:first-of-type	{

		flex-grow:	2;

		flex-shrink:	2;

		flex-basis:	22px;

}

Shorthand

Together,	flex-grow,	flex-shrink	and	flex-basis	form	the

cornerstone	of	what	makes	flexbox	flexible.	Since	these

properties	are	so	closely	tied	together,	there's	a	handy

shorthand	property,	flex,	that	lets	you	set	all	three.	You	can

use	it	like	this:

flex:	<flex-grow>	<flex-shrink>	<flex-basis>;

We	can	rewrite	our	CSS	to	look	like	this:

.column	{

		flex:	1	1	0px;

}

section:first-of-type	.column:first-of-type	{

		flex:	2	2	22px;

}

Ahh,	that's	better.	Why	the	0px	in	the	first	flex	declaration?

There's	a	bug	in	Internet	Explorer	10	and	11	that	ignores

flex	if	the	basis	doesn't	include	a	unit.

https://github.com/philipwalton/flexbugs#4-flex-shorthand-declarations-with-unitless-flex-basis-values-are-ignored

That's	It!

You've	covered	a	ton	of	great	stuff	in	this	chapter,	including

flex-grow,	flex-shrink	and	flex-basis.	You've	also	seen

how	these	properties	can	be	used	to	implement	twelve-

column	layouts.

If	you're	looking	for	a	challenge,	try	finishing	off	the	entire

grid.	Here's	what	it	looks	like	completed.

If	you're	still	confused	about	how	flex-grow,	flex-shrink

and	flex-basis	work,	don't	worry.	These	properties	are	the

hardest	thing	to	understand	about	flexbox.	You'll	be

reviewing	them	again	in	later	chapters,	including	the	next

chapter,	where	you'll	build	an	awesome	video	player	layout!

CHAPTER 3

Building a Video Player

What's	the	best	part	about	watching	a	movie?	Is	it	the	salty

popcorn	that	coats	your	fingertips	in	hot,	melted	butter?	How

about	the	mountains	of	crunchy	candy	or	the	monolithic

soda?	Could	it	be	the	special	effects	and	explosions,	or	the

raw	talent	of	the	actors	and	actresses?	Maybe	it's	the

profound	cinematography	or	the	moving	musical	score?

Of	course	not!	It's	the	playback	controls	for	the	video	player,

and	in	this	chapter,	you're	going	to	learn	how	to	make	them!

I'll	show	you	how	to	build	the	killer	layout	you	see	above

using	flexbox!

Lights,	Camera,	Action!

If	you	look	at	the	video	player	screenshot	about,	you'll	notice

that	it	can	be	cleanly	divided	into	multiple	sections.

Let's	start	by	capturing	this	structure	in	HTML.

<div	class="video-player">

		<img	src="hot_air_balloons.jpg"	alt="Video"

				width="960"	height="540">

		<div	class="controls-container">

				<div	class="controls">

						<div	class="top-controls">

								<div	class="volume-controls"></div>

								<div	class="playback-controls"></div>

								<div	class="size-controls"></div>

						</div>

						<div	class="progress-controls"></div>		

				</div>

		</div>

</div>

Here	you've	created	a	container	for	the	video	player.

Normally,	inside	that	container	you'd	use	a	<video>	element,

but	to	make	life	easier	we'll	use	an		element.

Inside	the	video	player	container	is	a	<div>	with	a	class	of

controls-container,	which	will	be	used	for—you	guessed	it

—containing	the	controls.	The	top	row	of	the	controls	is	split

into	the	volume	controls,	the	playback	controls	and	the	size

controls.	The	bottom	row	is	devoted	to	the	progress	controls.

The	Container

The	first	thing	you	need	to	do	is	center	the	video	player

controls	in	the	container.	You	can	do	this	by	absolutely

positioning	the	controls	container	over	the	top	of	the	video

player.	This	allows	the	video	player	<div>	to	be	determined

by	the	size	of	the	image	inside	of	it.	While	you're	at	it,	add

some	CSS	to	size	the	controls	container	so	you	can	see	it.

.video-player	{

		position:	relative;

}

.controls-container	{

		position:	absolute;

		top:	0;

		bottom:	0;

		left:	0;

		right:	0;

}

.controls	{

		width:	480px;

		margin-bottom:	32px;

		padding:	12px	4px;

}

What	we	want	is	for	the	controls	to	be	positioned	in	the

bottom	center	of	the	controls	container.	You	can	accomplish

that	setting	the	control	container's	display	property	to	flex

and	using	align-items	and	justify-content.

.controls-container	{

		...

		display:	flex;

		justify-content:	center;

		align-items:	flex-end;

}

There	you	go!	Now	you	have	a	nicely	positioned	<div>	for

your	controls.

The	Progress	Controls

The	next	step	is	to	build	the	progress	controls.	The	HTML	for

these	is	pretty	straightforward.

<div	class="progress-controls">

		00:00:00

		<input	type="range">

		01:14:26

</div>

The	idea	here	is	to	place	the	time	elapsed	and	time	remaining

	elements	on	the	left	and	right	of	the	container,

respectively.	The	<input>	then	fills	up	the	remaining	space.

.progress-controls	{

		display:	flex;

}

.time-elapsed,	.time-remaining	{

		flex:	0	0	auto;

}

.progress-controls	input[type="range"]	{

		flex:	1	1	0px;

}

What's	that	auto	value?	Setting	the	flex-basis	to	auto	tells

flexbox	to	resize	the	container	based	upon	the	size	of	the

content.	In	this	case,	the	time	elapsed	and	time	remaining

spans	take	up	as	much	room	as	they	need.	Then,	the	progress

controls	container	stretches	to	take	up	the	rest	of	the	space.

The	Top	Controls

The	top	controls	are	a	little	trickier	than	the	bottom	controls.

<div	class="top-controls">

		<div	class="volume-controls">

				<button>

						<img	alt="Low	Volume"

								src="low_volume.svg">

				</button>

				<input	type="range">

				<button>

						<img	alt="High	Volume"

								src="high_volume.svg">

				</button>

		</div>

		<div	class="playback-controls">

				<button>

						

				</button>

				<button>

						

				</button>

				<button>

						<img	alt="Fast	Forward"

								src="fast_forward.svg">

				</button>

		</div>

		<div	class="size-controls">

				<button>

						<img	alt="Fullscreen"

								src="fullscreen.svg">

				</button>

		</div>

</div>

The	markup	doesn't	look	very	nice,	but	it'll	do	the	job.	It

mainly	consists	of	buttons	containing	images	and	<div>

containers.

The	first	step	in	styling	the	top	controls	is	to	display	them

side	by	side.	In	order	to	do	that,	you	need	to	set	the	top

container's	display	to	flex.	Remember,	the	default	value	for

flex-direction	is	row,	so	the	container's	contents	will	be

displayed	horizontally.	While	you're	at	it,	add	a	little	margin

to	the	bottom	of	the	top	controls.

.top-controls	{

		display:	flex;

		margin-bottom:	8px;

}

To	make	the	volume	controls,	playback	controls	and	size

controls	horizontal,	you'll	also	make	each	a	flex	container.

You	can	use	align-items	to	vertically	center	their	content.

.volume-controls,

.playback-controls,

.size-controls	{

		display:	flex;

		align-items:	center;

}

Next,	you	need	to	space	them	out.	You	may	be	thinking	you

can	make	the	volume	controls	and	size	controls	container

size	to	their	content,	and	have	the	playback	controls	stretch

to	fit	the	container	using	flex-grow	and	flex-shrink.

However,	if	you	try	that,	you'll	end	up	with	controls	that	look

like	this:

Notice	how	the	playback	controls	aren't	centered?	Instead,

you'll	make	the	playback	controls	container	size	to	its

content	and	let	the	volume	and	size	controls	expand.

.playback-controls	{

		flex:	0	0	auto;

}

.volume-controls,	.size-controls	{

		flex:	1	1	0px;

}

This	works	because	the	flex-basis	of	the	playback	controls

is	auto,	so	playback	controls	container	is	sized	to	the	buttons

it	contains.	The	volume	and	size	controls	then	evenly	fill	the

remaining	space.

Next,	align	the	items	in	the	size	controls	container	to	the

end.

.size-controls	{

		justify-content:	flex-end;

}

The	very	last	step	is	to	add	a	small	margin	around	the

buttons	and	time	elements.

button,	.time-elapsed,	.time-remaining	{

		margin:	0	8px;

}

That's	it!	Two	thumbs	up!

Fin

The	next	time	you're	ready	to	kick	back	and	watch	your

favorite	action	flick,	remember	you	can	rebuild	the	playback

controls	using	your	own	flexbox	kung	fu.

CONCLUSION

Thanks	for	Reading!

Thanks	for	reading	this	sample	of	Unraveling	Flexbox.	I	hope

you've	enjoyed	it!	You've	learned	quite	a	bit	about	flexbox	so

far,	but	there's	so	much	more	in	the	eleven	chapters	you

haven't	seen	yet.

In	the	full	book,	you'll	learn	how	to:

Purchase	Unraveling	Flexbox

Go	beyond	twelve-columns	to	build	layouts	that

were	previously	impossible.

•

Build	responsive	flexbox	layouts	that	work	great

in	mobile,	tablet	and	desktop	browsers.

•

Support	older	browsers	while	still	using	flexbox.•

Implement	killer	flexbox	form	controls.•

Create	video	playback	controls	with	flexbox.•

Build	layouts	that	wrap	across	multiple	lines.•

Write	your	very	own	flexbox	grid	system.•

Test	and	fix	your	code	across	all	mobile	and

desktop	browsers.

•

Style	a	flexible,	tiered	pricing	layout.•

Use	flexbox	to	reorder	elements	on	a	page.•

Use	everything	you've	learned	to	build	an

insanely	awesome	Minesweeper	layout.

•

https://unravelingflexbox.com/?utm_source=Sample&utm_medium=PDF&utm_campaign=UnravelingFlexbox

	Unraveling Flexbox
	Introduction
	What's in the Book?
	Chapter 1: Getting Dicey
	Chapter 2: Crafting Twelve-Column Layouts
	Chapter 3: Building a Video Player
	Chapter 4: Say Goodbye to Vendor Prefixes
	Chapter 5: Breaking Free From Twelve-Column Layouts
	Chapter 6: Perfect Pricing
	Chapter 7: Flexbox Forms
	Chapter 8: Responsive Design
	Chapter 9: Wrapping Like a Boss
	Chapter 10: Progressive Enhancement
	Chapter 11: Ordering
	Chapter 12: Cross-Browser Testing
	Chapter 13: How to Write a Grid System
	Chapter 14: Minesweeper

	Code Examples
	Acknowledgements
	Enough Chitchat
	Chapter 1: Getting Dicey
	The First Face
	Getting Trickier
	Horizontal and Vertical Nesting
	Wrapping Up
	Chapter 2: Crafting Twelve-Column Layouts
	Setting Up the Container
	Flexin' It Up
	All About That Basis
	More Flex Basis
	Shorthand
	That's It!
	Chapter 3: Building a Video Player
	Lights, Camera, Action!
	The Container
	The Progress Controls
	The Top Controls
	Fin
	Conclusion
	Thanks for Reading!

