
Enterprise-Grade PL/SQL:
Doing it Right the First Time

Or…
Making database engineering easy

and fun

by adding rigor to your development
process

Contacts Info
Website: dbartisans.com and dbsherpa.com
Twitter: @billcoulam
Email: bcoulam@yahoo.com
LinkedIn: billcoulam

Passionate about programming & design practices…
…that make our craft fun and fast!

• Speaker at RMOUG, IOUG, ODTUG and UTOUG since 2001
• With Church of Jesus Christ of Latter Day Saints since 2007
• Consultant and data/database architect in telecom and utility

industry (San Francisco, Denver, Houston) from 1995 to 2007

http://www.dbartisans.com/
https://www.dbsherpa.com/
mailto:bcoulam@yahoo.com
https://www.linkedin.com/in/billcoulam

• Note! Where technical detail seems to be missing, it is because each
slide is worthy of an hour or two of discussion.

• Indeed I have an 8 hour course covering many of these topics, and
individual 1 to 2-hour courses covering Debugging,
Instrumentation, Best Practices, Data Layer Decisions, Data
Modeling, PL/SQL Application Frameworks, etc. These can all be
found at the aforementioned DBArtisans.com or dbsherpa.com
website. Look for the Presentations and Papers page.

• This presentation is meant to be an overview of the software
products, principles and practices a great Oracle development
team uses, providing links to the software and papers that can be
perused later for further detail.

https://drive.google.com/open?id=1e3cYgbYFCuWE1JL0mR_sHEWR2rQjcAiXyU2BJcPc-_8
http://dbsherpa.com/presentations-and-papers/

Agenda

 Habits of Great Database Developers

 Foundations

 Design

 Code

 Test

 DevOps

 Maintenance

Does this resemble your typical day?

Or this?

Great database developers habitually…

 Simplify / Eliminate Waste / Do Not Duplicate (DRY)

 Take Pride in their Work

 Learn their Craft

 Learn their Tools

 Stand on the Shoulders of Giants

 Get Another Pair of Eyes

 Test

 Document & Instrument

Presenter
Presentation Notes
Good management, co-workers and a product you believe in help, but true programming bliss and happiness largely rests on your shoulders. If you pay attention to only one slide in this deck, it should be this one. Actively practicing these habits will make your professional life SO much smoother.Simplify / Eliminate Waste / Do Not Duplicate / DRYIf you find a duplicate, modularize, centralize and share it. This applies to everything: variables, code blocks, algorithms, processing approaches, comments, deliverables, etc.Take Pride in their Work* If creating new code, care enough to do your very best work.* If maintaining old code, leave it better than you found it (refactor).Learn their Craft* Use forums, classes, tutorials, professional associations, conferences, online groups, volunteer opportunities, training and books to hone your skills.Learn their Tools* Take 5-10 minutes every morning to explore a new feature in one of your tools.Stand on the Shoulders of Giants* Why struggle? Find the piece of reusable code, the expert, or the web page where your problem was already discussed and solved.Get Another Pair of Eyes* When you hit an error or bug you just can’t figure out, get another pair of eyes to look it over with you.* If there is no formal code review process, at least get a peer to look over every script before checking in.Test* Don’t get cocky and assume it is clean because it compiles.* Know the characteristics of the real data your system will be ingesting. Test with less-than optimal data, and plenty of it.Document & Instrument* Formally document the public APIs you create. Informally document the private implementation with dynamic debug logging, adding rich runtime context.

Agenda

 Habits of Great Database Developers

 Foundations

 Design

 Code

 Test

 DevOps

 Maintenance

Foundations

Foundations are tools and technologies that must be
decided upon, configured and fully tested before beginning
work.

If changing or introducing a technology is impossible or far
too costly to consider in the middle of the project, then it is
foundational.

Foundations

 For example…
 Application technology stack

 Place to store everything created

 Development methodology

 Standards and conventions

 Design, Development and Testing tools

Presenter
Presentation Notes
These types are things are typically too costly to introduce and adopt late in the project. Far better to have them evaluated, tested, installed, configured and ready to go before work begins.

Foundations: Fundamental Questions

 What are you building?
 UI, server-side, ETL, validation, pub-sub, message-oriented, fat vs. thin, stateful or stateless,

services, event-driven, automation, etc.

 What is the audience like?
 Location, size, concurrency, language, etc.

 Budget?

 Performance?

 Security?

 Growth?

 Quality vs. Time-to-market

Presenter
Presentation Notes
To determine what should be laid as your foundation, one should start with the end in mind, asking questions like these to determine what needs to be built, why, and where the enterprise is going.Even though these are normally considered the domain of the enterprise or project technical architect, every team member should know the answers to these questions. Firmly setting the vision in the collective understanding of the team is critical to reaching the goal on time and within budget.

Foundations: Technology Stack

 Answers to the fundamental questions help guide:
 Which UI, app server and database tech will be used

 Which OS will be used by developers, designers and DBAs

 Which language will be used to develop the server side code that interacts with the
database

 Whether or not the data services will be kept in the middle tier or in the database

 Which client and server tools can be used

Presenter
Presentation Notes
I find that the best developers care about the whole system. They’re inquisitive, get in under the hood and figure out what all the parts and pieces are and how they talk to each other.Knowing the full technology stack can be helpful when making decisions on tools, and later when debugging difficult technical issues.

Foundations: Technology Stack

 As this is a class on enterprise-grade PL/SQL, we’ll focus on the backend and
assume that your stack involves at least:
 Modern app server on Windows, linux or the proverbial “cloud” platform
 Services written in Python, java or C#
 Data services use JDBC to issue SQL, call ORDS or PL/SQL APIs
 Data services use JSON to communicate with the front-end

 Oracle SE or EE Database on Unix or linux

 Robust, tested, monitored, easily maintained, packaged, framework-driven PL/SQL

Foundations: Everything needs a home

1. Establish a directory structure

2. Install and configure a version control system

Presenter
Presentation Notes
Decide early where the finished requirements, prototypes, designs, code and other artifacts will be kept.You must install and use some form of version control. Ensure you test out the critical functions before you purchase or roll out to the team.

Foundations: Directory Structure

 Consider:
 Organizational structure

 Project and product structure

 Team structure

 Nature of the artifacts produced
 Organization-wide vs. project-specific

Presenter
Presentation Notes
Designing a flexible directory structure that accommodates your organizations current AND future needs is really difficult.These things and more need to be considered to design a great structure.

Fo
un

da
ti

on
s:

 D
ire

ct
or

y
St

ru
ct

ur
e

Projects Exempted from corporate virus checker
project1 One project folder per application
project2
project3
dbproject Separate project folder for all DB work

Documentation “” sorts to top so standards are easy to find
Backup and Recovery
Data Governance
Monitoring
Refreshes
Security
Standards

Builds Build infrastructure kept here AND on build box

DBA Stuff that spans databases or schemas
sandbox Each DBA has their own subfolder here
scripts
{more} As you see fit.

Models One subfolder for all modeling artifacts
{databasename} One per database name

db Enforced by our build tool
schema Enforced by our build tool

schema1 Good to have one subfolder per app schema
schema2
schema3

archive Old “build stream” files moved here
future Stuff that gets postponed
hotfix Scripts that do approved prod data fixes
src “Golden” copy or “tip” of latest source code here. One subfolder per Oracle

object type.
test Unit test cases, scripts and results kept here
utils Catch-all for useful schema-specific scripts
work Subfolder per ticket, or per DBA
1803290010-TKT-0010-create_table1.fwd.sql Example of first DB script in “build stream”

1803290020-TKT-0020-create_view1.fwd.sql Second script in build stream

... And so on
always-post.sql Cleanup, grants, test data, etc. Run by build

schema4

Presenter
Presentation Notes
An example from one employer

Foundations: Version Control System

 Many viable products

 I recommend Subversion or Git
 Also TortoiseSVN
 Nice integration with Windows Explorer

 Or TortoiseGit

https://subversion.apache.org/
https://git-scm.com/
https://tortoisesvn.net/
https://tortoisegit.org/

Foundations: Standards and Conventions

 Technically can be added later in a project, but…

 Management pays for functionality and critical fixes, not to correct ugly,
fragile, unmanageable code. They expect that kind of professionalism from
the start.

 Far better to have standards in place, and tools to make compliance
effortless, BEFORE work begins

Presenter
Presentation Notes
Can be added later, but the codebase will be a rat’s nest of inconsistent styles, conventions and preferences.

Foundation: Standards and Conventions

 Data Design Standard

 Database Development Standard

 Naming Standard

 Build Artifact Standard

 Development Methodology
 Expectations of analysis, design, coding, testing and release phases

 Team Culture and Workspace

Presenter
Presentation Notes
What sort of standards will you need?Depends on the size the team, the maturity of the company, expectations of higher ups, etc.Only you can determine what is necessary.But these are some of the most common found in larger enterprises.This is a big list, but don’t despair, these have been built before and many are available for free.

Foundations: Standards and Conventions

 No need to write your own

 Google “PL/SQL Standards”
 William Robertson

 Trivadis

 Steven Feuerstein

 Coulam

 Adopt one
 Customize it to your liking

 Ease adoption and enforce use with templates, formatters and peer review.

Presenter
Presentation Notes
Example templates contained in my programming standards doc.Formatters contained in almost every Oracle PL/SQL IDE

http://williamrobertson.net/documents/plsqlcodingstandards.html
https://www.trivadis.com/en/downloads/plsql-sql-coding-guideline-v-32
https://community.oracle.com/servlet/JiveServlet/downloadBody/1007838-102-1-144760/PLSQL%20Naming%20Conventions%20and%20Coding%20Standards.pdf
https://www.toadworld.com/cfs-file/__key/communityserver-wikis-components-files/00-00-00-00-03/PLSQL-Standards-Developed-for-the-PLSQL-Starter-Framework_2D00_1.pdf

Foundations: Design Tools

 I recommend ER/Studio and Oracle SQL Developer Data Modeler
 Oracle’s SDDM is now strong enough that it ought to be considered first (especially

since it is free)

 Erwin may be making a comeback now that CA has sold it

Presenter
Presentation Notes
Many tools will be used by your enterprise to design the system.But this is an enterprise PL/SQL class. As a development database engineer/administrator, you may be responsible for designing the data structures and the backend code that operates upon them.

https://www.idera.com/er-studio-data-architect-software
http://www.oracle.com/technetwork/developer-tools/datamodeler/overview/index.html
https://erwin.com/products/data-modeler/

Foundations: Development Tools

 Oracle SQL Developer or Allround Automations PL/SQL Developer

 CompareIt or WinMerge for comparing code

 TextCrawler for searching code

 Automated code formatter for beautifying code and complying with
standards w/o effort…

Presenter
Presentation Notes
In 2011 I compared ~30 text/file comparison tools. Had a small set of requirements. Most did not pass, even commercial tools,In 2012 I compared ~40 text search tools. Had a small set of requirements. Many passed, but most were far too slow for deep search, especially with regex.

http://www.oracle.com/technetwork/developer-tools/sql-developer/overview/index.html
https://www.allroundautomations.com/plsqldev.html
https://www.grigsoft.com/wincmp3.htm
http://winmerge.org/
https://www.digitalvolcano.co.uk/textcrawler.html

Foundations: Formatting Tools

 Should be configurable to match your team’s standards and conventions

 Formatting tool found in every PL/SQL IDE. Strongest I’ve found are:
 Instant SQL Formatter website
 SQL Developer’s SQL/Oracle Formatter
 TOAD’s Formatter - Great, flexible formatter
 PL/SQL Developer’s Beautifier - 98% there
 SQL Detective’s Code Analyzer - formatter + more
 DDL Wizard - for messy DDL

http://www.dpriver.com/pp/sqlformat.htm
http://www.thatjeffsmith.com/archive/2014/03/how-to-make-your-code-look-like-steven-feuersteins-in-oracle-sql-developer/
http://documents.software.dell.com/toad-for-oracle/12.1/guide-to-using-toad-for-oracle/chapter-1-getting-started/execute-and-manage-code/work-with-code/format-code
http://www.allroundautomations.com/plsbeautifier.html
http://www.conquestsoftwaresolutions.com/page/sqldetective_pr_description
http://www.ddlwizard.com/

Foundations: Testing Tools

 PL/SQL Developer’s Test Manager and Data Generator

 SQL Developer’s Unit Testing features and Repository

 TOAD’s Code Tester

 utPLSQL – enjoying a rebirth and wide use of late

https://www.youtube.com/watch?v=7WmDkN3mLCg
https://www.thatjeffsmith.com/archive/2014/04/unit-testing-your-plsql-with-oracle-sql-developer/
https://www.youtube.com/watch?v=Sw6fWbTsDYw
http://utplsql.org/

Foundations: Other Tools

 Cygwin - linux terminal power on Windows

 Ditto - (clipboard on steroids)

 WinSCP - open-source SFTP, FTP, WebDAV, Amazon S3 and SCP client

 FreeCommander XE - (two-pane file explorer on steroids)

 KeePass - (or similar password keeper)

 MobaXterm/PuTTY - *nix terminal manager

 Notepad++ - (or similarly powerful text editor)

 OneNote/EverNote – multi-OS, do-everything notekeeper

http://cygwin.com/install.html
http://ditto-cp.sourceforge.net/
https://winscp.net/eng/download.php
http://freecommander.com/en/summary
http://keepass.info/
http://mobaxterm.mobatek.net/
http://www.putty.org/
https://notepad-plus-plus.org/
https://evernote.com/

Milestones for Coding Readiness

Technology Stack
Decisions

Directories &
Version Control

Standards &

Methods

Design, Dev &

Test Tools

How is Your Craftsmanship Perceived by Others?

or

Agenda

 Habits of Great Database Developers

 Foundations

 Design

 Code

 Test

 DevOps

 Maintenance

Design Practices

 Follow basic relational data modeling principles:
 Create and verify the conceptual model

 Create and verify the logical model

 Create and verify the physical model
 Modeling tool should ensure changes in one flow into the others (if applicable)

 Document and describe every entity, attribute and relationship

 Enforce integrity (datatype, relationships, defaults and cardinality)

 Eliminate duplication wherever found

 Strive for consistent, simple, flexible models

 Version, publish and discuss models with all concerned parties, including
sponsors

Design Practices

 First make the model correct, efficient, normalized…

 THEN make it friendly
 Abstract complex queries behind views and PL/SQL APIs that return ref

cursors

 RESTful JSON APIs use the views and PL/SQL APIs

 Denormalizations like materialized views and rollup/tally tables for
performance goals

 Virtual columns, user-defined types, updateable views and other Oracle
goodies to meet system requirements as needed

Design Practices

 Always start design and change design from modeling tool, then forward
engineer into the database.
 Allows changes to the model to be versioned

 Allows modeling mistakes to be easily seen with visual cues

 Publish designs on the intranet and on paper
 Distribute to team, management and sponsors

 Bring them to meetings when discussing enhancements and issues

Agenda

 Habits of Great Database Developers

 Foundations

 Design

 Code

 Test

 DevOps

 Maintenance

Coding Practices: Use the Version Control System

 Ensure the version control system is used religiously.
 Every database object that begins with the keyword “CREATE” gets its own source file

stored and versioned in your directory structure

 Never modify the database object directly

 Development and maintenance activities always begin with the source file
 Some PL/SQL IDEs default database object browsing to read-only mode. Use this feature to enforce

the above.

 Once compiled and tested, check in changed file with good comments

 If development will take a long time, check it in periodically to preserve work

Coding Practices: Use Frameworks and Libraries

 No need to re-invent the wheel.

 Use pre-built, pre-tested PL/SQL frameworks and libraries to save months
of coding effort.
 Used to be a handful of full frameworks. Now we’re down to some of Feuerstein’s

older stuff and mine.
 I open-sourced my “PL/SQL Starter” framework in 2008 which includes a number of

robust libraries, including packages for logging, debugging, emailing, auditing and
performance view tagging.

 One experiment done for a prior presentation on frameworks found that a complex
reporting and emailing PL/SQL proc, coded side-by-side with and without a
framework, took only 25% as much time and yielded 3X better code using libraries.

 “Alexandria Project” is a list of PL/SQL libraries and utilities

https://github.com/bcoulam/plsqlstarter
https://github.com/mortenbra/alexandria-plsql-utils

Coding Practices: Routine Design and Structure

 Use PL/SQL packages to group related functionality

 Each routine should do one thing and one thing well

 Keep each routine short, easily read and understood in a few minutes

 Use packaged constants for immutable literals

 Use table-driven parameters for mutable limits, ranges, thresholds and
business-rule values

 Break enormous, generic packages apart into separate packages that group
related functionality.

Coding Practices: Documentation

 Documentation is critical to high-quality work products

 Each packaged routine, trigger, view and job should have a detailed
comment

 Encourage good descriptions through templates that have comment
placeholders

Presenter
Presentation Notes
The only place where project/product documentation stands a slight chance of being read and maintained by future stewards of the code is if the comments are kept in the code. Keeping documentation separate from the code dooms it to almost immediate irrelevance and obsolescence.

Coding Practices: Documentation

 Fully document each packaged routine in its comment block
 Comment block in pkg spec if public routine, in body if private routine. NOT BOTH!

 Focus on “tribal knowledge” that can’t be discovered by reading the code:
 Who wrote it? When? Why? For whom or what system? What was the intended purpose? Were

obvious alternatives rejected and why? Caveats, instructions and warnings.

 Assumptions and expectations about input parameters

 Return values, exceptions handled and errors raised

 Usage example if not easy/obvious

 Also document the body of each routine with pseudo-code
 As the body is built, convert the pseudo-code into debug or log messages and add

valuable context

Coding Practices: Instrumentation

Think about some real-world complex software, like Oracle’s Enterprise Manager, a
modern car, Windows Process Explorer, an aircraft, or a network operations center.

They all have interfaces that
offer real-time, valuable insight
into the inner workings,
performance and historical
behavior of their system.

Coding Practices: Instrumentation

And yet this is how much insight and metrics most database engineers build
into their enterprise-grade code:

None! You get to fly blind.

Presenter
Presentation Notes
Adding DBMS_OUTPUT or attaching a debugger to production code is like crawling out on the hood of a moving race car, opening the hood and wiring in a tachometer all while the driver is trying to steer and win the race. Not acceptable.

Coding Practices: Instrumentation

Instrumentation is the act of adorning systems with code that directs runtime
context to a destination where it can be useful.

Types of instrumentation:

 Logging

 Debugging

 Notifying

 Auditing

Presenter
Presentation Notes
Logging – Permanently enabled messages generated by the code at runtime, logging valuable information the business may require. This information is typically larger-grained than the detailed debug messages, such as when a critical process started and stopped and how long it took (metrics), or warnings and errors detected and the values being processed at the time of the error.Debugging – Lots of highly detailed messages that, when enabled, can show a troubleshooter the exact path a call took and all the parameter and variable values experienced during execution. Due to sheer volume, debug messages are typically disabled in production code, but can be dynamically enabled by changing a table-based or application context-based key value.Notifying – Usually used to deliver final results or proactively notify DBA of conditions outside the norm. Usually email or SMS message is sent to ensure visibility and rapid response.Auditing – Data that exposes who changed what and when it was done. The audit data can be mixed in with the debug and log messages, but I’ve found it handy to keep audit data separate in a table set designed for tracking changes to rows and columns.

Coding Practices: Instrumentation

Useful runtime context includes:

 Who: Name of called routine, metadata of caller, etc.

 What: Parameters passed, variable values, iteration values, etc.

 When: DATE or TIMESTAMP

 What changed with old/new values (audit trail)

 Metrics (timings, counters and sums)

 Exceptions, warnings, errors

 Landmarks and breadcrumbs (great for complex or long-running routines)

Coding Practices: Instrumentation

Useful destinations include:

 Logging table

 Email

 SMS Text

 Web service

Other destinations include:

 DBMS_PIPE, DBMS_AQ, DBMS_ALERT, DBMS_SYSTEM, UTL_FILE,
DBMS_OUTPUT, DBMS_APPLICATION_INFO, DBMS_SESSION, ftp

Coding Practices: Instrumentation

 Should not have to build your own

 There are many free and open-source instrumentation libraries
 My “PL/SQL Starter” framework includes packages for logging, debugging, emailing,

auditing and performance view tagging.

 Tyler Muth’s forked “Logger” now found on github, is quite versatile
 Local Oracle Advocate, Blaine Carter, has presentations and videos on using Logger

 Adopt a good library that is simple to use and meets your needs

 Can be added incrementally or all at once

https://github.com/bcoulam/plsqlstarter
https://github.com/OraOpenSource/Logger
https://www.youtube.com/watch?v=mTYShIrfykk

Coding Practices: Performance & Resilience

 If it can be done in a single SQL statement, do so

 If not, use bulk PL/SQL features
 BULK COLLECT, FORALL, etc.

 If it must be done row-by-row, use record-based PL/SQL
 Records or user-defined objects and input parameter type

 Record-based inserts and updates

 FORALL can be used on collections of type RECORD

Coding Practices: Exceptions

 Ban the use of WHEN OTHERS
 The only exception is when the error must be hidden

 Write handlers only for anticipated exceptions.
 Use a standard way of logging and re-raising handled exceptions

 Allow PL/SQL’s default exception model to raise and rollback every
unanticipated exception

 Use pre-defined and user-defined exceptions.
 Internally-defined exceptions should be abstracted with user-defined named

exceptions

Coding Practices: Exceptions

Internally Defined Predefined User Defined

Bad Better

Best

Bad but correct

Coding Practices: Transactions

 The caller is in charge of transaction commit/rollback decisions
 This is typically a java class, so most PL/SQL should never commit or rollback on its

own

 If the caller is a database job, the PL/SQL block driving the job makes the decision to
commit or rollback

Agenda

 Habits of Great Database Developers

 Foundations

 Design

 Code

 Test

 DevOps

 Maintenance

Testing Practices

 Best testing occurs while documenting the interface
 Write assertions in the body that test the validity of those assumptions (known as

code-by-contract)

 Test-Driven Development
 Write tests of the interface before writing the implementation

 Write body, re-testing all cases as you code to reach requirements

 Left with nice suite of re-usable tests
 Re-run the test suites whenever the code changes – able to quickly prove the change hasn’t

adversely affected anything

Testing Practices

 Use testing frameworks to help automate tests and the creation of test
suites
 utPLSQL is probably your best option as a framework
 Various videos, webinars and tutorials available on how to use it
 CodeTalk Series: Unit Testing PL SQL Code in the Real World
 March 20th, 2018 ProHuddle webinar on utPLSQL by Jacek Gebal

http://utplsql.org/
https://www.youtube.com/watch?v=1qAZvS5rvyY

Testing Practices: The Conundrum

 Most enterprise PL/SQL routines use a lot of complex, interrelated data or
do a lot of complex stuff.

 Writing re-usable tests involves controlled data conditions that may not be
present the next time the test is used. So one must write “setup” and “tear-
down” scripts that create test data specifically for a given test.

 Writing data setup and tear-down scripts can easily occupy 60 to 80% of the
development effort.

 So re-usable test suites are often skipped

 Nirvana: Someday, using tools like Delphix, the entire database state will be
saved in a repository for single or multiple test conditions and that state can
be instantiated in seconds.

Agenda

 Habits of Great Database Developers

 Foundations

 Design

 Code

 Test

 DevOps

 Maintenance

DevOps

 What is DevOps? What does it include?

 Build (compile or run SQL statements against target database)
 SQL should be scripted. Can include DCL, DDL or DML

 Deploy/Release (pre-scripts/tasks, build to Prod, post-scripts/tasks)

 Manage Issues and Enhancements
 We use Jira and Jama. There are many, many others.

 Enterprise-grade DevOps use automation to handle these tasks
 We use a custom build system using Maven and CruiseControl that is awesome
 Liquibase and FlywayDB embody many of the same features and principles as our

system.

http://www.idera.com/resourcecentral/infographics/why-should-you-learn-about-devops
https://www.atlassian.com/software/jira
https://maven.apache.org/
http://cruisecontrol.sourceforge.net/
https://www.liquibase.org/
https://flywaydb.org/

DevOps: Lessons Learned

 Folder per object-owning schema

 Hook to notify everyone of new check-ins

 Prefix all files with YYYYMMDD####-TICKET#-description prefix

 The build stream is incremental. Each script is a new “version” of the DB.
 Don’t change scripts once checked in. Instead fix them with another script that will run

later.

 Ensure each script is re-entrant
 Aka re-runnable or [buzzword alert!] “idempotent”

Presenter
Presentation Notes
Idempotence, applied to modern software development, is typically seen as meaning that a client calling an idempotent service with the same inputs and expect the same results.

Agenda

 Habits of Great Database Developers

 Foundations

 Design

 Code

 Test

 DevOps

 Maintenance

Maintenance

 Traditional maintenance has mostly been folded into DevOps, where the
same developers are responsible for the system front-to-back, from design
to build to deployment to issue identification, documentation and
resolution.

 When things go wrong in Production, switch on debug statements for
PL/SQL unit, authenticated user, Oracle session or schema
 Should never have to recompile code in Production to get runtime context
 Shouldn’t take more than a few minutes to identify root cause of issue

 Agree upon and use tool to track and manage bugs, change requests and
release bundles
 We use Jama and Jira

https://www.googleadservices.com/pagead/aclk?sa=L&ai=DChcSEwiiz_TUiOvZAhUGtcAKHUSZAQsYABAAGgJpbQ&ohost=www.google.com&cid=CAESEeD2I41GgrXpmMXPS-wOblL-&sig=AOD64_1_hq5fRB82cyPhdRwGSj5EOz-MNA&q=&ved=0ahUKEwiIsO3UiOvZAhXL7IMKHQOwCswQ0QwIJw&adurl=
https://www.atlassian.com/software/jira

Maintenance: Lessons Learned

 Refresh production frequently, nightly if possible to continuous build DB box

 Run proposed production data fixes on the refreshed copy first

 Communicate well about future downtime for releases and PL/SQL
compilation “hiccups”

 Ensure each DB script intended for release or hotfix is tagged in some way
to associate with the change management tool holding the problem
description.

 Write lots of proactive monitoring scripts and email/SMS DBAs when nasty
errors are detected. DBAs should be aware of the problem before the
customers are. Seek budget to improve the issues that waste the most time.

Presenter
Presentation Notes
The hiccup is when a package is recompiled and existing sessions that had a copy of the state of that package are given the ERROR that isn’t an error, that the state of the package has gone stale. All client has to do is make the call again and the ERROR that isn’t an error, goes away. Ideally architect your data services to trap this non-error and retry the calls for the users so they are never the wiser.

Day-in-the-Life Demos

 <time permitting>

What Will Be Your Design & Build Legacy?

OR

Contact and Further Info

Contact: bcoulam@yahoo.com

Papers and Code:
http://www.dbartisans.com

http://www.dbsherpa.com

Framework:
http://sourceforge.net/projects/plsqlframestart

http://github.org/plsqlstarter

mailto:bcoulam@yahoo.com
http://www.dbartisans.com/
http://www.dbsherpa.com/
http://sourceforge.net/projects/plsqlframestart
http://github.org/plsqlstarter

	Enterprise-Grade PL/SQL:�Doing it Right the First Time
	Or…�Making database engineering easy and fun
	Contacts Info�Website: dbartisans.com and dbsherpa.com�Twitter: @billcoulam�Email: bcoulam@yahoo.com�LinkedIn: billcoulam���Passionate about programming & design practices…�…that make our craft fun and fast!
	Slide Number 4
	Agenda
	Does this resemble your typical day?
	Or this?
	Great database developers habitually…
	Agenda
	Foundations
	Foundations
	Foundations: Fundamental Questions
	Foundations: Technology Stack
	Foundations: Technology Stack
	Foundations: Everything needs a home
	Foundations: Directory Structure
	Foundations: Directory Structure
	Foundations: Version Control System
	Foundations: Standards and Conventions
	Foundation: Standards and Conventions
	Foundations: Standards and Conventions
	Foundations: Design Tools
	Foundations: Development Tools
	Foundations: Formatting Tools
	Foundations: Testing Tools
	Foundations: Other Tools
	Milestones for Coding Readiness
	How is Your Craftsmanship Perceived by Others?
	Agenda
	Design Practices
	Design Practices
	Design Practices
	Agenda
	Coding Practices: Use the Version Control System	
	Coding Practices: Use Frameworks and Libraries
	Coding Practices: Routine Design and Structure
	Coding Practices: Documentation
	Coding Practices: Documentation
	Coding Practices: Instrumentation
	Coding Practices: Instrumentation
	Coding Practices: Instrumentation
	Coding Practices: Instrumentation
	Coding Practices: Instrumentation
	Coding Practices: Instrumentation
	Coding Practices: Performance & Resilience
	Coding Practices: Exceptions
	Coding Practices: Exceptions
	Coding Practices: Transactions
	Agenda
	Testing Practices
	Testing Practices
	Testing Practices: The Conundrum
	Agenda
	DevOps
	DevOps: Lessons Learned
	Agenda
	Maintenance
	Maintenance: Lessons Learned
	Day-in-the-Life Demos
	What Will Be Your Design & Build Legacy?
	Contact and Further Info

