
Pain‐free Auditing, Metrics and Troubleshooting

Dynamic Debugging
and Instrumentation of Production PL/SQL

Bill Who?

• RMOUG, IOUG and UTOUG. 10 yrs
• PL/SQL enthusiast. 16 yrs

– Andersen Consulting – SF, Denver
– New Global Telecom – Golden
– Structure Consulting Group –

Houston

– Church of Jesus Christ of Latter Day Saints
– DBArtisans.com (place to keep my stuff)

Presenter
Presentation Notes
After hearing this presentation, I know it will be hard to believe, but I am not a professional speaker.
I’m just a fellow Oracle and PL/SQL enthusiast that enjoys learning, applying what I’ve learned, and sharing lessons from the trenches. I’ve been writing in C, C++, a little Java and PL/SQL for 16 years now, and speaking about it for 10.
I’d like to encourage everyone here to submit to UTOUG as well. You never learn more than when you have to teach.

Before we get started, I’m trying something new this year to see if it is of any value to you. I’d like to share a few maxims and truths I’ve learned about database development over the span of my career. It’s not an exhaustive list of everything I’ve learned, but some of the more poignant lessons that keep reaffirming themselves upon me.

Lessons Learned

• There’s always another bug.
• Involve users early and often.
• Is it redundant? Simplify.
• Test with dirty data and plenty of it.
• Get another pair of eyes.
• Document the code well.
• If it isn’t simple a wrong turn was made.
• Have compassion on your successor.

Presenter
Presentation Notes
#1 The first lesson is therapy for the perfectionist in me. At some point, it is good enough to ship. Just know that there will always be another bug or design flaw and don’t be too upset when it surfaces. You are only human after all.
#2 Andersen Consulting (now Accenture) used to mandate all new employees attend 2 weeks training in St. Charles, IL. The main point of the training was to involve stakeholders and end users early and often. This is still true almost 20 years later and has become a key part of agile methodologies. With constant feedback comes immediate and valuable improvement.
#3 This is a basic programming best practice. DRY (don’t repeat yourself). Don’t hardcode. Each routine should do one thing and one thing well. Use polymorphism when applicable. Etc. Simplify.
#4 Always make sure to test with representative data from production. Happy-day, hello world-like test cases won’t exercise your system well enough.
#5 Pair programming. Collaboration. Two heads are better than one. Staring at a problem for longer than 30 minutes, you’re too close to the forest to see the trees, etc.
#6 Documenting the public interface, spelling out how it is expected to be used, assumptions about the caller, etc. usually finds 85% of my bugs. The public interface is the only documentation that stands a snowball’s chance of ever being updated too.
#7 Back to #3. If it’s unwieldy, mind-boggling, hard to navigate, days to understand and use, etc., it’s wrong. Something happened. Back up and try again. Nuke and re-write if you have to.
#8 8 This lesson is relevant to this session. Your code should be easy to read, use, follow, debug and maintain. If not for your own sake, at least as a silent witness of your legacy and as a kindness to your successor.

Survey
• Strictly DBA? Strictly developers? Hybrids?
• Written PL/SQL that was release to Prod?
• Significant personal or enterprise investment in

 production PL/SQL?
• Who has never had anything go wrong in that

 production PL/SQL?
• When things do go wrong, how long does it take

 to find out what it is doing, what it did, why it
 did what it did?

• How did the users/mgmt appreciate your
 handling of the issue?

Presenter
Presentation Notes
To set the stage and get the gears turning a little, I’d like to ask a few questions:

Presenter
Presentation Notes
How did management reward your heroic efforts?

Programming, at the least the sort that gets me up in the morning, is supposed to be fun!
There are many best programming practices to get you there.
I’m going to focus on instrumentation and dynamic debugging, which are easy to learn and apply, yielding code that is easy to monitor, maintain, manage and troubleshoot.

I’m hoping you’ll get so excited, you’ll download an instrumentation library during this talk, install it and start using it when you get home.

Agenda
• Typical Production Problem Lifecycle
• Define instrumentation
• Oracle built‐ins for instrumentation
• Develop requirements of good instrumentation
• Existing instrumentation libraries
• Demos: Debugging and adding instruments

Presenter
Presentation Notes
So we’re going to talk about the lifecycle of a typical production PL/SQL problem, in particular finding the problem.
We’ll define instrumentation and see how it applies to becoming aware of and finding the problem.
Then we’ll look at some built-in tools provided by Oracle that can be used to instrument. They come up short.
This drives us to survey the existing instrumentation market. We’ll take one of these and demo its installation and how you can be using it within minutes.

Production Problem Lifecycle
• Become aware of a problem
• Find the source of the problem
• Fix the source of the problem
• Repair issues the problem caused
• Rebuild trust (costliest, longest step)
• Improve so problem doesn’t happen again

Presenter
Presentation Notes
What steps does a production problem usually pass through on its way to being found, resolved and everything returning to normal? {read through quickly}
This presentation focuses on the first two steps, which we want to be as quick and painless as possible.

Awareness of Problem
• Non‐instrumented:

– Silent Fester
– Side Effect
– New Guy
– Phone Call
– Email
– Pink slip

• Instrumented
– Proactive monitoring

Presenter
Presentation Notes
How do you typically become aware that there is a problem in Production?
The “Silent Fester” method. The “Side Effect” method. The “New Guy” method. Phone call. Error on end-users’ screen. Email. Operations monitoring alert logs, etc. The damage is already done by the time we become aware of problems through these methods.

In an ideal world, we would become aware of the problem before the users do. With instrumentation in place, we can proactively monitor sessions, SQL, resources, logs, metrics, audit data, etc… and perform analytics on them, letting our systems automatically notify us when something is amiss.
If something unexpected happens, which our proactive monitoring does not cover, we want to be able to find the problem as fast as possible.

Finding the Problem Source
• Options without instrumentation:

– Hunt, poke, prod, peek, query, hope, trace,
 explain, waits, OEM, TOAD, AskTom, …

• Options with instrumentation:
A.Review what happened
B.Replicate and monitor in real‐time
C.Proactively analyze and notify

Presenter
Presentation Notes
Without instrumentation, it can be difficult to impossible in Production. With instrumentation, it can be a cake-walk.

But even with instrumentation, for certain systems and situations, reviewing what happened after-the-fact is not sufficient. Sometimes a problem simply can’t be replicated in environments other than Prod. In both cases, the error has to be replicated in Production, with detailed logging/debugging turned on, so we can see in real-time what is happening. Once found and fixed, a rule or module can be added to proactively look for and notify if the same condition arises again.

Agenda
• Typical Production Problem Lifecycle
• Define instrumentation
• Oracle built‐ins for instrumentation
• Develop requirements of good instrumentation
• Existing instrumentation libraries
• Demos: Debugging and adding instruments

Presenter
Presentation Notes
Most of us knows what it is to debug code. But what is “instrumenting” code?

Instrumentation
• Big word, but more familiar than it seems

– Dashboard of car and airplane
– Task Manager/Process Explorer
– Network Operations Center
– What do they have in common?

• Instrumentation: the process of fitting
 production applications with code that directs

 runtime context

to some destination

where it can
 be useful.

Pics

Presenter
Presentation Notes
It’s a mouthful. Big word. Not fun to say or type repeatedly. But I can’t think of a better word except for windows, which is probably trademarked.
Instrumentation is actually a concept that is very familiar to us all. {Show pics.}
Imagine driving a car, flying an airplane, running a telephone network or large enterprise WAN with absolutely no windows, graphs, dials, reports or data of any kind to tell you what the system is currently doing. And yet this is how we like to write our software because we perceive the instrumentation is busywork. Complex systems require instruments, windows into the guts of the system.

Here’s how I like to define instrumentation in the context of software engineering.

Runtime Context
• Who, when, what was passed in, what changed,

 time taken, errors and warnings encountered,
 etc.

• Three categories of runtime insight:
– Debugging –

disabled by default

– Logging – enabled by default
• Error, warning, informational, metric

– Column‐level audit data
– Monitor and Trace

Presenter
Presentation Notes
Runtime context is…
I see runtime context fitting into four buckets…

Destination
• Direct runtime context to stdout (screen), V$

 views, a logging table, a log file on the database
 host, a queue for asynchronous re‐direction, a

 DBMS pipe or alert, and other slower, more
 complex alternatives like HTTP, FTP and UDP

 callouts.
• IMHO: Best option is writing to heap table

 within an anonymous transaction

Presenter
Presentation Notes
The destination of the runtime context is really up to you, but my favorite is a logging table behind an anonymous transaction.
Kept in the database you automatically inherit everything Oracle and SQL offer (query, filter, mine, backup, etc.)

Agenda
• Typical Production Problem Lifecycle
• Define instrumentation
• Oracle built‐ins for instrumentation
• Develop requirements of good instrumentation
• Existing instrumentation libraries
• Demos: Debugging and adding instruments

Presenter
Presentation Notes
Let’s look at what comes with Oracle.

What is Available From Oracle?
• Column‐level Auditing

– 11g Flashback Data Archive (Total Recall)
– Most build custom triggers to capture change,

 and tables to hold the history.

• Metrics
– DBMS_UTILITY.get_time {DEMO}
– DBMS_PROFILER {DEMO}

Presenter
Presentation Notes
Oracle’s basic and fine-grained auditing features seem promising, but it turns out that neither provide column-level auditing that can track who changed a column value, what changed, and when. Oracle really had nothing for column-level auditing until 11g’s FDA

Can’t manage what you don’t measure. Method-R an entire methodology about performance tuning based on response time.

The ability to time a process has always been there, at least as long as I can remember, found in DBMS_UTILITY.get_time. returns elapsed time in terms of hundredths of seconds Who here has not used this function before? DBMS_PROFILER helps you quickly identify performance bottlenecks and when integrated with a GUI tool, can do so in an intuitive and visual way. However, like the debug feature, it is less useful for the sessions and routines being accessed by end users. It is better used while tuning in development where you have full control of the start of the session and what is called.

What is Available From Oracle?
• Logging/Debugging

– DBMS_OUTPUT (Dev only)
– DBMS_DEBUG & DBMS_DEBUG_JDWP (Yes)
– ORADEBUG (Rarely)
– DBMS_ERRLOG (No)
– DBMS_ALERT (No)
– DBMS_PIPE (Possibly)
{DEMOS}

Presenter
Presentation Notes
DBMS_OUTPUT:
When most Oracle developers think of debugging PL/SQL, their thoughts turn to DBMS_OUTPUT. This is like bringing the rusty, flatted BMX bike you had as a kid to a street race, instead of the Yamaha YZF-R1 superbike sitting unused in your garage. DBMS_OUTPUT, like Java’s System.out.println, is known as a “poor man’s” debugger. Although it can be useful, and has been a staple of PL/SQL coders for 15 years, it should only be used in quick-and-dirty development and discovery. Worst part is transaction dependence.
A more appropriate use of DBMS_OUTPUT is as a quick-and-dirty logging tool for transient anonymous blocks, often written during data exploration, unit testing and development. We use DBMS_OUTPUT within our automated database build system to read what happened in scripts that had anonymous PL/SQL blocks, piping the output to the build logs, which are further examined by the tool for build success or failure. If building, buying or adopting an instrumentation library, ensure that it includes the ability to output messages to stdout/screen.
It has many limitations and far superior alternatives, like DBMS_PIPE and DBMS_DEBUG, which we’ll cover…now

DBMS_DEBUG:
Traditional debugging is usually done within a programmer’s IDE and allows the troubleshooter to step in/out of modules, run to breakpoint or condition or exception, add watches, change variables at runtime, peer into memory structures, view code execution in real-time, etc. PL/SQL has this capability too.
Since Oracle 7, there has been a debugging API that PL/SQL IDEs have used to provide the veritable debugging superbike.
To debug, need DEBUG CONNECT SESSION system privilege.
With DBMS_DEBUG_JDWP it is possible to begin a session with some other application, and have the IDE “wake up” when it detects a connection entering that object. Unfortunately, it does no good if the client application was not coded for remote debugging.
Leaving objects compiled for debug in Production is not recommended. Performance can be impacted due to the overhead it imposes. But in my experience, the scariest thing was stability.

ORADEBUG:
This “undocumented” but well-known utility does allow real-time peeking into other sessions, one of the things instrumentation should be able to do. Unfortunately, it is oriented more towards really low-level memory and process debugging and tracing. It is the stuff of Oracle wizards that peep and mutter. Oracle Support prefers that you not use it unless instructed to. That it requires SYSDBA privilege is another factor against using it for production instrumentation. There are many informative papers on this utility if still curious, but there are definitely far less obtuse ways of peering into the execution of active sessions.

DBMS_ERRLOG:
This package sure sounds like what we need for logging, but the name is somewhat misleading. It is only used to create a special DML error logging table. It is useful in its own right, but useless for the kind of logging we need.

DBMS_ALERT:
Despite the docs indicating it is useful for asynchronous notification of database events, its use is transactional; that is the waiting client can’t see the desired event message until after the alerting session commits. This is an Achilles heel for instrumentation which needs to deliver its messages, even if the transaction fails and rolls back.
According to various sources, using alerts is also resource intensive. The client has to wait (blocks) and the server piece requires a pipe and a lock.
I found that it takes about a second to get registered and return to waiting, as the signals that followed right after a prior signal were simply lost. Oracle docs warn about this possibility. The messages are limited to 1800 chars as well. Finally, session-specific metadata, like client_id isn’t communicated across to another session. Taken together, DBMS_ALERT is unsuitable for instrumentation.

DBMS_PIPE:
is actually promising. Sending messages is independent of the sending session’s transaction. There is a level of security offered with private pipes that could be perfect for debug, timing and error logging within the application object-owning account. Packing the messages is a little cumbersome, and it does not guarantee message delivery like AQ does. Furthermore, once the message is consumed it is automatically removed from the buffer and cannot be read again. One can send the message to a table or file where it can be read again, but that begs the question why the message wasn’t sent directly to the table in the first place, bypassing the pipe entirely? DBMS_PIPE is a viable piece of infrastructure for getting instrumentation messages out of an application.

What is Available From Oracle?
• Logging/Debugging

– DBMS_SYSTEM {DEMO}

<msg time='2012-02-03T18:30:40.283-07:00' org_id='oracle' comp_id='rdbms'
client_id='bcoulam' type='UNKNOWN' level='16'
host_id='R9AXR65' host_addr='fe80::cd94:25d3:ee1a:9777%11' module='PL/SQL Developer'
pid='15156'>
<txt>WARNING! Here is my real-time msg logged to alert.log
</txt>

</msg>

Presenter
Presentation Notes
SYS.DBMS_SYSTEM includes the ksdwrt() routine, which lets you write messages directly to the alert log, independent of the containing transaction. It is the closest thing Oracle includes that almost matches our needs for logging. If the client identifier has been set, it will be used in the alert log entry, helping pinpoint who generated a particular message. A timestamp will be written, along with other session metadata like client module (program), client machine name and address, module, and host process ID The first parameter to ksdwrt must be 2 if writing to the alert log.

DBMS_SYSTEM is not typically granted to non-SYSDBA accounts (for good reason). Writing to the alert log is not a great idea either. Oddly, each new line in your message is interpreted by ksdwrt as a separate message, and normal characters are escaped with their HTML equivalents, making some messages to read outside of a browser. Plus you can’t control the format of the log messages. Think very carefully before opening its use up to other accounts or roles.

What is Available From Oracle?
• Logging/Debugging

– UTL_FILE
– UTL_HTTP
– UTL_TCP

Presenter
Presentation Notes
The UTL_FILE package provides the low-level framework required of any logging solution that wishes to write to database host files. As long as a file has been successfully opened in write or append mode, calling UTL_FILE.put_line will send a message to the file, formatted as desired (up to 32K characters per line), independent of the encompassing transaction. However, using all of UTL_FILE’s constants, exceptions and routines is rather involved and prone to human error. It is best to wrap this in a custom file-logging API that hides much of the complexity for your developers.

There are other packages provided to interface with certain network protocols, like HTTP and TCP/IP which can be used to send instrumentation to specialized destinations.

What is Available From Oracle?
• Monitoring and Trace Metadata

– DBMS_SESSION.set_identifier to set
 client_identifier seen in V$SESSION, AUDIT,

 trace and elsewhere.
– DBMS_APPLICATION_INFO

• set_module(), set_action(), set_client_info()
• set_session_longops()

– USERENV namespace and V$SESSION,
 V$SESSION_LONGOPS

{DEMO}

Presenter
Presentation Notes
There are a few pieces of client metadata that, when set, are available in V$SESSION and a few other performance views. Since many performance views can join to V$SESSION by means of the sid+serial# or sqlid, availability in V$SESSION is typically sufficient. This metadata is labeled as module, action, client_info and client_identifier. Despite what the package specification says in 11g, Oracle still truncates their length to 48, 32, 64 and 64 bytes respectively. They are somewhat weak individually, but in combination they are powerful. Originally intended for 2-tier and client-server applications to identify themselves to the database, they can be put to great use inside PL/SQL programs to provide DBAs with low-overhead, highly useful, real-time, transaction-independent keyhole views into what the program is currently doing. This is particularly handy when debugging programs taking longer than expected or hanging. I like to call this “tagging” a session.
DBMS_APPLICATION_INFO’s main routines are set_module(), set_client_info() and set_session_longops().
Ensure your frontend applications are passing the user’s login ID to the database to be stored in the client_identifier.

On certain resource intensive operations (like DML on more than 10,000 blocks) and certain parallel operations, Oracle automatically records how much work it has to do and how far along it is in the V$SESSION_LONGOPS view. With this info one can construct a query and even a frontend progress bar to inform how long database operations will take. Oracle allows us to write to that view to track our own scripts, DDL operations or DML statements through set_session_longops().
This is known as end-to-end identification. Oracle docs call it end-to-end metrics. I’ve given an entire presentation on this subject, so won’t go into detail here.
Note that the time_remaining value in the v$session_longops view should not be construed as 100% accurate. There are a number of variable that affect the accuracy of metrics in this view. One of them is recursive SQL statements (like index updates and such) which don’t figure into the time remaining.
Drawbacks to calling DBMS_APPLICATION_INFO routines pertain to the durability of the tags. Sometimes they stay around too long (if the developer forgets to clear them out). This is especially risky with the client_identifier, which could accuse the wrong user as the changer of sensitive data. Sometimes they are cleared or overwritten prematurely. This is particularly tricky if one instrumented routine with tags calls another instrumented routine with tags. This wipes out the session tag from the calling routine, leaving the incorrect tags in place once control returns from the subroutine. So although DBMS_APPLICATION_INFO should be an integral part of an instrumentation library, it is no fun to type repeatedly and it should be wrapped in a library to nested tagging. If modifying your application’s connection classes to pass the client_id, also modify them to clear package state, application contexts, and session tags before returning the database connection to the pool.

There are a number of scattered helper routines and built-in functions that can return metatadata about the connected client, database host, database, instance, version, etc. These are things like DBMS_UTILITY.current_instance, DBMS_DB_VERSION.version and release, and SYS_CONTEXT(‘USERENV’,’<attribute>’) which offers a host of values describing the current session. These should be included in your instrumentation library so that they get used and used consistently when logging messages

Agenda
• Typical Production Problem Lifecycle
• Define instrumentation
• Oracle built‐ins for instrumentation
• Develop requirements of good instrumentation
• Existing instrumentation libraries
• Demos: Debugging and adding instruments

Presenter
Presentation Notes
Given everything we now know about what Oracle offers, and their drawbacks, we can form a decent list of requirements as we design or shop for a library of re-usable instrumentation routines.

Sweet Instrumentation
• Simple API to clock and record metrics

– Should handle nested timers
• Simple API to tag sessions and long operations

– Should handle nested tagging
• Simple API to write files
• Simple API for static & dynamic log messages

– Must be independent of the calling transaction
• Standard method of handling exceptions
• Routines to gather client & session metadata so the

 APIs can remain simple
• Tables and helps to create column‐level auditing

 structures and triggers

Presenter
Presentation Notes
If you are going to build your own library, ensure it meets most of these requirements, or it will quickly be ignored and fall into irrelevance.

Sweet Instrumentation
• Dynamic Logging

– Off by default, and low overhead, so insightful debug
 lines can remain in Prod code

– Can be turned on and off without Prod interruption
– Toggles kept in a table or application context
– Turn on for a PL/SQL unit or list of units, session, end

 user or named process, IP address, domain

Presenter
Presentation Notes
Where it comes to dynamic debug logging, there are additional details our library should handle.

Sweet Instrumentation
• Simple

dbg(‘Calling X with ‘||i_parm);
info(‘BEGIN: Nightly Reconcile’);
warn(‘X took ‘||l_diff||’ s too long’);
err();
tag();
startT(); <stuff> stopT(); elapsed();

• Origin Metadata Transparently Derived
– Time, unit, line, caller identifiers
– End user identifiable from end‐to‐end

Presenter
Presentation Notes
 By simple, I mean dead simple. Easy to remember. Easy to type. Not easy to screw up.

Sweet Instrumentation
• Choice of Output

– Minimally: to table and screen
– Optionally: to file
– Nice to have: ftp, pipe, AQ, http, etc.
– Output must be transaction‐independent

Presenter
Presentation Notes
Our instrumenation library should at least allow logging of messages to screen and table, optionally to file. There are other possibilities, not as useful or necessary in my opinion, that you’d have to evaluate to see if they better meet your needs.

Agenda
• Typical Production Problem Lifecycle
• Define instrumentation
• Oracle built‐ins for instrumentation
• Develop requirements of good instrumentation
• Existing instrumentation libraries
• Demos: Debugging and adding instruments

Presenter
Presentation Notes
Let’s take a look at the commercial, open source and freeware market.

Resource Name License Purpose Location & Notes

Google Code Free Library of libraries http://code.google.com/hosting/search?q=label:plsql

Feuerstein's PL/SQL Obsession Free Repository of all things SF
and PL/SQL

http://www.toadworld.com/sf

QCGU (Quest CodeGen Utility) Free Full framework
Standards, Scripts, Template
Factory, Code Generation, +
more

http://codegen.inside.quest.com/index.jspa

Latest incarnation of Feuerstein's vast reservoir of experience.
(successor of QXNO, PL/Vision, and PL/Generator.)

PL/SQL Starter Free Author's full framework. http://sourceforge.net/projects/plsqlframestart

Simple Starter Free Logging, Timing, Auditing,
Debugging, Error Handling,
+ more

Simplified PL/SQL Starter to just logging, timing and auditing
components (and the low-level packages they depend on). Designed to
be used in one schema. Install and begin using in under a minute.

GED Toolkit $120-
$1200

Almost full framework http://gedtoolkit.com

Includes APEX UI to administer jobs and tables. Monitor processing.

PL/Vision Free Framework, API Generator,
+ more

http://toadworld.com/Downloads/PLVisionFreeware/tabid/687/Default.aspx

Replaced by QXNO and then QCGU. Not supported.

Log4ora Free Logging http://code.google.com/p/log4ora/

Fresh, full-featured logging library. Alerts. AQ. Easy to use. Good stuff.

ILO Free Timing and Tuning http://sourceforge.net/projects/ilo

From the sharp minds at Hotsos

Quest Error Manager Free Error Handling http://www.toadworld.com/LinkClick.aspx?link=685&tabid=153

Included in QCGU. But offered separately as well. Not supported.

Plsql-commons Free Collection of utilities,
including logging

http://code.google.com/p/plsql‐commons

Log4oracle-plsql Free Logging http://code.google.com/p/log4oracle‐plsql

Seems like an active project, but could not find code to download…

Log4PLSQL Free Logging http://sourceforge.net/projects/log4plsql

Popular, but aging and complex log4j analog in PL/SQL

Logger Free Logging http://sn.im/logger1.4

Recently orphaned when Oracle decommissioned its samplecode site.
Simple. Easy to use.

Orate Free Logging http://sourceforge.net/projects/orate

Never used it, but has been around a while. Still active.

Presenter
Presentation Notes
Many of the above are quite good. Some are limited to just logging. Some are more complex to use than others.
In my decidedly biased opinion, the easiest offering to begin using, which satisfies the requirements on the previous page, is the “Simple” version of the open-sourced PL/SQL Starter Framework.

http://code.google.com/hosting/search?q=label:plsql
http://www.toadworld.com/sf
http://codegen.inside.quest.com/index.jspa
http://sourceforge.net/projects/plsqlframestart
http://gedtoolkit.com/
http://toadworld.com/Downloads/PLVisionFreeware/tabid/687/Default.aspx
http://code.google.com/p/log4ora/
http://sourceforge.net/projects/ilo
http://www.toadworld.com/LinkClick.aspx?link=685&tabid=153
http://code.google.com/p/plsql-commons
http://code.google.com/p/log4oracle-plsql/
http://sourceforge.net/projects/log4plsql
http://sn.im/logger1.4
http://sourceforge.net/projects/orate

PL/SQL Starter Framework

Presenter
Presentation Notes
This is a graphic depicting how Starter is meant to be shared as a common foundational layer under multiple application schemas in a single database.
It also depicts a high-level logical data model of the tables that support the framework, and the two handfuls of packages that expose the services of the framework, as well as the layering and interdependencies between them.

“Starter”

too much?
• Thousands of downloads, but not much

 feedback or developer contributions
• 21 services and 55 objects
• Some shops only have one major app schema

 per DB
• 60 page doc and days to week learning curve
• Security often done in directory server now
• Common messages almost never used
• Email‐from‐DB tables rarely used
• Locking always needs customization

Presenter
Presentation Notes
The reason I never fully adopted Steven Feuerstein’s framework is because it was too complete. Too much to digest. Learning curve too high. So I didn’t bother.
Starter was created and, over the ensuing years, simplified in order to address that complexity and make it more approachable.
But for many shops, even the Starter framework is too much.
So to shorten and focus this presentation, and for those shops which only need instrumentation for a single schema, I simplified the Starter framework even further.
In the time that remains to us, we will walk through the Simple Starter framework, how to install and use it. Although this paper will demonstrate only one framework, it is hoped the reader will evaluate the other libraries for their merits and catch the vision of how easy it is to use any of them to add maturity and maintainability to applications.

Simple Starter
• LOGS, TIMER, ENV, gen_audit_triggers.sql

Presenter
Presentation Notes
So for those shops that don’t need to share the framework across schemas, or those that don’t mind having multiple copies (one in each schema), I simplified Starter even further, stripping it down to just the bare features needed to support instrumentation.
There are only 4 tables now, and four major services.

Simple Starter
Library Main Routines Supporting Components and Notes

Auditing:
gen_audit_triggers.sql

APP_CHG_LOG, APP_CHG_LOG_DTL (tables)

Metrics:
TIMER (package)

startme()
stopme()
elapsed()

Uses DBMS_UTILITY

Debugging, Logging and Error Handling:
LOGS (package)
EXCP (package meant to be used only by LOGS)
APP_LOG_API (pkg meant to be used only by LOGS)

err()
warn()
info()
dbg()

APP_LOG (table)
TRIM_APP_LOG (scheduled job)

Connection Metadata:
ENV (package)

init/reset_client_ctx()
tag/untag()
tag_longop()

Uses DBMS_DB_VERSION, DBMS_APPLICATION_INFO,
DBMS_SYSTEM, v$session and v$mystat.

File Operations:
IO (meant to be used primarily by LOGS)

write_line()
write_lines(0
p()

Uses UTL_FILE, DBMS_LOB

Dynamic (Table-Driven) Parameters/Properties:
PARM (package)

get_val() APP_PARM (table)

Extras (required for the seven libraries above to
function):
CNST, TYP, DDL_UTILS,
DT, STR, NUM (packages)

These are libraries of application-wide constants and subtypes,
build utility functions; date, string and number manipulation
routines.

Presenter
Presentation Notes
It comes with a few other libraries which it requires to function, but really one only need worry about the items in red to be instrumenting code in short order.

Simple: Auditing
• The Starter Framework comes with a

 “gen_audit_triggers.sql”

script which can
 generate a trigger for every table in your

 schema.
• Run it. Remove triggers not needed. Remove

 auditing on columns not needed.
• Done.
• Audited changes are recorded to

 APP_CHG_LOG and APP_CHG_LOG_DTL
• May need view or materialized view to simplify

 access to audit data.

Presenter
Presentation Notes
A few quick notes about the four major libraries.

Simple: Metrics
• TIMER package

– startme(timer name)
– stopme(timer name)
– elapsed(timer name)

• Log elapsed times
• Create separate automated processes to monitor

 metrics, learn from them over time, and notify
 when anomalies are detected.

Presenter
Presentation Notes
Start and stop multiple timers. Each has a different name. They can be nested. In a hurry, can even start a timer with no name, but there can only be one of those.
Log the response times measured.
�Create automation to mine the metrics, learning about your business from them, then notifying upon anomaly detection.

Simple: Log & Debug
• LOGS package

– info(msg), warn(msg), err(msg)
• record important data, expected and unexpected

 error conditions
– dbg(msg)

• to document code and leave hooks for dynamic,
 real‐time logging

– set_dbg (boolean and directed)

Presenter
Presentation Notes
Info, warn and err are permanently enabled. Info for metrics and information you always want recorded. Warn for conditions that are notable, but whose investigation can probably wait a few hours. Err for unexpected conditions, where processing must halt, exceptions logged and handled, and transaction rolled back. Dbg is disabled. Wrap code comments and runtime context. Set_dbg useful for debugging during development where you control the test call, usually an anonymous pl/sql unit test. It overrides the debug setting in the parameter table and takes effect immediately.

Simple: Log Destinations
• Screen (10K msgs = 1 sec)

– Quick‐and‐dirty testing and debugging.
• Log Table (10K msgs = 4 sec)

– A default job keeps the table trimmed to a couple
 weeks of data.

• File (10K msgs = 15 sec)
• Pipe (10K msgs = 8 sec + 4 sec to log them)

Presenter
Presentation Notes
A quick note about the performance of 10, 000 messages sent to various destinations.

Simple: Debug Parameters
• Parameters in APP_PARM

– Debug

(on/off, session, unit, user)
– Debug Toggle Check Interval (in minutes)
– Default Log Targets (Screen=N,Table=Y,File=N)

• Parameter values table‐driven
• Parameters can be temporarily overridden

 through logs.set* routines

Presenter
Presentation Notes
Now back to the other half of this presentation, this is where dynamic debugging comes in.

Monitoring and Tracing
• ENV offers:

– tag/untag() to modify module, action and
 client_info

– tag_longop() to track long operations
– init_client_ctx(), reset_client_ctx()

• Front end client should pass the user’s ID to the
 DB through init_client_ctx, and reset_client_ctx
 upon returning the connection to the pool.

Presenter
Presentation Notes
Use these routines to put runtime context into the dynamic performance views. When things go wrong, you can immediately look at the session and SQL associated with the session to see exactly who is running it, where the code is currently at, and how much further it has to go.

Setting the client_id has all sorts of good uses: basic audit, column-level audit, VPD, monitor and trace, etc.

Simple[r] Framework: Install
• Go to Sourceforge.net
• Search for PL/SQL framework. First option.
• Select Browse All Files.

– Drill to plsqlfmwksimple/2.1.
– Download and unzip Simple.zip

• Start SQL*Plus as SYS
– If installing to existing scheme, remove DROP

 and CREATE USER statements.
– Run __InstallSimpleFmwk.sql

• Done.

Presenter
Presentation Notes
All right. Let’s go get it, install it and start using it!

Agenda
• Typical Production Problem Lifecycle
• Define instrumentation
• Oracle built‐ins for instrumentation
• Develop requirements of good instrumentation
• Existing instrumentation libraries
• Demos: Debugging and adding instruments

Putting it all Together
• Solution Manager just called.

– After last night’s release, she is not getting her
 daily report file about the problem/solution

 repository.
{LIVE DEMO real‐time debugging, monitoring, and

 adding instrumentation to two pages of code}

vs.

Presenter
Presentation Notes
Let us not be satisfied with code and systems as they are normally put together, with zero insight into the inner workings of the contraption.
Unlike the cost difference between the homemade go-cart and the Ferrari here, your code can actually resemble the latter with minimal effort.

Putting it all Together
• Write and document public interface.
• Write tests that all fail.
• Write body in pseudo‐code.
• Fill in the algorithm, making sure routine

 does one thing and one thing well.

 Ensure it uses assertions to check

 assumptions. Clean. To standard.

 Formatted.
• Then I go back and wrap pseudo‐code

 with log and debug calls, adding a little

 runtime context. Voila! 3‐birds with one

 stone.
• Then I run the tests until they all work,

 using the instrumentation and metrics if

 there is trouble.

Presenter
Presentation Notes
And this is how I do it:

Conclusion
• Instrumentation should be in place before

 production problems occur.
• But it can be added easily after

as well.

• Adopt or build a standard library.
– It must be simple and easy to use.

• Encourage or enforce its use.
• Do it today! It’s easy and rewarding.

Presenter
Presentation Notes
Instrumentation can be seen as time-consuming and a chore, but the payback is enormous when things go wrong, as they sometimes do. Instrumented code is easy to measure, tune and troubleshoot. When called upon, it can provide all the information needed to easily diagnose performance, security or functional problems.

The End
• Questions?

Contact: bcoulam@yahoo.com
Framework:

 sourceforge.net/projects/plsqlframestart/

Instrumentation: Dials, Guages, Graphs, Reports

Return

	Slide Number 1
	Bill Who?
	Lessons Learned
	Survey
	Slide Number 5
	Agenda
	Production Problem Lifecycle
	Awareness of Problem
	Finding the Problem Source
	Agenda
	Instrumentation
	Runtime Context
	Destination
	Agenda
	What is Available From Oracle?
	What is Available From Oracle?
	What is Available From Oracle?
	What is Available From Oracle?
	What is Available From Oracle?
	Agenda
	Sweet Instrumentation
	Sweet Instrumentation
	Sweet Instrumentation
	Sweet Instrumentation
	Agenda
	Slide Number 26
	PL/SQL Starter Framework
	“Starter” too much?
	Simple Starter
	Simple Starter
	Simple: Auditing
	Simple: Metrics
	Simple: Log & Debug
	Simple: Log Destinations
	Simple: Debug Parameters
	Monitoring and Tracing
	Simple[r] Framework: Install
	Agenda
	Putting it all Together
	Slide Number 40
	Putting it all Together
	Conclusion
	The End
	Slide Number 44

