Oracle Security for DBAs and Developers
Unsafe Harbor

- This room is an unsafe harbor
- You can rely on the information in this presentation to help you protect your data, your databases, your organization, and your career
- No one from Oracle has previewed this presentation
- No one from Oracle knows what I'm going to say
- No one from Oracle has supplied any of my materials
- Everything we will discuss is existing, proven, functionality
Introduction
Daniel Morgan

- Oracle ACE Director Alumnus
- Oracle Educator
 - Curriculum author and primary program instructor at University of Washington
 - Consultant: Harvard University
- University Guest Lecturers
 - APAC: University of Canterbury (NZ)
 - EMEA: University of Oslo (Norway)
 - Latin America: Universidad Cenfotec, Universidad Latina de Panama, Technologico de Costa Rica
- IT Professional
 - First computer: IBM 360/40 in 1969: Fortran IV
 - Oracle Database since 1988-9 and Oracle Beta Tester
 - The Morgan behind www.morganslibrary.org
 - Member Oracle Data Integration Solutions Partner Advisory Council
 - Vice President Twin Cities Oracle Users Group (Minneapolis-St. Paul)
- Principal Adviser: Forsythe Meta7 a Sirius Company
3 Essential DBA Career Priorities For 2018

Many database administrators (DBAs) will go into 2018 wondering if “self-driving” databases will weaken their career prospects. More likely, 2018 will be a year that database technology leaps forward and these valuable data experts take on other, more important responsibilities.

“History is repeating itself,” says longtime DBA Dan Morgan, founder of Morgan’s Library and principal adviser at tech firm Meta7. Morgan has seen the DBA role evolve amid a long series of technical advances in storage, management, and performance. And each advance asked DBAs to adjust the way they work.
Meta7 In Oracle Magazine

Oracle Magazine
July – August 2017

Features
Departments
Technology & Comment Sections—Articles and Columns

FEATURE

Lessons Learned
By Jeff Erickson

Meta7 shares three top tips for moving to the cloud.

Meta7 knows firsthand how cloud computing is changing organizations and careers. Persistent requests from clients prompted the firm, an Oracle Platinum Partner, to purchase more than US$1.3 million worth of Oracle platform and infrastructure services to deepen its own expertise in helping customers procure and implement Oracle Cloud solutions.

Since then, the company has migrated some of its own business processes to the cloud and built many models and demos based on scenarios at clients of various sizes. “We’ve worked to understand everything from how a third-party on-promises application leverages Oracle Database Cloud to what’s involved in a complete lift-and-shift of Oracle E-Business Suite to Oracle Cloud,” says Paul Zajdel, vice president at Meta7, a division of Forseyte, Technology that is dedicated to the Oracle stack.

What the Meta7 team learned goes well beyond cloud service features and functions. Team members have stretched their skills with new technologies and have taken on new roles to accommodate cloud services in application architectures.

That kind of change is nothing new for Meta7 and Forseyte, which began in the early 1970s as a technology hardware leasing company. “We’ve reinvented ourselves several times throughout our 45-year existence,” says Zajdel. It started with leasing, then reselling, then adding services, then adding security, and now adding managed services. He adds, “We’re in an industry that shifts. Each time the industry shifts, we have to shift, too.”

All the deep-dive tuning and performance work, all the spinning up instances, the time it takes to understand how the new release handles things and explain how it’s different—that’s high-value, time-consuming work that DBAs don’t have to do when the database is in the cloud.”

— Paul Zajdel,
Vice President, Meta7
Travel Log: 2010 - Peru
Travel Log: 2010 - Chile
Travel Log: 2013 - Beijing China
Travel Log: 2014 - Galapagos Islands Ecuador
Just In Time IT Procurement
&
Software Defined Everything
Introduction to Security
Why Am I Focusing On Oracle Database Security Today?

- Because OEM's, like Oracle, talk about their products about not security
- Because most organizations spend/waste their money on perimeter defense
- Because no one teaches operational security to Application Developers
- Because no one teaches operational security to
 - Application Admins
 - Network Admins
 - Storage Admins
 - System Admins
 - DBAs
 - IT Management
- Because most of what is implemented can be by-passed within minutes
- ... which is obvious given the number of systems broken into every day
Security Training

- Let's have a show of hands
 - Has your current employer provided you with a class on securing an Oracle Database?
 - Has your current employer paid for you to take formal security classes?
 - Does your current employer have a document that states security criteria that must be followed for your organization's Oracle databases?
 - Is it followed?
 - Has any employer in your entire career provided you with training or a formally published security document specific to Oracle databases?
 - Is the total extent of your personal on-the-job security training someone telling you not to open emails from Nigerian royalty offering you millions of dollars?
- Has anyone here heard of any resource on the planet where their employer could send them to receive training on how to secure an Oracle Database?
The 99:01 Rule

- Forget the 80:20 rule
- 99% of the efforts of the organizations we work for focus on passing audits
- 99% of the money spent on security focuses on
 - Compliance with government and industry regulations
 - Meeting contractually agreed-to terms
 - Auditing which is NOT security and is essentially irrelevant to security

- Everyone in this room can name dozens of organizations broken into recently
 - Office of Personnel Management
 - Equifax
 - Experian
 - Uber
 - Yahoo
 - Sony
 - Verizon
 - Deep Root Analytics
 - SWIFT
 - Intercontinental Hotels

- Every one of them ... EVERY ONE ... passed their audits
From A Security Standpoint This Is All Irrelevant Distraction

AMERICAS
- SarbOx
- HIPAA
- PCI
- FDA CFR 21 Part 11
- OMB Circular A-123
- SEC and DoD Records Retention
- DFARS
- USA Patriot Act
- Gramm-Leach-Bliley Act
- Federal Sentencing Guidelines
- Foreign Corrupt Practices Act
- Market Instruments 52 (Canada)

EMEA
- EU Privacy Directives
- UK Companies Law

APAC
- J-SOX (Japan)
- CLERP 9: Audit Reform and Corporate Disclosure Act (Australia)
- Stock Exchange of Thailand Code on Corporate Governance

GLOBAL
- International Accounting Standards
- Basel II (Global Banking)
- OECD Guidelines on Corporate Governance
Misdirected By The Web

- What does the IC3 have to do with securing data?
- Nothing!
- All of this is focused on how cyber-criminals get login credentials
- Not one byte relates to how, once credentials are stolen, the data can be protected
Misdirected By Our Vendors

- A great tool for selling Data Masking, Data Redaction, and Advanced Security Option licenses
- Not so great at doing what its title says it does
My Rhetorical Question

- Would we want our surgeon to practice 1980s medicine?

- Then why are we "securing" our databases the way we did in the 80's?
- The threats have evolved but we have not
The Real Risks
How Database Breaches Really Occur

- 48% involve privilege misuse
- 40% result from hacking

Types of hacking by percent of breaches within hacking and percent of records:

- Valid login credentials: 38% / 86%
- Exploited backdoor or command/control channel: 29% / 5%
- SQL Injection: 25% / 89%

- 38% utilized malware
- 28% employed social engineering
- 15% physical attacks

Percentages do not add up to 100% because many breaches employed multiple tactics in parallel or were outliers.
Internal vs. External Threats

- Most organizations focus on the least likely threats and ignore what has been historically proven to be the greatest threat.

- The following is quoted from "Reference for Business" on the subject of computer crimes:

 As criminologist and computer-insurance executive Ron Hale indicated to Tim McCollum of Nation's Business, one of the most unsettling facts about computer crime is that the greatest threat to information security for small businesses is their employees. As McCollum noted, "a company's employees typically have access to its personal computers and computer networks, and often they know precisely what business information is valuable and where to find it." The reasons for these betrayals are many, ranging from workplace dissatisfaction to financial or family difficulties.

- When organizations focus on their firewall they are focusing on what is often the most expensive, yet least effective, protection against data theft.

- Part of our job is to provide solutions that address vulnerabilities and minimize our organization's risk exposure.

- The other part is to be educators ... to educate our internal and external customers the nature of real-world threats.

- The education needs to come from us ... not from someone in sales.
CYBER WAR

A conflict without foot soldiers, guns, or missiles
Cyber Attacks: More Data Stolen Every Year

Cyber Criminals and State Actors are Winning the Cyber War

- Equifax: Records of 143,000,000 Americans plus...
 - Credit Card Numbers, Social Security Numbers, home addresses...
 - Equifax CEO, executives and IT management team resigns
- Office of Personnel Management: Records of 20 Million Federal Employees
 - Security clearance data, finger print data, social security numbers, home addresses
 - White House, Foreign Embassies, State Department, Defense Department...
 - Director of OPM Resigns
- Cyber Criminals and State Actors steal more data every year
 - Formidable and sophisticated adversaries stealing corporate & government data
Modern Cyber Security Requires More Automation

Cyber Defense: Our People versus Their Computers

- Most Data Thefts Occur After Security Fix Available
 - Target did not detect the attack
 - Target behind in applying security patches
 - Wrong priorities
 - Waiting for downtime window
Modern Cyber Security Requires More Automation

Security & Database Automation Work Together to Prevent Data Theft

- **Cyber Defense System**: Automatically Detects Attacks in Real-Time
 - Automated Intrusion Detection
- **Database System**: Automatically and Immediately Secures Your Data
 - Automated database immediately patches itself while running
 - No delay for downtime window, no manual intervention
 - Recovers data that’s deleted by ransomware, etc.
It Must Be "Our Computers" vs "Their Computers"

Anyone want to play chess with Deep Blue?

Anyone want to take a shot at AlphaGo?
The Threat Map

The threat is not a bunch of 20 year old script kiddies

If the threat is an organized crime family you will find your data being sold on the dark web

If the threat is a nation-state you will find your data being used to attack your country, your community, your family
This Is How Many Of Us See Future DBAs
And We Are Arming Ourselves
Database Risks

- Most databases break-ins are never detected and thus never reported
- What you hear about is the part of the iceberg above the water
- Database related risks fall into three broad categories
 - Data Theft
 - Data Alteration
 - Transforming the database into an attack tool
- To accomplish the above activities requires gaining access and doing so generally falls into one of the following categories
 - Utilizing granted privileges and privilege escalation
 - Access to Oracle built-in packages
 - SQL Injection attacks
A Dose Of DBA Reality (1:2)

- It takes precisely this much PL/SQL to compromise an internal network

```sql
DECLARE
  h_name VARCHAR2(60);
  test_ip VARCHAR2(12) := '134.84.119.';
  suffixn NUMBER(3) := 0;
  suffixv VARCHAR2(4);
BEGIN
  FOR i IN 1 .. 255 LOOP
    suffixn := suffixn + 1;
    IF suffixn < 10 THEN
      suffixv := '00' || TO_CHAR(suffixn);
    ELSIF suffixn BETWEEN 10 AND 99 THEN
      suffixv := '0' || TO_CHAR(suffixn);
    ELSE
      suffixv := TO_CHAR(suffixn);
    END IF;
    BEGIN
      SELECT utl_inaddr.get_host_name(test_ip || suffixv)
        INTO h_name
        FROM dual;
      dbms_output.put_line(test_ip || suffixv || ' - ' || h_name);
    END;
    EXCEPTION WHEN OTHERS THEN NULL;
  END LOOP;
END;
/
```
The listing output

134.84.119.001 - isrv
134.84.119.002 - smtp
134.84.119.003 - ldap
134.84.119.004 - relay
134.84.119.005 - lsv
134.84.119.006 - mta-w2
134.84.119.007 - mta-a2
134.84.119.010 - mta
134.84.119.011 - smtp
134.84.119.012 - ldap
134.84.119.013 - relay
134.84.119.014 - lsv
134.84.119.015 - smtp
134.84.119.016 - ldap
134.84.119.017 - relay
134.84.119.018 - lsv
134.84.119.019 - smtp
134.84.119.020 - ldap
134.84.119.021 - relay
134.84.119.022 - lsv
134.84.119.023 - smtp
134.84.119.024 - ldap
134.84.119.025 - relay
134.84.119.026 - lsv
134.84.119.027 - smtp
134.84.119.028 - ldap
134.84.119.029 - relay
134.84.119.030 - lsv
134.84.119.031 - smtp
134.84.119.032 - ldap
134.84.119.033 - relay
134.84.119.034 - lsv
134.84.119.035 - smtp
134.84.119.036 - ldap
134.84.119.037 - relay
134.84.119.040 - lsv
134.84.119.041 - smtp
Shifting Our Paradigm
First Concept

- To be successful you must accept the following

 Break-ins will occur.

 Those who fail to study history are doomed to repeat it.
Second Concept

- To be successful you must accept the following

Your job is increase the difficulty of breaking in.

If your management doesn’t grasp this reality then it is your responsibility to explain it to them.
Third Concept

To be successful you must accept the following:

When someone breaks the system must be configured to limit the damage.

On Installation
- Disable the DEFAULT profile
- Revoke almost all privileges granted to PUBLIC
- Enable all of the database’s default security capabilities

After Installation
- Apply security patches immediately
- Stop using cron - use DBMS_SCHEDULER
- Change passwords regularly
- Do not grant the CONNECT, RESOURCE, or DBA roles ever
- Use Proxy Users for every user you create
- Implement Database Vault
- Implement Row Level Security

- There is always someone inside the firewall,
- Always someone with access,
- There is a big difference between accessing one record ... and accessing everything
- Most databases in the US are configured so that once someone breaks in they get everything
What The Leading Oracle Expert Says

Oracle's Larry Ellison decries poor state of security,

"We need much better security," Ellison said Tuesday in a speech at Oracle OpenWorld. "We need a next generation of security because we're not winning a lot of these cyberbattles. We haven't lost the war, but we're losing a lot of battles."
An Oracle Corporate View of Security

- Very valuable ... but insufficient

- Security requires that you implement what is "free" too
Oracle Security Products

Oracle provides an extensive range of security products. Some focused solely on the database others focused on the entire technology stack: Among them:

- Monitoring and Blocking
 - Database Firewall
- Auditing and Tracking
 - Oracle Total Recall
- Access Control
 - Oracle Identity Management (OID)
 - Oracle Database Vault
 - Oracle Label Security
- Encryption and Masking
 - Oracle Advanced Security
 - Oracle Secure Backup
 - Oracle Data Masking
Database Firewall

- Secures and protects data in Oracle, MySQL, Microsoft SQL Server, Sybase Adaptive Server Enterprise (ASE), Sybase SQL Anywhere SQL, and IBM DB2 SQL
- Tools to assess vulnerabilities and enhances existing database security features, such as encryption and authentication
- Blocks attempted attacks, logs activity, and produces warnings
- Traditional systems test syntax of statements passed to the database, recognizing redefined expressions
- Analyzing the meaning of SQL and can prevent zero-day attack
- Protects against attacks originating from within the corporate network, as well as from external sources
Database Vault

- Provides security controls to help protect application data from unauthorized access, and comply with privacy and regulatory requirements
- You can deploy controls to block privileged account access to application data and control sensitive operations inside the database using multi-factor authorization
- Secures existing database environments transparently, eliminating costly and time consuming application changes
- Creates an environment in which separation of duties can be effectively designed, deployed, and enforced through the creation of secure application roles that are enabled only by Database Vault rules
WALLETS & WALLETS MANAGER

- Wallets are a password-protected container used to store authentication and signing credentials, including private keys, certificates, and trusted certificates needed by SSL
- Wallet Manager supports the administrative tasks required for the creation and management of multiple wallets

Security DBA opens wallet containing master key

Master key stored in wallet

Column keys encrypted by master key

Column keys encrypt data in columns
Enterprise Edition Only

- Advanced Security Option
 - Encryption through-out the database stack
- Data Masking
 - Selective, on-the-fly transformation to protect sensitive data
- Data Redaction (part of OAS)
 - Selective, on-the-fly redaction data transformation in SQL query results prior to display
- Database Vault
 - Protects sensitive data from access by users with privileged accounts
- Enterprise User Security
 - Integration of database user accounts with LDAP
- Label Security
 - Fine Grained Access Control extended to finer granularity and control
- Network Encryption (SSL/TLS)
 - Encryption of communications between the database and clients, applications, backups utilities, and DR facilities
Privilege Analysis
- Analyses assigned privileges

Real Application Security
- Second generation VPD

Secure External Password Store
- Uses an Oracle Wallet to hold password credentials

Transparent Sensitive Data Protection
- Grouping of columns for application of data masking (redaction) policies

Virtual Private Database (Row Level Security)
- Uses PL/SQL functions to create a WHERE clause or append to an existing WHERE clause preventing unauthorized row level data access
Data Redaction (1:2)

- Requires Enterprise Edition
- Requires Licensing
- Replaces traditional data masking with more robust policy based masking capabilities with the power of regular expressions to identify sensitive data
- Based on the built-in DBMS_REDACT package
DECLARE
lSchema redaction_policies.object_owner%TYPE := USER;
lObject redaction_policies.object_name%TYPE := 'PERSON';
lPolicy redaction_policies.policy_name%TYPE := 'PERSON_SSN_REDACT';
lDescrip redaction_policies.policy_description%TYPE := 'SSN Obfuscation';
lColumn redaction_columns.column_name%TYPE := 'SSN';
lColDes redaction_columns.column_description%TYPE := 'SSN Masking Test';
lFuncType BINARY_INTEGER := dbms_redact.full;
lFuncParam redaction_columns.function_parameters%TYPE := '';
lExpression VARCHAR2(60) := 'SYS_CONTEXT('SYS_SESSION_ROLES', 'SUPERVISOR') = 'FALSE'';
lEnable BOOLEAN := FALSE;
lREPattern redaction_columns.regexp_pattern%TYPE := NULL;
lReplString redaction_columns.regexp_replace_string%TYPE := NULL;
lREPosition BINARY_INTEGER := 1;
lREOccur BINARY_INTEGER := 0;
lREMatchParm redaction_columns.regexp_match_parameter%TYPE := NULL;
BEGIN
 dbms_redact.add_policy (lSchema, lObject, lPolicy, lDescrip, lColumn, lColDes,
 lFuncType, lFuncParam, lExpression, lEnable, lREPattern,
 lReplString, lREPosition, lREOccur, lREMatchParm);
END; /

Data Redaction (2:2)
Enterprise User Security

- Requires Enterprise Edition
- Requires Licensing
- Enterprise users are those users that are defined in a directory and their identity remains constant throughout the enterprise
- Enterprise User Security relies on Oracle Identity Management infrastructure, which in turn uses an LDAP-compliant directory service to centrally store and manage users
Label Security (OLS)

- Requires Enterprise Edition
- Requires Licensing
- Use to secure your database tables at the row level, and assign rows different levels of security based on the row's data
- For example, rows that contain highly sensitive data can be assigned a label entitled HIGHLY SENSITIVE; rows that are less sensitive can be labeled as SENSITIVE; rows that all users can have access to can be labeled PUBLIC

```
SQL> SELECT object_type, COUNT(*)
    2     FROM dba_objects
    3 WHERE owner = 'LBACSYS'
    4 GROUP BY object_type
    5 ORDER BY 1;

OBJECT_TYPE            COUNT (*)
------------------------ ------
FUNCTION                24
INDEX                   30
LIBRARY                 11
PACKAGE                 23
PACKAGE BODY           22
PROCEDURE               9
SEQUENCE                3
TABLE                   22
TRIGGER                 3
TYPE                    9
TYPE BODY               4
VIEW                    77
```
Oracle Advanced Security (OAS)

- Only available with Enterprise Edition
- Additional licensing cost
- Required for Transparent Data Encryption (TDE) which transparently to an application encrypts data in datafiles
 - Provides no protection against any theft other than an attempt to copy physical data files
- Required for encrypting RMAN backups to disk
- Required for encrypting DataPump exports
- Required for encrypting Data Guard traffic
- Required for Transparent Data Encryption master key storage
Privilege Analysis

- Requires Enterprise Edition
- Requires Database Vault license
- Implemented with the DBMS_PRIVILEGE_CAPTURE built-in package
- Contains the following objects
 - CREATE_CAPTURE
 - DISABLE_CAPTURE
 - DROP_CAPTURE
 - ENABLE_CAPTURE
 - GENERATE_RESULT

```
DECLARE
  rlist role_name_list;
BEGIN
  rlist := role_name_list(NULL);
  rlist(1) := 'CONNECT';
  rlist.extend;
  rlist(2) := 'EXECUTE_CATALOG_ROLE';
  dbms_privilege_capture.create_capture('UWPrivCapt', 'Test policy', dbms_privilege_capture.g_role, rlist, NULL);
  dbms_privilege_capture.enable_capture('UWPrivCapt');
  dbms_privilege_capture.disable_capture('UWPrivCapt');
  dbms_privilege_capture.generate_result('UWPrivCapt');
END;
/```
Real Application Security (RAS)

- Requires Enterprise Edition (no extra licensing required)
- Provides a declarative model that enables security policies that encompass not only the business objects being protected but also the principals (users and roles) that have permissions to operate on those business objects
- A policy-based authorization model that recognizes application-level users, privileges, and roles within the database, and then controls access on both static and dynamic collections of records representing business objects
- With built-in support for securely propagating application users’ sessions to the database, Oracle RAS allows security policies on data to be expressed directly in terms of the application users, their roles and security contexts
- Can also act as an authorization decision service to assist the application in enforcing security within the middle-tier
- Creates and uses Access Control Lists (ACL) which are a collection of privilege grants or Access Control Entries (ACE), where an ACE grants or denies privileges to a user or a role
Secure External Password Store

- Requires Enterprise Edition
- Requires Licensing
- Uses an external wallet to hold database passwords

```
-- create wallet directory
mkdir $ORACLE_BASE/admin/orabase/wallet

-- modify SQLNET.ORA
NAMES.DIRECTORY_PATH = (TNSNAMES, EZCONNECT)
ENCRYPTION_WALLET_LOCATION = (SOURCE = (METHOD=FILE) (METHOD_DATA = (DIRECTORY = /u01/oracle/admin/orabase/wallet)))
```
Transparent Sensitive Data Protection (TSDP)

- Requires Enterprise Edition
- Requires Licensing
- Permits creating sets of columns with the same sensitive type (like credit card number) on the database level
- Data Redaction is used on the policies for masking sets of columns the same way across a database
- Implemented with the DBMS_TSDP_MANAGE and DBMS_TSDP_PROTECT built-in packages

```sql
exec dbms_tsdp_manage.add_sensitive_type('FIN_TYPE', 'Financial Information');
SELECT * FROM dba_tsdp_policy_type;
exec dbms_tsdp_manage.add_sensitive_column('SCOTT', 'EMP', 'SAL', 'FIN_TYPE', 'Employee Salaries');
SELECT * FROM dba_tsdp_policy_protection;
```
Virtual Private Database aka Row Level Security (VPD / RLS)

- Provides row-level security at the database table or view level
- Can be extended to provide column-level security as well
- Essentially, creates or modifies an existing WHERE clause rewriting a query in the optimizer so that the query cannot return restricted rows or columns
- Based on the built-in DBMS_RLS package

```sql
FUNCTION empview_sec(owner VARCHAR2, objname VARCHAR2) RETURN VARCHAR2 IS
 predicate VARCHAR2(2000);
BEGIN
 IF (sys_context('exp_rpt', 'exp_role') = 'manager') THEN
 predicate := 'cost_center_id = sys_context('exp_rpt', 'cc_number')';
 ELSE
 predicate := 'employee_id = sys_context('exp_rpt', 'emp_number')';
 END IF;
 RETURN predicate;
END empview_sec;
```
Oracle GoldenGate Data Flow

Source → Extract → Trail File → Pump → Trail File → Replicat → Target

Production

Dev, Test & QA

Firewall
Data is transformed before it is written to the local trail file and while still inside the production zone.
## GoldenGate-PPDL18 Supported Environments

<table>
<thead>
<tr>
<th>Transaction Sources</th>
<th>Transaction Targets</th>
<th>Operating Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>HP SQL/MP</td>
<td>Big Data</td>
<td>HPUX IA64</td>
</tr>
<tr>
<td>HP SQL/MX</td>
<td>ALO Framework</td>
<td>HP NonStop Itanium</td>
</tr>
<tr>
<td>IBM DB2 (LUW)</td>
<td>Apache Flume</td>
<td>IBM AIX</td>
</tr>
<tr>
<td>IBM DB2 (Z/OS)</td>
<td>Apache Hadoop</td>
<td>IBM z/OS</td>
</tr>
<tr>
<td>IBM DB2 for I (AS/400)</td>
<td>Apache Hive</td>
<td>IBM iSeries</td>
</tr>
<tr>
<td>IBM Informix</td>
<td>Apache Kafka</td>
<td>Oracle Solaris Sparc</td>
</tr>
<tr>
<td>JMS message queues</td>
<td>Apache Spark</td>
<td>Oracle Solaris x86-64</td>
</tr>
<tr>
<td>Microsoft SQL Server</td>
<td>Apache Storm</td>
<td>Windows x86-64</td>
</tr>
<tr>
<td>Oracle Database</td>
<td>AVRO</td>
<td>z/Linux (IBM mainframe)</td>
</tr>
<tr>
<td>Oracle MySQL</td>
<td>Base24 (ATM &amp; POS)</td>
<td></td>
</tr>
<tr>
<td>Oracle TimesTen</td>
<td>HDFS</td>
<td></td>
</tr>
<tr>
<td>Sybase ASE</td>
<td>JSON</td>
<td></td>
</tr>
<tr>
<td>Tandem</td>
<td>MongoDB</td>
<td></td>
</tr>
<tr>
<td>Teradata</td>
<td>EMC Greenplum</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HP Enscribe</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HP SQL/MP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HP SQL/MX</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IBM DB2 (LUW)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IBM DB2 (Z/OS)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IBM DB2 for I (AS/400)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IBM Informix</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IBM Netezza</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IBM System I</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IBM System Z/OS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>JMS Message Queue</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Microsoft SQL Server</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ODBC Databases</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oracle Database</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oracle MySQL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oracle NoSQL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oracle TimesTen</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sybase ASE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tandem</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Teradata</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Flat Files</td>
<td></td>
</tr>
<tr>
<td></td>
<td>XML Files</td>
<td></td>
</tr>
</tbody>
</table>
Perimeter Defense
Database Networks

- Attempts are being made essentially 7 x 24 x 365 to attack your organizations.
- If you do not know this then you have insufficient monitoring and most likely many of the attempts are success.
- A small division of one of America's largest retailers has not been able to identify a single 24 hour period in the last 5 years during which there was not at least one serious, professional, attempt to access their data.
Perimeter Defense (1:3)

- Perimeter defense has never worked
- Did any castle ever built survive all attacks?
- Did the "impenetrable" Maginot line protect the France?
- Did every major break-in in the US fail because of a corporate firewall?
Many organizations think they are protected because they have a firewall.

The following example is real and came from a customer security audit.

The firewall's configuration, discovered during an audit, allowed direct access from the internet (UNTRUST) to the database servers (BUSINESS-DATA).

The organization's employees did not understand the rules they wrote.

ICMP Allowed from outside to Business-Data Zone

set security policies from-zone UNTRUST to-zone Business-Data policy BD-Ping match source-address any
set security policies from-zone UNTRUST to-zone Business-Data policy BD-Ping match destination-address any
set security policies from-zone UNTRUST to-zone Business-Data policy BD-Ping match application junos-ping
set security policies from-zone UNTRUST to-zone Business-Data policy BD-Ping then permit
set security policies from-zone UNTRUST to-zone Business-Data policy BD-Ping then log session-close
A firewall should give you no sense of comfort
Here is another firewall rule set-up discovered during a security audit
This example cancels the stateful feature of the firewall and make it just like a switch or router with security rules (ACLs)
All traffic is allowed both from/to the outside interface with security level 0

dc-fwsm-app configurations

1094 access-list INBOUND-CAMPUS extended permit ip any any
3735 access-group INBOUND-CAMPUS in interface OUTSIDE
1096 access-list OUTBOUND-CAMPUS extended permit ip any any
3736 access-group OUTBOUND-CAMPUS out interface OUTSIDE

dc-fwsm-db configurations

access-list INBOUND-CAMPUS extended permit ip any any
access-group INBOUND-CAMPUS in interface OUTSIDE

access-list OUTBOUND-CAMPUS extended permit ip any any
access-group OUTBOUND-CAMPUS out interface OUTSIDE
Database Networks

- Every Oracle Database deployment requires multiple network connections

<table>
<thead>
<tr>
<th>Name</th>
<th>Protocol</th>
<th>Utilization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Management</td>
<td>TCP/IP</td>
<td>System Admin connection to the server’s light's-out management card</td>
</tr>
<tr>
<td>Public</td>
<td>TCP/IP</td>
<td>Access for applications, DBAs, exports, imports, backups: No keep-alive if RAC</td>
</tr>
<tr>
<td>SAN Storage</td>
<td>Fibre Channel</td>
<td>Server connection to a Storage Area Network (SAN)</td>
</tr>
<tr>
<td>NAS Storage</td>
<td>TCP/IP or IB</td>
<td>Connection to an NFS or DNFS mounted storage array</td>
</tr>
<tr>
<td>RAC Cache Fusion interconnect</td>
<td>UDP or IB</td>
<td>Jumbo Frames, no keep-alive, with custom configured read and write caching</td>
</tr>
<tr>
<td>Replication</td>
<td>TCP/IP</td>
<td>Data Guard and GoldenGate</td>
</tr>
<tr>
<td>Backup and Import/Export</td>
<td>TCP/IP</td>
<td>RMAN, DataPump, CommVault, Data Domain, ZFS, ZDLRA</td>
</tr>
</tbody>
</table>

- Every one of these networks provides access to critical infrastructure
- No conversation on networking is complete without considering firewalls, DNS and NTP servers, load balancers, and a large variety of mobile and Internet of Things devices
Example Minimum Environment

- **10gEth TCP/IP**
- **Fibre Channel & SAN Switch**
- **Cache Fusion Interconnect**

- **WebLogic App Server**
- **F5 Load Balancer**
- **Public TCP/IP Switch**
- **Matrix OLTP RAC Database**
- **Global Metadata Database**
- **Tier 1 Storage**
- **Tier 2 Storage**
- **Database Firewall**
- **SQLNet Encryption**
- **Database Vault Encryption (dbms_crypto)**
- **Hashing (standard_hash)**
- **Virtual Private Database**
- **Transparent Data Encryption (TDE)**
  - tablesce encryption
  - securefile encryption
  - table encryption
  - column encryption

- **Encrypted traffic to DR Key Vault**
- **Data Masking & Subsetting Data Redaction to Pre-Prod**

- **OBIEE + WebLogic**
- **Audit Vault**
- **OEM Repository**
- **Encrypted Backup**

**Security Measures**
- **Encrypted Backup**
- **Encrypted traffic to DR**
- **Key Vault**
- **Database Vault**
- **Encryption (dbms_crypto)**
- **Hashing (standard_hash)**
- **Virtual Private Database**

**Network Components**
- **DNS**
- **NTP**
- **SSO**
- **PUBLIC TCP/IP Switch**
- **10gEth TCP/IP**
- **Fibre Channel & SAN Switch**
- **Cache Fusion Interconnect**
Security Support Resources
http://iase.disa.mil/stigs/Pages/index.aspx
A STIG is a Security Technical Implementation Guide produced or approved by the US Department of Defense.

Oracle has published STIGs at My Oracle Support for Exadata and ODA.
- But the "CHECK" option can be run on any Linux server.

Oracle Support provides a downloadable script that can be used to check an ODA against STIG requirements and identify three levels of violations.

We strongly recommend running the script with the -check option but recommend having your Linux System Admin correct those issues you wish to correct manually.

**Warning: Never run the STIG script with the -fix option**

- Ctrl-Alt-Del combination to shutdown system is enabled
- Password for grub not enabled
- Privilege account 'halt' is present
- Privilege account 'shutdown' is present
- RealVNC rpm is installed on system
- sendmail decode command is not commented in /etc/aliases
- Support for USB device found in kernel
STIG Implementation Script for Oracle Database Appliance (Doc ID 1461162.1)

APPLIES TO:
Oracle Database Appliance - Version All Versions and later
Oracle Database Appliance Software - Version 2.1.0.0 to 12.1.2.4 [Release 2.2 to 12.1]
Linux x86-64

GOAL:
The ODA STIG script provides prescriptive steps that can be used to both assess and improve the security configuration of the Oracle Database Appliance. This script is based on the Oracle Linux 5 Security Technical Implementation Guide [STIG] that can be found at http://iasec.ospi.mil.

For more information please contact tammy.becker@oracle.com

SOLUTION:
Download the latest STIG script.
Center For Internet Security (CIS)

- CIS is the source of audit guidelines and auditors for e-commerce websites

https://www.cisecurity.org
User Management
Application Access

- At many major Oracle customers there are two types of users defined
  - human: a sentient human will use this user-id to log on
  - mechid: an application or application server will use this user-id to connect
- All application schemas should be created with a mechid
- Application schemas should be granted the privileges required to create objects then
  - Revoke all system privileges from the application schema
  - Lock the schema and expire the password
  - Audit attempts to log onto the application schema directly

```
SQL> ALTER USER ps ACCOUNT LOCK;
SQL> REVOKE create session FROM ps;
SQL> REVOKE create table FROM ps;
SQL> REVOKE create procedure FROM ps;
SQL> REVOKE create view FROM ps;
SQL> ... enable auditing
```
Users

New: 12cR1

AUDSYS
GSMADMIN_INTERNAL
GSMCATUSER
GSMUSER
PDBADMIN
SYSBACKUP
SYSDG
SYSKM

New: 12cR2

APEX_050100
APEX_INSTANCE_ADMIN_USER
APEX_LISTENER
APEX_REST_PUBLIC_USER
DBJSON
DBSFWUSER
GGSYS
HRREST
OBE
ORDS_METADATA
ORDS_PUBLIC_USER
PDBADMIN
REMOTE_SCHEDULER_AGENT
RESTFUL
SYSSUMF
SYSSRAC
XDBEXT
XDBPM
XFILES

Dropped
BI, OE, PM, SH, and SPATIAL_WFS_USR
# New Users With Escalated Privilges

<table>
<thead>
<tr>
<th>USERNAME</th>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>GGSYS</td>
<td>The internal account used by Oracle GoldenGate. It should not be unlocked or used for a database login.</td>
</tr>
<tr>
<td>SYSBACKUP</td>
<td>This privilege allows a user to perform backup and recovery operations either from Oracle Recovery Manager (RMAN) or SQL*Plus.</td>
</tr>
<tr>
<td>SYSDG</td>
<td>This privilege allows a user to perform Data Guard operations can use this privilege with either Data Guard Broker or the DGMGRL command-line interface.</td>
</tr>
<tr>
<td>SYSKM</td>
<td>This privilege allows a user to perform Transparent Data Encryption keystore operations.</td>
</tr>
</tbody>
</table>
| SYSRAC   | This privilege allows the Oracle agent of Oracle Clusterware to perform Oracle Real Application Clusters (Oracle RAC) operations.  
SYSRAC facilitates Oracle Real Application Clusters (Oracle RAC) operations by connecting to the database by the Clusterware agent on behalf of Oracle RAC utilities such as SRVCTL. |
Proxy Users (1:3)

- Here's what the Oracle docs say about proxy users: They are not wrong but incomplete and misleading

  **About Proxy Authentication**

  Proxy authentication is the process of using a middle-tier for user authentication. You can design a middle-tier server to proxy clients in a secure fashion by using the following three forms of proxy authentication:

  - The source of the above statement is the "Database JDBC Developer's Guide"

- Here's what Tom Kyte wrote ...

  **and we said...**

  a proxy user is a user that is allowed to "connect on behalf of another user"

  say you have a middle tier application. You want to use a connection pool. You need to use a single user for that. Say that user is "midtier"

  Scott can grant connect through to this midtier user.

- And, of course Tom Kyte was correct
Proxy Users (2:3)

- ... and proxy users cannot be spoofed

So now the midtier user (which has just "create session" and "connect through to scott") authenticates to the database and sets up the connection pool. This midtier user is just a regular user -- anything you can do to scott, you can do to midtier, but it generally isn't relevant. For the only thing midtier will do in the database is connect really!

So, scott comes along and convinces the midtier "i am really scott". The midtier then says to the database "you know me, I'm midtier and I'd like to pretend to be scott for a while". The database looks and says "yes midtier, you are allowed to be scott for a while -- go ahead". At this point -- that midtier connection will have a session where by "select user from duel" will return SCOTT -- not midtier.

Scott never gave the midtier his password to the database, in fact, scott might not even KNOW what his password to the database it!

Now, this SCOTT session that was created on behalf of the midtier connection is subject to all of the rules and privs around the user SCOTT -- it can only do what scott is allowed to do.

The nice thing about this is:

- you have auditing back, the database knows who is using it. no more of this "single username" junk.

- you have grants back, you don't have to reinvent security over and over and over.

- you have identity preserved all of the way from the browser through the middle tier and into the database.
Proxy Users

-- create a non-human database user
SQL> CREATE USER mechid
2 IDENTIFIED BY "A1Ac9C81292FC1CF0b8A40#5F04C0A"
3 DEFAULT TABLESPACE uwdata
4 TEMPORARY TABLESPACE temp
5 QUOTA 100M ON uwdata;

User created.

SQL> ALTER USER mechid ACCOUNT LOCK;

Grant succeeded.

SQL> AUDIT CONNECT BY scott ON BEHALF OF mechid;

Audit succeeded.

-- create proxy for mechid
SQL> ALTER USER mechid GRANT CONNECT THROUGH scott;

User altered.

SQL> SELECT * FROM sys.proxy_info$;

<table>
<thead>
<tr>
<th>CLIENT#</th>
<th>PROXY#</th>
<th>CREDENTIAL_TYPE#</th>
<th>FLAGS</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>109</td>
<td>0</td>
<td>5</td>
</tr>
</tbody>
</table>

SQL> conn scott[MECHID]/tiger@pdbdev
Connected.

SQL> sho user
USER is "MECHID"

SQL> SELECT sys_context('USERENV', 'CURRENT_SCHEMA')
2 FROM dual;

SYS_CONTEXT('USERENV','CURRENT_SCHEMA')
-------------------------------
MECHID

SQL> SELECT sys_context('USERENV', 'CURRENT_USER')
2 FROM dual;

SYS_CONTEXT('USERENV','CURRENT_USER')
-------------------------------------
MECHID

SQL> SELECT sys_context('USERENV', 'PROXY_USER')
2 FROM dual;

SYS_CONTEXT('USERENV','PROXY_USER')
-------------------------------------
SCOTT
User Authentication and Permissions

- No user should be created using the default profile
- Check for default password usage
  - If you find default passwords being used either change the passwords or lock and expire the account
- Do not use externally authenticated users such as OPS$ unless you can prove that O/S access is secure and will stay that way which, of course, you cannot do
- CIS audit check 4.07 specifically checks for the use of externally authenticated access

```sql
SQL> SELECT d.con_id, d.username, u.account_status
2 FROM cdb_users_with_defpwd d, cdb_users u
3 WHERE d.username = u.username
4 AND u.account_status = 'OPEN'
5 ORDER BY 3,1, 2;

<table>
<thead>
<tr>
<th>CON_ID</th>
<th>USERNAME</th>
<th>ACCOUNT_STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SYS</td>
<td>OPEN</td>
</tr>
<tr>
<td>1</td>
<td>SYSTEM</td>
<td>OPEN</td>
</tr>
<tr>
<td>1</td>
<td>SYSTEM</td>
<td>OPEN</td>
</tr>
<tr>
<td>3</td>
<td>HR</td>
<td>OPEN</td>
</tr>
<tr>
<td>3</td>
<td>OE</td>
<td>OPEN</td>
</tr>
<tr>
<td>3</td>
<td>PM</td>
<td>OPEN</td>
</tr>
<tr>
<td>3</td>
<td>SCOTT</td>
<td>OPEN</td>
</tr>
<tr>
<td>3</td>
<td>SH</td>
<td>OPEN</td>
</tr>
<tr>
<td>3</td>
<td>SYS</td>
<td>OPEN</td>
</tr>
<tr>
<td>3</td>
<td>SYSTEM</td>
<td>OPEN</td>
</tr>
<tr>
<td>3</td>
<td>SYSTEM</td>
<td>OPEN</td>
</tr>
</tbody>
</table>
```
password_life_time restricts the password lifetime will help deter brute force attacks against user accounts and refresh passwords.

password_reuse_max sets the number of different passwords that must be rotated by the user before the current password can be reused. This prevents users from cycling through a few common passwords and helps ensure the integrity and strength of user credentials.

password_reuse_time sets the amount of time that must pass before a password can be reused. Creating a long window before password reuse helps protect from password brute force attacks and helps the strength and integrity of the user credential.

password_lock_time specifies the amount of time in days that the account will be locked out if the maximum number of authentication attempts has been reached.

password_grace_time specified in days the amount of time that the user is warned to change their password before their password expires.
Starting with this release, you can use the INACTIVE_ACCOUNT_TIME parameter to automatically lock the account of a database user who has not logged in to the database instance in a specified number of days.
Run $ORACLE_HOME/rdbms/admin/utlpwdmg.sql

-- This script alters the default parameters for Password Management
-- This means that all the users on the system have Password Management
-- enabled and set to the following values unless another profile is
-- created with parameter values set to different value or UNLIMITED
-- is created and assigned to the user.

ALTER PROFILE DEFAULT LIMIT
FAILED_LOGIN_ATTEMPTS        10
INACTIVE_ACCOUNT_TIME UNLIMITED
PASSWORD_GRACE_TIME            7
PASSWORD_LIFE_TIME    UNLIMITED
PASSWORD_LOCK_TIME            1
PASSWORD_REUSE_TIME    UNLIMITED
PASSWORD_REUSE_MAX    UNLIMITED
PASSWORD_VERIFY_FUNCTION ora12c_verify_function;
Uncomment the CIS or STIG profiles for improved security

```sql
/**
The below set of password profile parameters would take into consideration
recommendations from Center for Internet Security[CIS Oracle 11g].

ALTER PROFILE DEFAULT LIMIT
PASSWORD_LIFE_TIME 180
PASSWORD_GRACE_TIME 7
PASSWORD_REUSE_TIME UNLIMITED
PASSWORD_REUSE_MAX UNLIMITED
FAILED_LOGIN_ATTEMPTS 10
PASSWORD_LOCK_TIME 1
INACTIVE_ACCOUNT_TIME UNLIMITED
PASSWORD_VERIFY_FUNCTION ora12c_verify_function;
*/

/**
The below set of password profile parameters would take into
consideration recommendations from Department of Defense Database
Security Technical Implementation Guide[STIG v8R1].

ALTER PROFILE DEFAULT LIMIT
PASSWORD_LIFE_TIME 60
PASSWORD_REUSE_TIME 365
PASSWORD_REUSE_MAX 5
FAILED_LOGIN_ATTEMPTS 3
PASSWORD_VERIFY_FUNCTION ora12c_strong_verify_function;*/
```
Secure Configuration

- A script run as part of installation that creates a "secure configuration"
- Review the script `$ORACLE_HOME/rdbms/admin/secconf.sql`

Can perform the following

- Modifies the Default profile
- Creates audit policy: ORA_ACCOUNT_MGMT
- Creates audit policy: ORA_DATABASE_PARAMETER
- Creates audit policy: ORA_LOGON_FAILURES
- Creates audit policy: ORA_SECURECONFIG
- Creates audit policy: ORA_CIS_RECOMMENDATIONS

- Executed indirectly when `$ORACLE_HOME/rdbms/admin/catproc.sql` is run
Roles can be further protected through passwords and PL/SQL package validation

- A PL/SQL package can perform numerous tests to identify the user and their connection before granting access
- If the package object returns an exception the role is not granted

```sql
-- role secured by password
CREATE ROLE read_only IDENTIFIED BY "S0^Sorry";

-- role secured by PL/SQL package
CREATE OR REPLACE PACKAGE db_security AUTHID CURRENT_USER IS
 PROCEDURE enable_role;
END db_security;
/

CREATE OR REPLACE PACKAGE BODY db_security IS
 PROCEDURE enable_role IS
 BEGIN
 dbms_session.set_role('read_only');
 END enable_role;
 END db_security;
/

SELECT * FROM dba_application_roles;

CREATE ROLE read_only IDENTIFIED USING db_security;
```
### Roles (2:2)

#### 12cR1 New
- ADM_PARALLEL_EXECUTE_TASK
- APEX_GRANTS_FOR_NEW_USERS_ROLE
- AUDIT_ADMIN
- AUDIT_VIEWER
- CAPTURE_ADMIN
- CDB_DBA
- DBAHADOOP
- DV_AUDIT_CLEANUP
- DV_GOLDENGATE_ADMIN
- DV_GOLDENGATE_REDO_ACCESS
- DV_MONITOR
- DV_PATCH_ADMIN
- DV_STREAMS_ADMIN
- DV_XSTREAM_ADMIN
- EM_EXPRESS_ALL
- EM_EXPRESS_BASIC
- GSMADMIN_ROLE
- GSMUSER_ROLE
- GSM_POOLADMIN_ROLE
- HS_ADMIN_SELECT_ROLE
- LBAC_DBA
- OPTIMIZER_PROCESSING_RATE
- PDB_DBA
- PROVISIONER
- XS_CACHE_ADMIN
- XS_NAMESPACE_ADMIN
- XS_RESOURCE
- XS_SESSION_ADMIN

#### 12cR1 Dropped
- DELETE_CATALOG_ROLE

#### 12cR2 New
- APEX_ADMINISTRATOR_READ_ROLE
- APPLICATION_TRACE_VIEWER
- DATAPATCH_ROLE
- DBJAVASCRIPT
- DBMS_MDX_INTERNAL
- DV_POLICY_OWNER
- GGSYS_ROLE
- RDFCTX_ADMIN
- RECOVERY_CATALOG_OWNER_VPD
- SODA_APP
- SYSUMF_ROLE
- XFILES_ADMINISTRATOR
- XFILES_USER
- XS_CONNECT

#### 12cR2 Dropped
- DBAHADOOP
- SPATIAL_WFS_ADMIN
- WFS_USR_ROLE
- XS_RESOURCE
System & Object Privs
Granting Privileges

- The rule is simple ... never grant privileges in excess of those required to perform a specified job function
- Don't grant "ANY" privileges without documented justification
- If you have not done so in the last 12 months review all users for their system privileges and revoke those not required
- There is literally no excuse for granting Oracle's DBA role to any user
  - No one should have privileges they don't need and don't know what they do
System Privileges Granted to the DBA Role

SQL> select privilege
   2  FROM dba_sys_privs
   3  WHERE grantee = 'DBA'
   4  ORDER BY 1;

220 rows selected.
System Privileges

12cR1 New
ADMINISTER KEY MANAGEMENT
ALTER ANY CUBE BUILD PROCESS
ALTER ANY MEASURE FOLDER
ALTER ANY SQL TRANSLATION PROFILE
CREATE ANY CREDENTIAL
CREATE ANY SQL TRANSLATION PROFILE
CREATE CREDENTIAL
CREATE PLUGGABLE DATABASE
CREATE SQL TRANSLATION PROFILE
DROP ANY SQL TRANSLATION PROFILE
EM EXPRESS CONNECT
EXEMPT ACCESS POLICY
EXEMPT DDL REDACTION POLICY
EXEMPT DML REDACTION POLICY
EXEMPT IDENTITY POLICY
EXEMPT REDACTION POLICY
INHERIT ANY PRIVILEGES
KEEP_DATE TIME
KEEP_SYSGUID
LOGMINING
PURGE DBA_RECYCLEBIN
REDEFINE ANY TABLE
SELECT ANY CUBE BUILD PROCESS
SELECT ANY MEASURE FOLDER
SET CONTAINER
SYSSBACKUP
SYSDG
SYSKM
TRANSLATE ANY SQL
USE ANY SQL TRANSLATION PROFILE

12cR2 New
ALTER ANY ANALYTIC VIEW
CREATE ANALYTIC VIEW
CREATE ANY ANALYTIC VIEW
DROP ANY ANALYTIC VIEW
ALTER ANY ATTRIBUTE DIMENSION
CREATE ANY ATTRIBUTE DIMENSION
CREATE ATTRIBUTE DIMENSION
DROP ANY ATTRIBUTE DIMENSION
ALTER ANY HIERARCHY
CREATE ANY HIERARCHY
CREATE HIERARCHY
DROP ANY HIERARCHY
ALTER LOCKDOWN PROFILE
CREATE LOCKDOWN PROFILE
DROP LOCKDOWN PROFILE
DEBUG CONNECT ANY
INHERIT ANY REMOTE PRIVILEGES
SYSRAC
USE ANY JOB RESOURCE

12cR2 Modified
SELECT ANY DICTIONARY (altered in 12.1.0.2 to exclude some objects)
Object Privileges

- The rule is simple ... never grant privileges to objects that are not required
- If granting access to a table you have choices
  - SELECT
  - INSERT
  - UPDATE
  - DELETE
- If granting update privileges control by column whenever possible
  
  ```sql
 GRANT UPDATE (first_name, last_name) ON person TO uwclass;
  ```
- No data has ever been stolen because the privileges were too granular or because someone had insufficient privileges
Object Privileges

- Review each of these grants to PUBLIC and determine which are necessary and which put your database and data at risk
- Before removing any granted privilege be sure to validate the non-impact of the change in a QA environment

```sql
SELECT 'REVOKE SELECT ON ' || table_name || ' FROM PUBLIC;' AS RUN_SCRIPT
FROM dba_tab_privs
WHERE grantee = 'PUBLIC'
AND table_name LIKE 'DBA%'
ORDER BY 1;
```

**RUN_SCRIPT**

```
REVOKE SELECT ON DBA_AUTO_SEGADV_CTL FROM PUBLIC;
REVOKE SELECT ON DBA_AUTO_SEGADV_SUMMARY FROM PUBLIC;
REVOKE SELECT ON DBA_COL_PENDING_STATS FROM PUBLIC;
REVOKE SELECT ON DBA_COL_USAGE_STATISTICS FROM PUBLIC;
REVOKE SELECT ON DBA_DBFS_HS_FIXED_PROPERTIES FROM PUBLIC;
REVOKE SELECT ON DBA_EDITIONING_VIEW_COLS FROM PUBLIC;
REVOKE SELECT ON DBA_EDITIONING_VIEW_COLS_AE FROM PUBLIC;
REVOKE SELECT ON DBA_EXPRESSION_STATISTICS FROM PUBLIC;
REVOKE SELECT ON DBA_FLASHBACK_ARCHIVE FROM PUBLIC;
REVOKE SELECT ON DBA_FLASHBACK_ARCHIVE_TABLES FROM PUBLIC;
REVOKE SELECT ON DBA_FLASHBACK_ARCHIVE_TS FROM PUBLIC;
REVOKE SELECT ON DBA_HEAT_MAP_SEGMENT FROM PUBLIC;
REVOKE SELECT ON DBA_HEAT_MAP_SEG_HISTOGRAM FROM PUBLIC;
REVOKE SELECT ON DBA_IND_PENDING_STATS FROM PUBLIC;
REVOKE SELECT ON DBA_JAVA_CLASSES FROM PUBLIC;
REVOKE SELECT ON DBA_SDO_MAPS FROM PUBLIC;
REVOKE SELECT ON DBA_SDO_STYLES FROM PUBLIC;
REVOKE SELECT ON DBA_SDO_THEMES FROM PUBLIC;
REVOKE SELECT ON DBA_SR_PARTN_OPS FROM PUBLIC;
REVOKE SELECT ON DBA_SR_STLOG_STATS FROM PUBLIC;
REVOKE SELECT ON DBA_SYNC_CAPTURE_TABLES FROM PUBLIC;
REVOKE SELECT ON DBA_TAB_HISTGRM_PENDING_STATS FROM PUBLIC;
REVOKE SELECT ON DBA_TAB_PENDING_STATS FROM PUBLIC;
REVOKE SELECT ON DBA_TAB_STAT_PREFS FROM PUBLIC;
REVOKE SELECT ON DBA_TSTZ_TABLES FROM PUBLIC;
REVOKE SELECT ON DBA_XMLSCHEMA_LEVEL_VIEW FROM PUBLIC;
```
Object Privileges (3:10)

- Review each of these grants to PUBLIC and determine which are necessary and which put your database and data at risk.

- Before removing any granted privilege be sure to validate the non-impact of the change in a QA environment.

```sql
SELECT UNIQUE 'REVOKE EXECUTE ON ' || table_name || ' FROM PUBLIC;' AS RUN_SCRIPT
FROM dba_tab_privs dtp
WHERE dtp.grantee = 'PUBLIC'
AND dtp.privilege = 'EXECUTE'
AND dtp.type = 'PACKAGE'
AND ((dtp.table_name LIKE 'DBMS%') OR (dtp.table_name LIKE 'UTL%'))
ORDER BY 1;
```

---

```
EVOKE EXECUTE ON DBMS_ADDM FROM PUBLIC;
REVOKE EXECUTE ON DBMS_ADVISOR FROM PUBLIC;
REVOKE EXECUTE ON DBMS_APPLICATION_INFO FROM PUBLIC;
REVOKE EXECUTE ON DBMS_APP_CONT_PRVT FROM PUBLIC;
REVOKE EXECUTE ON DBMS_AQJMS FROM PUBLIC;
REVOKE EXECUTE ON DBMS_AQ_EXP_CMT_TIME_TABLES FROM PUBLIC;
REVOKE EXECUTE ON DBMS_AQ_EXP_DEQUEUELOG_TABLES FROM PUBLIC;
REVOKE EXECUTE ON DBMS_AQ_EXP_HISTORY_TABLES FROM PUBLIC;
REVOKE EXECUTE ON DBMS_AQ_EXP_INDEX_TABLES FROM PUBLIC;
REVOKE EXECUTE ON DBMS_AQ_EXP_QUEUES FROM PUBLIC;
REVOKE EXECUTE ON DBMS_AQ_EXP_SUBSCRIBER_TABLES FROM PUBLIC;
REVOKE EXECUTE ON DBMS_AQ_EXP_TIMEMGR_TABLES FROM PUBLIC;
REVOKE EXECUTE ON DBMS_AQ_IMP_INTERNAL FROM PUBLIC;
REVOKE EXECUTE ON DBMS_AQ_INV FROM PUBLIC;
REVOKE EXECUTE ON DBMS_ASSERT FROM PUBLIC;
REVOKE EXECUTE ON DBMS_AUTO_REPORT FROM PUBLIC;
REVOKE EXECUTE ON DBMS_AUTO_TASK FROM PUBLIC;
REVOKE EXECUTE ON DBMS_AW FROM PUBLIC;
REVOKE EXECUTE ON DBMS_AW_EXP FROM PUBLIC;
REVOKE EXECUTE ON DBMS_AW_STATS FROM PUBLIC;
REVOKE EXECUTE ON DBMS_AW_XML FROM PUBLIC;
```
Object Privileges (4:10)

- Review each of these grants to PUBLIC and determine which are necessary and which put your database and data at risk.

- Before removing any granted privilege, be sure to validate the non-impact of the change in a QA environment.

```sql
REVOKE EXECUTE ON DBMS_CDC_ISUBSCRIBE FROM PUBLIC;
REVOKE EXECUTE ON DBMS_CDC_SUBSCRIBE FROM PUBLIC;
REVOKE EXECUTE ON DBMS_CLOBUTIL FROM PUBLIC;
REVOKE EXECUTE ON DBMS_COMPRESSION FROM PUBLIC;
REVOKE EXECUTE ON DBMS_CREDENTIAL FROM PUBLIC;
REVOKE EXECUTE ON DBMS_CRYPTO_TOOLKIT FROM PUBLIC;
REVOKE EXECUTE ON DBMS_CSX_INT FROM PUBLIC;
REVOKE EXECUTE ON DBMS_CSX_INT2 FROM PUBLIC;
REVOKE EXECUTE ON DBMS_CUBE FROM PUBLIC;
REVOKE EXECUTE ON DBMS_CUBE_ADVISE FROM PUBLIC;
REVOKE EXECUTE ON DBMS_CUBE_ADVISE_SEC FROM PUBLIC;
REVOKE EXECUTE ON DBMS_CUBE_EXP FROM PUBLIC;
REVOKE EXECUTE ON DBMS_CUBE_LOG FROM PUBLIC;
REVOKE EXECUTE ON DBMS_CUBE_UTIL FROM PUBLIC;
REVOKE EXECUTE ON DBMS_DATA_MINING_TRANSFORM FROM PUBLIC;
REVOKE EXECUTE ON DBMS_DB_VERSION FROM PUBLIC;
REVOKE EXECUTE ON DBMS_DDL FROM PUBLIC;
REVOKE EXECUTE ON DBMS_DEBUG FROM PUBLIC;
REVOKE EXECUTE ON DBMS_DEBUG_JDWP FROM PUBLIC;
REVOKE EXECUTE ON DBMS_DEBUG_JDWP_CUSTOM FROM PUBLIC;
REVOKE EXECUTE ON DBMS_DESCRIBE FROM PUBLIC;
REVOKE EXECUTE ON DBMS_DIMENSION FROM PUBLIC;
REVOKE EXECUTE ON DBMS_DM_MODEL_EXP FROM PUBLIC;
REVOKE EXECUTE ON DBMS_DM_MODEL_IMP FROM PUBLIC;
REVOKE EXECUTE ON DBMS_EDITIONS_UTILITIES FROM PUBLIC;
REVOKE EXECUTE ON DBMS_EPG FROM PUBLIC;
REVOKE EXECUTE ON DBMS_ERRLOG FROM PUBLIC;
REVOKE EXECUTE ON DBMS_EXPORT_EXTENSION FROM PUBLIC;
REVOKE EXECUTE ON DBMS_FILE_GROUP_EXP FROM PUBLIC;
REVOKE EXECUTE ON DBMS_FILE_GROUP_IMP FROM PUBLIC;
REVOKE EXECUTE ON DBMS_FREQUENT_ITEMSET FROM PUBLIC;
```
Review each of these grants to PUBLIC and determine which are necessary and which put your database and data at risk.

Before removing any granted privilege be sure to validate the non-impact of the change in a QA environment.
Object Privileges (6:10)

- Review each of these grants to PUBLIC and determine which are necessary and which put your database and data at risk.
- Before removing any granted privilege be sure to validate the non-impact of the change in a QA environment.

REVOKE EXECUTE ON DBMS_PART FROM PUBLIC;
REVOKE EXECUTE ON DBMS_PCLXUTIL FROM PUBLIC;
REVOKE EXECUTE ON DBMS_PICKLER FROM PUBLIC;
REVOKE EXECUTE ON DBMS_PLSQL_CODE_COVERAGE FROM PUBLIC;
REVOKE EXECUTE ON DBMS_PREDICTIVE_ANALYTICS FROM PUBLIC;
REVOKE EXECUTE ON DBMS_PREPROCESSOR FROM PUBLIC;
REVOKE EXECUTE ON DBMS_PROFILER FROM PUBLIC;
REVOKE EXECUTE ON DBMS_PSP FROM PUBLIC;
REVOKE EXECUTE ON DBMS_RANDOM FROM PUBLIC;
REVOKE EXECUTE ON DBMS_REFRESH FROM PUBLIC;
REVOKE EXECUTE ON DBMS_REPORT FROM PUBLIC;
REVOKE EXECUTE ON DBMS_RESCONFIG FROM PUBLIC;
REVOKE EXECUTE ON DBMS_RESOURCE_MANAGER FROM PUBLIC;
REVOKE EXECUTE ON DBMS_RESOURCE_MANAGER_PRIVS FROM PUBLIC;
REVOKE EXECUTE ON DBMS_RESULT_CACHE_API FROM PUBLIC;
REVOKE EXECUTE ON DBMS_RMgr_GROUP_EXPORT FROM PUBLIC;
REVOKE EXECUTE ON DBMS_RMgr_PACT_EXPORT FROM PUBLIC;
REVOKE EXECUTE ON DBMS_RMgr_PLAN_EXPORT FROM PUBLIC;
REVOKE EXECUTE ON DBMS_RMIN FROM PUBLIC;
REVOKE EXECUTE ON DBMS_ROWID FROM PUBLIC;
REVOKE EXECUTE ON DBMS_RULE FROM PUBLIC;
REVOKE EXECUTE ON DBMS_RULEADM_INTERNAL FROM PUBLIC;
REVOKE EXECUTE ON DBMS_RULE_ADMD FROM PUBLIC;
REVOKE EXECUTE ON DBMS_RULE_EXP_EV_CTXS FROM PUBLIC;
REVOKE EXECUTE ON DBMS_RULE_EXP_RULES FROM PUBLIC;
REVOKE EXECUTE ON DBMS_RULE_EXP_RULE_SETS FROM PUBLIC;
REVOKE EXECUTE ON DBMS_RULE_EXP_UTLII FROM PUBLIC;
REVOKE EXECUTE ON DBMS_RULE_EXP_IMPL FROM PUBLIC;
REVOKE EXECUTE ON DBMS_SCHEDULER FROM PUBLIC;
REVOKE EXECUTE ON DBMS_SCHED_ATTRIBUTE_EXPORT FROM PUBLIC;
REVOKE EXECUTE ON DBMS_SCHED_CHAIN_EXPORT FROM PUBLIC;
REVOKE EXECUTE ON DBMS_SCHED_CLASS_EXPORT FROM PUBLIC;
REVOKE EXECUTE ON DBMS_SCHED_CONSTRAINT_EXPORT FROM PUBLIC;
REVOKE EXECUTE ON DBMS_SCHED_CREDENTIAL_EXPORT FROM PUBLIC;
Object Privileges (7:10)

- Review each of these grants to PUBLIC and determine which are necessary and which put your database and data at risk.

- Before removing any granted privilege be sure to validate the non-impact of the change in a QA environment.

```
REVOKE EXECUTE ON DBMS_SCHED_EXPORT_CALLOUTS FROM PUBLIC;
REVOKE EXECUTE ON DBMS_SCHED_FILE_WATCHER_EXPORT FROM PUBLIC;
REVOKE EXECUTE ON DBMS_SCHED_JOB_EXPORT FROM PUBLIC;
REVOKE EXECUTE ON DBMS_SCHED_PROGRAM_EXPORT FROM PUBLIC;
REVOKE EXECUTE ON DBMS_SCHED_SCHEDULE_EXPORT FROM PUBLIC;
REVOKE EXECUTE ON DBMS_SCHED_WINDOW_EXPORT FROM PUBLIC;
REVOKE EXECUTE ON DBMS_SCHED_WINGRP_EXPORT FROM PUBLIC;
REVOKE EXECUTE ON DBMS_SCN FROM PUBLIC;
REVOKE EXECUTE ON DBMS_SESSION FROM PUBLIC;
REVOKE EXECUTE ON DBMS_SNAPSHOT FROM PUBLIC;
REVOKE EXECUTE ON DBMS_SNAPSHOT_UTIL FROM PUBLIC;
REVOKE EXECUTE ON DBMS_SODA_DOM FROM PUBLIC;
REVOKE EXECUTE ON DBMS_SPACE FROM PUBLIC;
REVOKE EXECUTE ON DBMS_SPD FROM PUBLIC;
REVOKE EXECUTE ON DBMS_SPM FROM PUBLIC;
REVOKE EXECUTE ON DBMS_SQL FROM PUBLIC;
REVOKE EXECUTE ON DBMS_SQL_DIAG FROM PUBLIC;
REVOKE EXECUTE ON DBMS_SQLPA FROM PUBLIC;
REVOKE EXECUTE ON DBMS_SQLTUNE FROM PUBLIC;
REVOKE EXECUTE ON DBMS_SQLTUNE_UTIL2 FROM PUBLIC;
REVOKE EXECUTE ON DBMS_SQL_MONITOR FROM PUBLIC;
REVOKE EXECUTE ON DBMS_SQL_TRANSLATOR FROM PUBLIC;
REVOKE EXECUTE ON DBMS_SQL_TRANSLATOR_EXPORT FROM PUBLIC;
REVOKE EXECUTE ON DBMS_STANDARD FROM PUBLIC;
REVOKE EXECUTE ON DBMS_STATS FROM PUBLIC;
REVOKE EXECUTE ON DBMS_STATS_ADVISOR FROM PUBLIC;
REVOKE EXECUTE ON DBMS_STAT_FUNCS FROM PUBLIC;
REVOKE EXECUTE ON DBMS_STAT_FUNCS_AUX FROM PUBLIC;
REVOKE EXECUTE ON DBMS_STREAMS FROM PUBLIC;
REVOKE EXECUTE ON DBMS_STREAMS_PUB_RPC FROM PUBLIC;
REVOKE EXECUTE ON DBMS_SUMMARY FROM PUBLIC;
REVOKE EXECUTE ON DBMS_SUM_RWEQ_EXPORT FROM PUBLIC;
REVOKE EXECUTE ON DBMS_SYNC_REFRESH FROM PUBLIC;
REVOKE EXECUTE ON DBMS_TF FROM PUBLIC;
```
Object Privileges (8:10)

- Review each of these grants to PUBLIC and determine which are necessary and which put your database and data at risk
- Before removing any granted privilege be sure to validate the non-impact of the change in a QA environment

```sql
REVOKE EXECUTE ON DBMS_TRACE FROM PUBLIC;
REVOKE EXECUTE ON DBMS_TRANSACTION FROM PUBLIC;
REVOKE EXECUTE ON DBMS_TRANSFORM_EXIMP FROM PUBLIC;
REVOKE EXECUTE ON DBMS_TYPES FROM PUBLIC;
REVOKE EXECUTE ON DBMS.Utility FROM PUBLIC;
REVOKE EXECUTE ON DBMS_WARNING FROM PUBLIC;
REVOKE EXECUTE ON DBMS_XA FROM PUBLIC;
REVOKE EXECUTE ON DBMS_XDB FROM PUBLIC;
REVOKE EXECUTE ON DBMS_XDBNFS FROM PUBLIC;
REVOKE EXECUTE ON DBMS_XDBRESOURCE FROM PUBLIC;
REVOKE EXECUTE ON DBMS_XDBUTIL_INT FROM PUBLIC;
REVOKE EXECUTE ON DBMS_XDBZ FROM PUBLIC;
REVOKE EXECUTE ON DBMS_XDBZ0 FROM PUBLIC;
REVOKE EXECUTE ON DBMS_XDB_CONFIG FROM PUBLIC;
REVOKE EXECUTE ON DBMS_XDB_CONSTANTS FROM PUBLIC;
REVOKE EXECUTE ON DBMS_XDB_CONTENT FROM PUBLIC;
REVOKE EXECUTE ON DBMS_XDB_PRINT FROM PUBLIC;
REVOKE EXECUTE ON DBMS_XDB_REPOS FROM PUBLIC;
REVOKE EXECUTE ON DBMS_XDB_PRINT FROM PUBLIC;
REVOKE EXECUTE ON DBMS_XEVENT FROM PUBLIC;
REVOKE EXECUTE ON DBMS_XLSB FROM PUBLIC;
REVOKE EXECUTE ON DBMS_XMLDOM FROM PUBLIC;
REVOKE EXECUTE ON DBMS_XMLGEN FROM PUBLIC;
REVOKE EXECUTE ON DBMS_XMLINDEX FROM PUBLIC;
REVOKE EXECUTE ON DBMS_XMLINDEX0 FROM PUBLIC;
REVOKE EXECUTE ON DBMS_XMLPARSER FROM PUBLIC;
REVOKE EXECUTE ON DBMS_XMLQUERY FROM PUBLIC;
REVOKE EXECUTE ON DBMS_XMLSAVE FROM PUBLIC;
REVOKE EXECUTE ON DBMS_XMLSCHEMA FROM PUBLIC;
REVOKE EXECUTE ON DBMS_XMLSCHEMA_ANNOTATE FROM PUBLIC;
REVOKE EXECUTE ON DBMS_XMLSCHEMA_INT FROM PUBLIC;
REVOKE EXECUTE ON DBMS_XMLSCHEMA_LSB FROM PUBLIC;
REVOKE EXECUTE ON DBMS_XMLSTORE_MANAGE FROM PUBLIC;
REVOKE EXECUTE ON DBMS_XMLSTORE FROM PUBLIC;
```
Object Privileges (9:10)

- Review each of these grants to PUBLIC and determine which are necessary and which put your database and data at risk.
- Before removing any granted privilege be sure to validate the non-impact of the change in a QA environment.

REVOKE EXECUTE ON DBMS_XMLTRANSLATIONS FROM PUBLIC;
REVOKE EXECUTE ON DBMS_XPLAN FROM PUBLIC;
REVOKE EXECUTE ON DBMS_XQUERY FROM PUBLIC;
REVOKE EXECUTE ON DBMS_XQUERYINT FROM PUBLIC;
REVOKE EXECUTE ON DBMS_XSLPROCESSOR FROM PUBLIC;
REVOKE EXECUTE ON DBMS_XS_SESSIONS FROM PUBLIC;
REVOKE EXECUTE ON DBMS_ZHELP_IR FROM PUBLIC;
REVOKE EXECUTE ON UTL_CALL_STACK FROM PUBLIC;
REVOKE EXECUTE ON UTL_COLL FROM PUBLIC;
REVOKE EXECUTE ON UTL_COMPRESS FROM PUBLIC;
REVOKE EXECUTE ON UTL_ENCODE FROM PUBLIC;
REVOKE EXECUTE ON UTL_FILE FROM PUBLIC;
REVOKE EXECUTE ON UTL_GDK FROM PUBLIC;
REVOKE EXECUTE ON UTL_HTTP FROM PUBLIC;
REVOKE EXECUTE ON UTL_I18N FROM PUBLIC;
REVOKE EXECUTE ON UTL_IDENT FROM PUBLIC;
REVOKE EXECUTE ON UTL_INADDR FROM PUBLIC;
REVOKE EXECUTE ON UTL_LMS FROM PUBLIC;
REVOKE EXECUTE ON UTLMATCH FROM PUBLIC;
REVOKE EXECUTE ON UTL_NLA FROM PUBLIC;
REVOKE EXECUTE ON UTL_RAW FROM PUBLIC;
REVOKE EXECUTE ON UTL_REF FROM PUBLIC;
REVOKE EXECUTE ON UTL_SMTP FROM PUBLIC;
REVOKE EXECUTE ON UTL_TCP FROM PUBLIC;
REVOKE EXECUTE ON UTL_URL FROM PUBLIC;
Review each of these grants to PUBLIC and determine which are necessary and which put your database and data at risk.

Before removing any granted privilege be sure to validate the non-impact of the change in a QA environment.

---

SELECT 'REVOKE SELECT ON ' || table_name || ' FROM PUBLIC;' AS RUN_SCRIPT FROM dba_tab_privs WHERE grantee = 'PUBLIC' AND table_name LIKE 'ALL%'
ORDER BY 1;

REVOKE SELECT ON ALL_ALL_TABLES FROM PUBLIC;
REVOKE SELECT ON ALL_DB_LINKS FROM PUBLIC;
REVOKE SELECT ON ALL_EDITIONING_VIEWS_AE FROM PUBLIC;
REVOKE SELECT ON ALL_ENCRYPTED_COLUMNS FROM PUBLIC;
REVOKE SELECT ON ALL_JAVA_ARGUMENTS FROM PUBLIC;
REVOKE SELECT ON ALL_OBJECTS FROM PUBLIC;
REVOKE SELECT ON ALL_OBJECTS_AE FROM PUBLIC;
REVOKE SELECT ON ALL_OPERATORS FROM PUBLIC;
REVOKE SELECT ON ALL_OPERATOR_COMMENTS FROM PUBLIC;
REVOKE SELECT ON ALL_PROCEDURES FROM PUBLIC;
REVOKE SELECT ON ALL_SOURCE FROM PUBLIC;
REVOKE SELECT ON ALL_SOURCE_AE FROM PUBLIC;
V$ Object Access

- Anyone that can query Oracle X$ and/or V$ objects can bypass the vast majority of Oracle Database security.

- Some of the objects that are critically important to protect are:
  - V_$MAPPED_SQL
  - V_$SQL
  - V_$SQLAREA
  - V_$SQLAREA_PLAN_HASH
  - V_$SQLSTATS
  - V_$SQLSTATS_PLAN_HASH
  - V_$SQLTEXT
  - V_$SQLTEXT_WITH_NEWLINES
  - V_$SQL_BIND_CAPTURE
  - V_$SQL_BIND_DATA
  - V_$SQL_OPTIMIZER_ENV
  - V_$SQL_PLAN
If data is not encrypted before DML the original statement can be recovered

Transparent Data Encryption (TDE) offers no protection from this attack

```
SQL> CREATE TABLE credit_card (
 2 ccno VARCHAR2(19),
 3 cname VARCHAR2(25));

Table created.

SQL> INSERT /* memtest */ INTO credit_card
 2 VALUES ('5123-4567-8901-2345', 'Dan Morgan');

1 row created.

SQL> SELECT sql_id, sql_fulltext
 2 FROM v$sqlarea
 3 WHERE sql_fulltext LIKE '%memtest%';

SQL_ID SQL_FULLTEXT
------------- -------------------------------
fy44ug06np5w4 INSERT /* memtest */ INTO credit_card
VALUES ('5123-4567-8901-2345', 'Dan Morgan')

5d4p3uz59b0a1 SELECT sql_id, sql_fulltext FROM v$sqlarea WHERE sql_fulltext LIKE '%memtest3%'
```
X$ Object Access

- X$ objects are a queryable view into database memory

**SQL**

```sql
SELECT * FROM X$KZDPSUPSF;
```

<table>
<thead>
<tr>
<th>ADDR</th>
<th>INDX</th>
<th>INST_ID</th>
<th>CON_ID</th>
<th>KZDPSUPSFNM</th>
<th>KZDPSUPSFFN</th>
<th>KZDPSUPSFCOM</th>
</tr>
</thead>
<tbody>
<tr>
<td>00007FF685ABAB40</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>DATA REDACTION</td>
<td>ALL</td>
<td>Supports all data redaction functionality (DBMS_REDACT).</td>
</tr>
<tr>
<td>00007FF685ABABB8</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>VIRTUAL PRIVATE DATABASE</td>
<td>OBJECT-LEVEL POLICY</td>
<td>Supports object-level VPD policies.</td>
</tr>
<tr>
<td>00007FF685ABAB70</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>VIRTUAL PRIVATE DATABASE</td>
<td>COLUMN-LEVEL POLICY</td>
<td>Supports column-level VPD policies. This corresponds to the SEC_RELEVANT_COL parameter functionality provided by DBMS_RLS.ADD_POLICY.</td>
</tr>
<tr>
<td>00007FF685ABABB8</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>UNIFIED AUDIT</td>
<td>OBJECT-LEVEL POLICY</td>
<td>Supports object-level Unified Audit policies.</td>
</tr>
<tr>
<td>00007FF685ABABAA</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>FINE GRAINED AUDIT</td>
<td>ALL</td>
<td>Supports all fine grained audit functionality (DBMS_FGA).</td>
</tr>
<tr>
<td>00007FF685ABABB8</td>
<td>5</td>
<td>1</td>
<td>0</td>
<td>TRANSPARENT DATA ENCRYPTION</td>
<td>COLUMN-LEVEL ENCRYPTION</td>
<td>Supports TDE Column level encryption.</td>
</tr>
</tbody>
</table>
Anyone with access to ORADEBUG can view everything in the database's memory structures

```sql
source: catmacp.sql

-- Control ORADEBUG in Database Vault environment
PROCEDURE enable_oradebug;
PRAGMA SUPPLEMENTAL_LOG_DATA(enable_oradebug, AUTO_WITH_COMMIT);

PROCEDURE disable_oradebug;
PRAGMA SUPPLEMENTAL_LOG_DATA(disable_oradebug, AUTO_WITH_COMMIT);
```
DBMS_SYS_SQL

- This is, undeniably, the single most dangerous PL/SQL package inside your Oracle Database
  - DBMS_SYS_SQL
  - PARSE_AS_USER
  - 32 Overloads

```sql
CREATE OR REPLACE PROCEDURE create_sequence(seqname IN VARCHAR2, uname IN VARCHAR2)
AUTHID DEFINER IS
 c NUMBER;
 DDLStr CLOB := 'CREATE SEQUENCE ';
 retVal NUMBER;
 uid dba_users.user_id%TYPE;
BEGIN
 c := dbms_sql.open_cursor;
 DDLStr := DDLStr || seqname;

 SELECT user_id
 INTO uid
 FROM dba_users
 WHERE username = dbms_assert.schema_name(uname);

 dbms_sys_sql.parse_as_user(c, DDLStr, dbms_sql.NATIVE, uid);
 retVal := dbms_sql.execute(c);
 dbms_sql.close_cursor(c);
END create_sequence;
/```

Overload 4 syntax

```sql
dbms_sys_sql.parse_as_user(
  c     IN NUMBER,
  statement IN CLOB,
  language_flag IN NUMBER,
  userid    IN NUMBER);
```
Net Services Security

Here’s what Oracle says about Net Services aka SQL*Net

Local listener administration is **secure through local operating system authentication**, which restricts listener administration to the user who started the listener or to the super user. By default, remote listener administration is disabled.

For secure communications you need to consider the following parameters (some of which require the Advanced Security Option)

- NAMES.LDAP_AUTHENTICATE_BIND
- NAMES.LDAP_CONN_TIMEOUT
- NAMES.LDAP_PERSISTENT_SESSION
- SQLNET.ALLOWED_LOGON_VERSION_CLIENT
- SQLNET.ALLOWED_LOGON_VERSION_SERVER
- SQLNET.AUTHENTICATION_SERVICES
- SQLNET.CLIENT_REGISTRATION
- SQLNET.CRYPTO_CHECKSUM_CLIENT
- SQLNET.CRYPTO_CHECKSUM_SERVER
- SQLNET.CRYPTO_CHECKSUM_TYPES_CLIENT
- SQLNET.CRYPTO_CHECKSUM_TYPES_SERVER
- SQLNET.ENCRYPTION_CLIENT
- SQLNET.ENCRYPTION_SERVER
- SQLNET.ENCRYPTION_TYPES_CLIENT
- SQLNET.ENCRYPTION_TYPES_SERVER
- SQLNET.EXPIRE_TIME
- SQLNET.INBOUND_CONNECT_TIMEOUT
- SSL_CERT_REVOCATION
- SSL_CERT_FILE
- SSL_CERT_PATH
- SSL_CIPHER_SUITES
- SSL_EXTENDED_KEY_USAGE
- SSL_SERVER_DN_MATCH
- SSL_VERSION
- TCP.CONNECT_TIMEOUT
- WALLET_LOCATION
Oracle Listener Port

- Have you changed the default port of your database from 1521 to something else to thwart an attack?
- Netstat can narrow down the choices an attacker must check in a single command
- Changing the port is item 2.11 on the CIS audit but it secures nothing

```
[oracle@gg00a dirprm]$ netstat -lntu
Active Internet connections (only servers)
Proto Recv-Q Send-Q Local Address        Foreign Address    State
tcp    0      0 0.0.0.0:5801         0.0.0.0:*          LISTEN
tcp    0      0 0.0.0.0:5901         0.0.0.0:*          LISTEN
tcp    0      0 0.0.0.0:6001         0.0.0.0:*          LISTEN
tcp    0      0 0.0.0.0:56754        0.0.0.0:*          LISTEN
tcp    0      0 0.0.0.0:22           0.0.0.0:*          LISTEN
tcp    0      0 127.0.0.1:631        0.0.0.0:*          LISTEN
tcp    0      0 127.0.0.1:1:2208     0.0.0.0:*          LISTEN
tcp    0      0 :::::47406           ::::*             LISTEN
tcp    0      0 :::::1526            ::::*             LISTEN
tcp    0      0 :::::6001            ::::*             LISTEN
tcp    0      0 :::::7809            ::::*             LISTEN
udp    0      0 0.0.0.0:5353         0.0.0.0:*          LISTEN
udp    0      0 0.0.0.0:111          0.0.0.0:*          LISTEN
udp    0      0 0.0.0.0:627          0.0.0.0:*          LISTEN
udp    0      0 0.0.0.0:630          0.0.0.0:*          LISTEN
udp    0      0 0.0.0.0:631          0.0.0.0:*          LISTEN
udp    0      0 0.0.0.0:34070        0.0.0.0:*          LISTEN
udp    0      0 0.0.0.0:68           0.0.0.0:*          LISTEN
udp    0      0 0.0.0.0:45534        0.0.0.0:*          LISTEN
udp    0      0 :::::5353            ::::*             LISTEN
udp    0      0 :::::49517            ::::*             LISTEN
udp    0      0 ::::1:63872          ::::*             LISTEN
udp    0      0 ::::1:39693          ::::*             LISTEN
udp    0      0 :::::59798            ::::*             LISTEN
udp    0      0 ::::1:19812          ::::*             LISTEN
```
DDOS Attack

- A Distributed Denial of Service attack can make a database unusable by flooding it with connection requests.
- The connection rate limiter feature in Oracle Net Listener enables a DBA to limit the number of new connections handled by the listener.
- When enabled, Oracle Net Listener imposes a user-specified maximum limit on the number of new connections handled by the listener every second. Depending on the configuration, the rate can be applied to a collection of endpoints, or to a specific endpoint.

```sql
LISTENER=
  (ADDRESS=(PROTOCOL=tcp) (HOST=) (PORT=1521) (RATE_LIMIT=yes))

LISTENER= (ADDRESS_LIST=
  (ADDRESS=(PROTOCOL=tcp) (HOST=) (PORT=1521) (RATE_LIMIT=5))
  (ADDRESS=(PROTOCOL=tcp) (HOST=) (PORT=1522) (RATE_LIMIT=10))
  (ADDRESS=(PROTOCOL=tcp) (HOST=) (PORT=1523))
)

CONNECTION_RATE_LISTENER=10
LISTENER=
  (ADDRESS_LIST=
    (ADDRESS=(PROTOCOL=tcp) (HOST=) (PORT=1521) (RATE_LIMIT=yes))
    (ADDRESS=(PROTOCOL=tcp) (HOST=) (PORT=1522) (RATE_LIMIT=yes))
    (ADDRESS=(PROTOCOL=tcp) (HOST=) (PORT=1523))
  )
```
SQLNET.ALLOWED_LOGON_VERSION

- Specifies the minimum client version that is allowed to connect to the database
- Someone with a valid userid and password, but the wrong Oracle client version is prevented from making a connection

<table>
<thead>
<tr>
<th>Explanation</th>
<th>Set the login version to 11. The higher setting prevents logins by older version clients that do not use strong authentication to pass the login credentials.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Validation</td>
<td><code>grep -i ALLOWED_LOGIN_VERSION sqlnet.ora</code></td>
</tr>
<tr>
<td>Finding</td>
<td>Allowed logon version not configured.</td>
</tr>
<tr>
<td>Action</td>
<td>Set <code>SQLNET.ALLOWED_LOGON_VERSION=11</code> to restrict access to version 11 clients.</td>
</tr>
</tbody>
</table>
Valid Node Checking (1:2)

- 38% of breaches are performed with stolen credentials ... 86% of records stolen are from breaches with stolen credentials
- To prevent someone with a valid userid and password from gaining access enable Valid Node Checking in your SQLNET.ORA file

  ```
  valid_node_checking_registration_listener=on
  tcp.invited_nodes=(sales.meta7.com, hr.us.mlib.com, 144.185.5.73)
  tcp.excluded_nodes=(blackhat.hacker.com, mktg.us.acme.com, 144.25.5.25)
  ```

- "Best practice" is to hard-code in the IP addresses of
 - Application servers
 - This has the added benefit of forcing the organization to communicate with the DBA team when new application servers are added
 - If a new app server is not added to the invited list it cannot connect to the database
 - Reporting servers (Business Objects, Cognos, Crystal Reports, ...)
 - Replication servers (GoldenGate, Informatica, SharePlex...)
 - DBA team members
Explanation
This parameter in SQLNET.ORA causes the listener to matches incoming connection requests to invited and excluded node lists. A valid user-id/password combination is only valid if it comes in from an invited and unexcluded node.

Validation
```bash
grep -i tcp.validnode_checking sqlnet.ora
```

Finding
Valid node checking not enabled in the current PROD environment. The QA system contains the following:

```
VALID_NODE_CHECKING_REGISTRATION_LISTENER_SCAN3=OFF
VALID_NODE_CHECKING_REGISTRATION_LISTENER_SCAN2=OFF
VALID_NODE_CHECKING_REGISTRATION_LISTENER_SCAN1=OFF
VALID_NODE_CHECKING_REGISTRATION_LISTENER = SUBNET
VALID_NODE_CHECKING_REGISTRATION_MGMTLSNR=SUBNET
REGISTRATION_INVITED_NODES_LISTENER_SCAN2=()
REGISTRATION_INVITED_NODES_LISTENER_SCAN3=()
```

Which enables SUBNET level valid node checking but given that no lists are provided does not provide any security.

Action
Set `tcp.validnode_checking=YES` in `$ORACLE_HOME/network/admin/sqlnet.ora`
| **Explanation** | Specify the action a database should take when a bad packet is received. TRACE generates a detailed trace file and should only be used when debugging. ALERT or LOG should be used to capture the event. Use currently established procedures for checking console or log file data to monitor these events. |
| **Validation** | `SELECT value
FROM v$parameter
WHERE name = 'sec_protocol_error_trace_action';`
The return value should be LOG or ALERT |
| **Finding** | **VALUE**

TRACE |
| **Action** | `ALTER SYSTEM SET sec_protocol_error_trace_action = 'ALERT'
COMMENT='Set to ALERT on 15-MAR-2016'
SID='*'
SCOPE=BOTH;` |
Built-in Packages
The Oracle database contains a number of built-in components that can be utilized to enable reading and writing to file systems:

- Secure data can be written
- External files can be read

Some have execute granted to PUBLIC and the public privileges should be revoked.

What you need to secure is:

- DBMS_ADVISOR
- DBMS_LOB
- DBMS_SQL
- DBMS_XSLPROCESSOR
- UTL_FILE

SQL> SELECT DISTINCT grantee, table_name AS OBJECT_NAME, privilege
FROM cdb_tab_privs
WHERE table_name IN ('DBMS_ADVISOR', 'DBMS_LOB', 'DBMS_SCHEDULER', 'DBMS_SQL', 'DBMS_XSLPROCESSOR', 'UTL_FILE')
AND grantee = 'PUBLIC'
ORDER BY 2;

<table>
<thead>
<tr>
<th>GRANTEE</th>
<th>OBJECT_NAME</th>
<th>PRIVILEGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>PUBLIC</td>
<td>DBMS_ADVISOR</td>
<td>EXECUTE</td>
</tr>
<tr>
<td>PUBLIC</td>
<td>DBMS_LOB</td>
<td>EXECUTE</td>
</tr>
<tr>
<td>PUBLIC</td>
<td>DBMS_SCHEDULER</td>
<td>EXECUTE</td>
</tr>
<tr>
<td>PUBLIC</td>
<td>DBMS_SQL</td>
<td>EXECUTE</td>
</tr>
<tr>
<td>PUBLIC</td>
<td>DBMS_XSLPROCESSOR</td>
<td>EXECUTE</td>
</tr>
<tr>
<td>PUBLIC</td>
<td>UTL_FILE</td>
<td>EXECUTE</td>
</tr>
</tbody>
</table>

Does this look like security by default?
File System Access Risks (2:5)

SQL> conn uwclass/uwclass@pdbdev
Connected.

SQL> CREATE TABLE uwclass.t (
 2 textcol CLOB);
Table created.

SQL>
SQL> DECLARE
2 c CLOB;
3 CURSOR scur IS
4 SELECT text
5 FROM dba_source
6 WHERE rownum < 200001;
7 BEGIN
8 EXECUTE IMMEDIATE 'truncate table uwclass.t';
9 FOR srec IN scur LOOP
10 c := c || srec.text;
11 END LOOP;
12 INSERT INTO uwclass.t VALUES (c);
13 COMMIT;
14 END;
15 /
PL/SQL procedure successfully completed.

SQL> SELECT LENGTH(textcol) FROM uwclass.t;
LENGTH(TEXTCOL)

8258936

SQL> set timing on
SQL> DECLARE
2 buf CLOB;
3 BEGIN
4 SELECT textcol
5 INTO buf
6 FROM uwclass.t
7 WHERE rownum = 1;
8 dbms_advisor.create_file(buf, 'CTEMP', 'testfile1.txt');
10 END;
11 /
PL/SQL procedure successfully completed.
Elapsed: 00:00:00.61
File System Access Risks (3:5)
EXTERNAL TABLES

- The CREATE TABLE privilege grants the privilege to create external tables
- Does this make you feel secure?
- Maybe you don't have a directory object pointing to $ADR_HOME/trace but what directory objects exist in your database by default?

```
CREATE OR REPLACE DIRECTORY bdump AS 'c:\app\oracle\diag\rdbms\orabase\orabase\trace\';

CREATE TABLE log_table (TEXT VARCHAR2(400))
ORGANIZATION EXTERNAL (
  TYPE oracle_loader
  DEFAULT DIRECTORY bdump
  ACCESS PARAMETERS (
    RECORDS DELIMITED BY NEWLINE
    NOBADFILE NODISCARDFILE NOLOGFILE
    FIELDS TERMINATED BY '0x0A'
    MISSING FIELD VALUES ARE NULL
  )
  LOCATION ('alert_orabase.log')
  REJECT LIMIT unlimited;

SELECT * FROM log_table;
```

Carefully monitor use of the CREATE ANY DIRECTORY privilege
File System Access Risks (5:5)

- **DBMS_SCHEDULER**
 - First available in version 10gR1 file watchers became available with version 11gR2
 - A File Watcher is a program that watches for a file to be created

```
-- create job credential
exec dbms_scheduler.create_credential('uw_credential', 'uwclass', 'uwclass');

-- create program in disabled state
exec dbms_scheduler.create_program('file_watcher', 'stored_procedure', 'load_file', 1);

-- define program argument
exec dbms_scheduler.define_metadata_argument('file_watcher', 'EVENT_MESSAGE', 1);

-- enable program
exec dbms_scheduler.enable('file_watcher');

-- create file watcher
exec dbms_scheduler.create_file_watcher('UW_FWatch', 'STAGE', 'democlob.txt', 'uw_credential');
```
Network Access Risks

- The Oracle database contains a number of built-in components that can be utilized to enable communications to the intranet and internet
- Configure access control lists with `DBMS_NETWORK_ACL_ADMIN` and do not grant privileges to the following packages without strict controls
 - `DBMS_NETWORK_ACL_ADMIN`
 - `DBMS_NETWORK_ACL_UTILITY`
 - `UTL_HTTP`
 - `UTL_INADDR`
 - `UTL_MAIL`
 - `UTL_SMTP`
 - `UTL_TCP`

- Does this look like security by default?

```
SQL> SELECT grantee, table_name
  2  FROM cdb_tab_privs
  3  WHERE table_name IN ('DBMS_NETWORK_ACL_ADMIN',
                          'DBMS_NETWORK_ACL_UTILITY',
                          'UTL_HTTP',
                          'UTL_INADDR',
                          'UTL_MAIL',
                          'UTL_SMTP',
                          'UTL_TCP')
  4  ORDER BY 2,1;
```

<table>
<thead>
<tr>
<th>GRANTEE</th>
<th>TABLE_NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>APEX_040200</td>
<td>UTL_HTTP</td>
</tr>
<tr>
<td>DBA</td>
<td>DBMS_NETWORK_ACL_ADMIN</td>
</tr>
<tr>
<td>EXECUTE_CATALOG_ROLE</td>
<td>DBMS_NETWORK_ACL_ADMIN</td>
</tr>
<tr>
<td>PUBLIC</td>
<td>DBMS_NETWORK_ACL_UTILITY</td>
</tr>
<tr>
<td>ORDPLUGINS</td>
<td>UTL_HTTP</td>
</tr>
<tr>
<td>PUBLIC</td>
<td>UTL_HTTP</td>
</tr>
<tr>
<td>ORACLE_OCM</td>
<td>UTL_INADDR</td>
</tr>
<tr>
<td>PUBLIC</td>
<td>UTL_INADDR</td>
</tr>
<tr>
<td>APEX_040200</td>
<td>UTL_SMTP</td>
</tr>
<tr>
<td>PUBLIC</td>
<td>UTL_SMTP</td>
</tr>
<tr>
<td>PUBLIC</td>
<td>UTL_TCP</td>
</tr>
</tbody>
</table>
Network Access Risks

- **DBMS_NETWORK_ACL_ADMIN**
 - Use to create Access Control Lists

- **DBMS_NETWORK_ACL.Utility**
 - Provides the utility functions that facilitate managing network access permissions

- **UTL_HTTP**
 - Has been used to capture websites and their content including code, images, and video

- **UTL_INADDR**
 - Can be used to interrogate DNS resources

- **UTL_MAIL**
 - Can be used to send data out of the database

- **UTL_SMTP**
 - Can be used to send data out of the database

- **UTL_TCP**
 - Supports application communications with external TCP/IP-based servers
SQL> SELECT DECODE(
 2 dbms_network_acl_admin.check_privilege('mlib-org-permissions.xml',
 3 'UWCLASS', 'connect'), 1, 'GRANTED', 0, 'DENIED', NULL) PRIVILEGE
 4 FROM DUAL;

ERROR at line 2:
ORA-46114: ACL name /sys/acls/mlib-org-permissions.xml not found.

SQL> BEGIN
 2 dbms_network_acl_admin.create_acl(acl => 'mlib-org-permissions.xml',
 3 description => 'Network permissions for *.morganslibrary.org',
 4 principal => 'UWCLASS', is_grant => TRUE, privilege => 'connect');
 5 END;
 6 /

PL/SQL procedure successfully completed.

SQL> SELECT DECODE(
 2 dbms_network_acl_admin.check_privilege('mlib-org-permissions.xml',
 3 'UWCLASS', 'connect'), 1, 'GRANTED', 0, 'DENIED', NULL) PRIVILEGE
 4 FROM DUAL;

PRIVILEGE

GRANTED
SQL> SELECT utl_inaddr.get_host_name('10.241.1.71') FROM dual;
SELECT utl_inaddr.get_host_name('10.241.1.71') FROM dual
*
ERROR at line 1:
ORA-24247: network access denied by access control list (ACL)
ORA-06512: at "SYS.UTL_INADDR", line 4
ORA-06512: at "SYS.UTL_INADDR", line 35
ORA-06512: at line 1
DECLARE
 req utl_http.req;
 resp utl_http.resp;
 value VARCHAR2(1024);
BEGIN
 req := utl_http.begin_request('http://www.morganslibrary.org');
 utl_http.set_header(req, 'User-Agent', 'Mozilla/4.0');
 resp := utl_http.get_response(req);
 LOOP
 utl_http.read_line(resp, value, TRUE);
 dbms_output.put_line(value);
 END LOOP;
 utl_http.end_response(resp);
EXCEPTION
 WHEN utl_http.end_of_body THEN
 utl_http.end_response(resp);
END;
/
Other Built-In Packages
First released in 12cR1 credentials are database objects that hold a username/password pair for authenticating and impersonating

- EXTPROC callout functions
- Remote jobs
- External jobs
- DBMS_SCHEDULER file watchers

Credentials are created using the CREATE_CREDENTIAL procedure in the built-in package.

The package allows specifying the Windows domain for remote external jobs executed against a Windows server.

```
SQL> SELECT DISTINCT grantee, table_name AS OBJECT_NAME, privilege
2  FROM cdb_tab_privs
3  WHERE table_name = 'DBMS_CREDENTIAL';
```

<table>
<thead>
<tr>
<th>GRANTEE</th>
<th>OBJECT_NAME</th>
<th>PRIVILEGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>PUBLIC</td>
<td>DBMS_CREDENTIAL</td>
<td>EXECUTE</td>
</tr>
</tbody>
</table>
DECLARE
cname user_credentials.credential_name%TYPE := 'UWCRED';
uname user_credentials.username%TYPE := 'UWCLASS';
pwd sys.scheduler$_credential.password%TYPE := 'ZzYzX6*';
dbrole VARCHAR2(30) := NULL;
windom sys.scheduler$_credential.domain%TYPE := NULL;
comment user_credentials.comments%TYPE := 'Test Cred';
enable BOOLEAN := FALSE;
BEGIN
 dbms_credential.create_credential(cname, uname, pwd, dbrole, windom, comment, enable);
END;
/

SELECT * FROM scheduler$_credential;
Database Link Communications

- Database Links can be a valuable productivity tool
- They can also be an attack vector
- Regularly audit existing links and creation of new links

Explanation

Database links are objects that allow creation of an almost transparent connection between databases that can be used to select, insert, update, and/or delete data.

Validation

```sql
SELECT *
FROM dba_db_links
ORDER BY 1,2;
```

Finding

<table>
<thead>
<tr>
<th>OWNER</th>
<th>DB_LINK</th>
<th>USERNAME</th>
<th>HOST</th>
<th>CREATED</th>
</tr>
</thead>
<tbody>
<tr>
<td>PUBLIC</td>
<td>EPMPRD.??? .EDU</td>
<td>SYSADM</td>
<td>EPMPRD</td>
<td>19-APR-12</td>
</tr>
<tr>
<td>PUBLIC</td>
<td>FINPRD.??? .EDU</td>
<td>SYSADM</td>
<td>FINPRD</td>
<td>10-NOV-11</td>
</tr>
<tr>
<td>PUBLIC</td>
<td>HRRPT.??? .EDU</td>
<td>SYSADM</td>
<td>HRRPT</td>
<td>10-NOV-11</td>
</tr>
<tr>
<td>PUBLIC</td>
<td>HRTRN.??? .EDU</td>
<td>SYSADM</td>
<td>HRTRN</td>
<td>10-NOV-11</td>
</tr>
<tr>
<td>PUBLIC</td>
<td>OEPRD.??? .EDU</td>
<td>PS_READ</td>
<td>oeprd</td>
<td>07-DEC-11</td>
</tr>
<tr>
<td>PUBLIC</td>
<td>OUDWH.??? .EDU</td>
<td>PS_READ</td>
<td>??DWH</td>
<td>10-NOV-11</td>
</tr>
<tr>
<td>PUBLIC</td>
<td>OUPRD.??? .EDU</td>
<td>PS_READ</td>
<td>??PRD</td>
<td>10-NOV-11</td>
</tr>
<tr>
<td>PUBLIC</td>
<td>PROD .??? .EDU</td>
<td>PS_READ</td>
<td>PROD</td>
<td>10-NOV-11</td>
</tr>
<tr>
<td>SPOTLIGHT</td>
<td>QUEST_SOO_HRPRD1.??? .EDU</td>
<td>hrprd1</td>
<td></td>
<td>02-DEC-11</td>
</tr>
<tr>
<td>SPOTLIGHT</td>
<td>QUEST_SOO_HRPRD2.??? .EDU</td>
<td>hrprd2</td>
<td></td>
<td>02-DEC-11</td>
</tr>
<tr>
<td>SPOTLIGHT</td>
<td>QUEST_SOO_HRPRD3.??? .EDU</td>
<td>hrprd3</td>
<td></td>
<td>02-DEC-11</td>
</tr>
</tbody>
</table>
Database Link Communications (2:2)

- **DBMS_DISTRIBUTED_TRUST_ADMIN**
 - First released with in 2001, contains procedures to maintain the Trusted Servers List
 - Use the package to define whether a server is trusted. If a database is not trusted, Oracle refuses current user database links from the database
 - Cannot stop PDB to PDB links in the same CDB

```sql
SQL> exec dbms_distributed_trust_admin.deny_all;

PL/SQL procedure successfully completed.

SQL> SELECT * FROM ku$_trlink_view;

<table>
<thead>
<tr>
<th>V</th>
<th>V</th>
<th>NAME</th>
<th>FUNCTION</th>
<th>TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>-*</td>
<td>DBMS_DISTRIBUTED_TRUST_ADMIN.DENY_ALL</td>
<td>0</td>
</tr>
</tbody>
</table>

SQL> exec dbms_distributed_trust_admin.allow_server('BIGDOG.MLIB.ORG');

PL/SQL procedure successfully completed.

SQL> SELECT * FROM ku$_trlink_view;

<table>
<thead>
<tr>
<th>V</th>
<th>V</th>
<th>NAME</th>
<th>FUNCTION</th>
<th>TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>-*</td>
<td>DBMS_DISTRIBUTED_TRUST_ADMIN.DENY_ALL</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>BIGDOG.MLIB.ORG</td>
<td>DBMS_DISTRIBUTED_TRUST_ADMIN.ALLOW_SERVER</td>
<td>1</td>
</tr>
</tbody>
</table>
SQL Injection
25% of all attacks are by SQL Injection ... and 89% of all data stolen is the result of a SQL Injection attack

If you do not know how to attack your databases ... you cannot prevent an attack?

To prevent SQL Injection attacks

- Use Bind Variables
- Use DBMS_ASSERT

```sql
SQL> SELECT dbms_assert.sql_object_name('UWCLASS.SERVERS')
 2 FROM dual;

DBMS_ASSERT.SQL_OBJECT_NAME('UWCLASS.SERVERS')

UWCLASS.SERVERS

SQL> SELECT dbms_assert.sql_object_name('UWCLASS.SERVERZ')
 2 FROM dual;
SELECT dbms_assert.sql_object_name('UWCLASS.SERVERZ') *
ERROR at line 1:
ORA-44002: invalid object name
ORA-06512: at "SYS.DBMS_ASSERT", line 383
```
ACCESSIBLE BY Clause

- Used in PL/SQL to control access within a schema so packages, procedures, and functions can only be executed by specifically named objects.

```sql
CREATE OR REPLACE FUNCTION test_src RETURN PLS_INTEGER
ACCESSIBLE BY (FUNCTION test_yes) AUTHID DEFINER IS
BEGIN
 RETURN 42;
END test_src;
/

CREATE OR REPLACE FUNCTION test_yes RETURN PLS_INTEGER AUTHID DEFINER IS
BEGIN
 RETURN test_src;
END test_yes;
/

CREATE OR REPLACE FUNCTION test_no RETURN PLS_INTEGER AUTHID DEFINER IS
BEGIN
 RETURN test_src;
END test_no;
/

Warning: Function created with compilation errors.

SQL> show err
Errors for FUNCTION TEST_NO:

LINE/COL ERROR
--------- -------
3/3 PL/SQL: Statement ignored
3/10 PLS-00904: insufficient privilege to access object TEST_SRC
```
Encryption & Hashing

- In the database you can implement many different types of encryption: Each one optimized for a specific purpose some of which require extra licensing such as TDE
  - DBMS_CRYPTO
  - STANDARD_HASH
- Encryption is of limited value unless executed by the application before the values get to the database

```sql
SQL> DECLARE
 2 enc_val RAW(2000);
 3 l_key RAW(2000);
 4 l_key_len NUMBER := 128/8; -- convert bits to bytes
 5 l_mod NUMBER := dbms_crypto.ENCRIPT_AES128+dbms_crypto.CHAIN_CBC+dbms_crypto.PAD_ZERO;
 6 BEGIN
 7 l_key := dbms_crypto.randombytes(l_key_len);
 8 enc_val := dbms_crypto.encrypt(utl_i18n.string_to_raw('4114-0113-1518-7114', 'AL32UTF8'), l_mod, l_key);
 9 dbms_output.put_line(enc_val);
 10 END;
 11 /
3DBA29959C45EE0E54B5BE6F2304BC1C78B2FFAC2A2D44A43A2C1E071E2A98D7
PL/SQL procedure successfully completed.
```
Operating System Configuration

- As a server boots it needs to know the mapping of some hostnames to IP addresses before DNS can be referenced.
- The mapping is kept in the `/etc/hosts` file.
- In the absence of a name server, a network program on your system consults this file to determine the IP address that corresponds to a host name.
- Be sure that the file does not contain any mappings that are not essential ... unnecessary mappings compromise security.

```
Do not remove the following line, or various programs that require network functionality will fail.
::1 localhost6.localdomain6 localhost6
192.168.17.24 orclsys1.priv1.example.com orclsys1-priv1
192.168.17.25 orclsys2.priv1.example.com orclsys2-priv1

SCAN IP
192.0.2.16 orclsys-scan.example.com orclsys-scan
192.168.17.24 orclsys1.priv1.example.com orclsys1-priv1
192.168.17.25 orclsys2.priv1.example.com orclsys2-priv1

SCAN IP
192.0.2.22 orclsys-scan.example.com orclsys-scan
192.168.17.24 orclsys1.priv1.example.com orclsys1-priv1
192.168.17.25 orclsys2.priv1.example.com orclsys2-priv1

Following added by OneCommand
127.0.0.1 localhost.localdomain localhost

PUBLIC HOSTNAMES

PRIVATE HOSTNAMES
192.168.16.24 orclsys1.priv0.example.com orclsys1-priv0
192.168.16.25 orclsys2.priv0.example.com orclsys2-priv0
192.168.17.24 orclsys1.priv1.example.com orclsys1-priv1
192.168.17.25 orclsys2.priv1.example.com orclsys2-priv1

VIP HOSTNAMES
192.0.2.20 orclsys1-vip.example.com orclsys1-vip
192.0.2.21 orclsys2-vip.example.com orclsys2-vip

NET(0-3) HOSTNAMES
192.0.2.18 orclsys1.example.com orclsys1
192.0.2.19 orclsys2.example.com orclsys2

SCAN IP
192.0.2.22 orclsys-scan.example.com orclsys-scan
```
Patching: A Risk Hiding In Plain Sight

- Is your operating environment patching current?
- Is your database version fully supported?
- Is your database patching current?
- Don’t make it easier for the predators.
As If It Was Required That I Further Emphasize The Point

This is from one of the largest commercial banks in the US One that people in this room do business with.
Recyclebin

- Tables contain data and when tables are dropped, unless the PURGE keyword is used, the table and its indexes remain queryable and recoverable in the recyclebin.
- Always drop table with PURGE

```sql
drop table <table_name> PURGE;
```

```sql
SQL> CREATE TABLE dropme (soc_sec_no VARCHAR2(11));
SQL> INSERT INTO dropme (soc_sec_no) VALUES ('523-14-0963');
SQL> COMMIT;
SQL> DROP TABLE dropme;
SQL> SELECT object_name, original_name, type, related, base_object FROM user_recyclebin;
SQL> SELECT * FROM "BIN$eVwc/lghQwq9QkrmYD1vRg==S0";
SQL> FLASHBACK TABLE dropme TO BEFORE DROP;
SQL> desc dropme
SQL> SELECT * FROM dropme;
```
Startup Initialization Parameters

- There are a number of init.ora/spfile parameters that can contribute to creating a more secure environment
  - O7_DICTIONARY_ACCESSIBILITY
  - LDAP_DIRECTORY_ACCESS
  - LDAP_DIRECTORY_SYSAUTH
  - OS_AUTHENT_PREFIX
  - OS_ROLES
  - REMOTE_LISTENER
  - REMOTE_LOGIN_PASSWORDFILE
  - REMOTE_OS_ROLES
  - SEC_CASE_SENSITIVE_LOGON
  - SEC_MAX_FAILED_LOGIN_ATTEMPTS
  - SEC_PROTOCOL_ERROR_FURTHER_ACTION
  - SEC_PROTOCOL_ERROR_TRACE_ACTION
  - SEC_RETURN_SERVER_RELEASE_BANNER
  - SQL92_SECURITY
O7_DICTIONARY_ACCESSIBILITY (1:2)

- Version 7 Dictionary Accessibility support
- Range of values: \{FALSE | TRUE\}
- The default is FALSE ... monitor for changes

Recommendation
- CIS recommends the default value of FALSE

```
ALTER SYSTEM SET O7_dictionary_accessibility = FALSE
COMMENT='Reset to TRUE on 21-APR-2016'
SID='*'
SCOPE=BOTH;
```
Explanation	Set `o7_dictionary_accessibility` to FALSE to prevent users with EXECUTE ANY PROCEDURE and SELECT ANY DICTIONARY from accessing objects in the SYS schema. FALSE is the default. Note: In Oracle Applications 11.5.9 and lower, `O7_DICTIONARY_ACCESSIBILITY` must be set to TRUE. This is required for proper functioning of the application and Oracle does not support setting it to FALSE. In Apps 11.5.10 and higher, it should be set to FALSE.
Validation	`SELECT value FROM v$sparameter WHERE name = 'o7_dictionary_accessibility';`
Finding	Set to FALSE
Action	No action required.
LDAP_DIRECTORY_ACCESS

- Specifies whether Oracle refers to Oracle Internet Directory for user authentication information
- If directory access is turned on this parameter also specifies how users are authenticated
- Range of values: {NONE | PASSWORD | SSL}
- The default is 'NONE'

Recommendation
- Alter this parameter only in accordance with installation of LDAP provisioning

```
ALTER SYSTEM SET ldap_directory_access = NONE
COMMENT='Reset to TRUE on 21-APR-2016'
SID='*' SCOPE=BOTH;
```
LDAP_DIRECTORY_SYSAUTH

- Enables or disables directory-based authorization for SYSDBA and SYSOPER
- Range of values: {NO | YES}
- The default is 'no'

Recommendation
- Alter this parameter only in accordance with installation of LDAP provisioning

```
ALTER SYSTEM SET ldap_directory_sysauth = no
COMMENT='Reset to no on 21-APR-2016'
SID='*'
SCOPE=SPFILE;
```
OS_AUTHENT_PREFIX

- Creating a userid, in an Oracle database, that bypasses an authentication challenge for a password is an attack vector waiting to be used

Explanation	Set the initialization parameter os_authent_prefix to a null string. OS roles are subject to control outside the database. The duties and responsibilities of DBAs and system administrators should be separated. It must be set to limit the external use of an account to an IDENTIFIED EXTERNALLY specified user.
Validation	SELECT value FROM v$parameter WHERE name = 'os_authent_prefix';
Finding	Set to OPS$ and OPS$ externally identified user accounts have been found in the database.
Action	We recommend that this parameter be changed and that all externally authenticated user accounts be backed up and then dropped. ALTER SYSTEM SET os_authent_prefix="" COMMENT='Set to FALSE <date>' SID='*' SCOPE=SPFILE; The database must be restarted for this change to take effect.
OS_ROLES (1:2)

- Determines whether Oracle or the O/S identifies and manages the roles of each username
- Range of values: {FALSE | TRUE}
- The default is FALSE which means that Oracle manages the roles (not the operating system)

**Recommendation**
- CIS recommends the default value of FALSE

```
ALTER SYSTEM SET os_roles = FALSE
COMMENT='Reset to FALSE on 21-APR-2016'
SID='*'
SCOPE=SPFILE;
```
OS_ROLES

<table>
<thead>
<tr>
<th>Explanation</th>
<th>Set the initialization parameter <code>os_roles</code> to FALSE. OS_ROLES allows externally created groups to be used to manage database roles. This can lead to misaligned or inherited permissions.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Validation</td>
<td><code>SELECT value FROM v$parameter WHERE name = 'os_roles';</code></td>
</tr>
<tr>
<td>Finding</td>
<td>Set to FALSE</td>
</tr>
<tr>
<td>Action</td>
<td>No action required.</td>
</tr>
</tbody>
</table>
REMOTE_LISTENER (1:2)

- Specifies whether Oracle checks for a password file
  Range of values: \{NULL string | <remote_listener_mapping>\}
- The default is a NULL string

- Recommendation
  - CIS recommends a NULL string to prevent the use of a listener on a remote server

```
-- if an entry exists that needs to be deleted
ALTER SYSTEM RESET remote_listener
SID='*'
SCOPE=SPFILE;
```
**Explanation**
Set the initialization parameter `remote_listener` to a NULL string. Prevent the use of a listener on a remote server separate from the database instance.

**Validation**

```
SELECT value
FROM v$parameter
WHERE name = 'remote_listener';
```

**Action**

```
ALTER SYSTEM SET remote_listener="<rac_node>"
COMMENT='Set to NULL <date>'
SID='*
SCOPE=SPFILE;
```

The database must be restarted for this change to take effect.

**Finding**
The PROD value is:
`*.remote_listener='prod.hr-prod.nor.???.edu:1521'`

The QA value is:
`*.remote_listener='norhr-prd-scan.???.net.???.edu:13444'`

If there is no compelling reason for this port to be used recommend that the port number be dropped below 9000 so as not to conflict with the default database port range of 9000 to 65,000.
REMOTE_LOGIN_PASSWORDFILE (1:2)

- Specifies whether Oracle checks for a password file
  Range of values: {SHARED | EXCLUSIVE | NONE}
- The default is 'EXCLUSIVE' which means the password file is not shared among multiple DBs

- Recommendation
  - CIS recommends NONE which means that privileged users must be authenticated by the operating system

```sql
ALTER SYSTEM SET remote_login_passwordfile = NONE
COMMENT='Set to NONE on 21-APR-2016'
SID='*
SCOPE=SPFILE;
```
**REMOTE_LOGIN_PASSWORDFILE** (2:2)

| Explanation | Prevents remote privileged connections to the database. This suggests that remote administration should be performed by remotely logging into the database server via a secured connection. Alternately, an administrative listener could be created, the `remote_login_passwordfile` set to exclusive, and logging of the administrative listener implemented. The return value should be 'NONE'. |
| Validation | `SELECT value FROM v$parameter WHERE name = 'remote_login_passwordfile';` |
| Finding | `VALUE
--------------
EXCLUSIVE` |
| Action | Set `remote_login_passwordfile` setting to none. Implement SSH or other secure shell method to remotely administer the Oracle server.

```
ALTER SYSTEM SET remote_login_passwordfile = 'NONE'
COMMENT= 'Changed to NONE <date>'
SID= '*'
SCOPE= SPFILE;
```

The database must be restarted for this change to take effect.
REMOTE_OS_ROLES (1:2)

- Specifies whether operating system roles are allowed for remote clients
- Range of values: {FALSE | TRUE}
- The default is FALSE which causes Oracle to identify and manage roles for remote clients

Recommendation
- CIS recommends the default value of FALSE

```
ALTER SYSTEM SET remote_os_roles = TRUE
COMMENT='Reset to TRUE on 21-APR-2016'
SID='*' SCOPE=BOTH;
```
### Explanation
Set the initialization parameter `remote_os_roles` to FALSE. Connection spoofing must be prevented. The default value is FALSE.

### Validation
```
SELECT value
FROM v$parameter
WHERE name = 'remote_os_roles';
```

### Finding
Set to FALSE

### Action
No action required.
SEC_CASESENSITIVE_LOGON

- Specifies that all user passwords be stored and evaluated for case sensitivity
- Range of Values: {FALSE | TRUE}
- The default is TRUE

Recommendation

- CIS recommends case sensitive passwords be enabled

```
ALTER SYSTEM SET sec_case_sensitive_logon = TRUE
COMMENT='Reset to TRUE on 21-APR-2016'
SID='*' SCOPE=BOTH;
```
SEC_MAX_FAILED_LOGIN_ATTEMPTS (1:2)

- Specifies the number of authentication attempts that can be made by a client on a connection to the server process.
- After the specified number of failure attempts, the connection will be automatically dropped by the server process.
- The default is 10 which is a laughably high value.

Recommendation
  - CIS recommends 3

```sql
ALTER SYSTEM SET sec_max_failed_login_attempts = 3
COMMENT='Reset to TRUE on 21-APR-2016'
SID='*
SCOPE=BOTH;
```
| Explanation | Set the maximum number of failed login attempts to be 3 or in sync with established password policies. This will reduce the effectiveness of a password brute force attack. |
| Validation | ```sql
SELECT value
FROM v$parameter
WHERE name = 'sec_max_failed_login_attempts';
```
The return value should be TRUE |
| Finding | VALUE

10 |
| Action | Recommend setting to a lower number to minimize the footprint for a brute-force attack.

```sql
ALTER SYSTEM SET sec_max_failed_login_attempts = 3
COMMENT='Set to TRUE <date>,'
SID='*
SCOPE=BOTH;
```
The database must be restarted for this change to take effect.
SEC_PROTOCOL_ERROR_FURTHER_ACTION (1:2)

- Specifies the further execution of a server process when receiving bad packets from a possibly malicious client
- Range of Values: \{CONTINUE | DELAY <integer> | DROP <integer>\}
- The default is 'DROP, 3' in 12.1 but in earlier versions was CONTINUE

Recommendation
- CIS recommends not using CONTINUE and Oracle adopted the change in 12c

```
ALTER SYSTEM SET sec_protocol_error_trace_action = 'DELAY'
COMMENT='Set to DELAY on 21-APR-2016'
SID='*' 
SCOPE=BOTH;
```
Explanation
When bad packets are received from a client the server will wait the specified number of seconds before allowing a connection from the same client. This helps mitigate malicious connections or DOS conditions. Set to DELAY `<seconds>`.

Validation
```
SELECT value
FROM v$parameter
WHERE name = 'sec_protocol_error_further_action';
```

Finding
```
VALUE
--------
CONTINUE
```

Action
```
ALTER SYSTEM SET sec_protocol_error_further_action = 'DELAY 1'
COMMENT='Set to Delay of 1 second <date>'
SID='*' 
SCOPE=SPFILE;
```

The database must be restarted for this change to take effect.
SEC_PROTOCOL_ERROR_TRACE_ACTION (1:2)

- Specifies the action that the database should take when bad packets are received from a possibly malicious client
- Range of Values: {NONE | TRACE | LOG | ALERT}
- The default is 'TRACE' which causes a detailed trace file is generated when bad packets are received, which can be used to debug any problems in client/server communication

Recommendation
- CIS recommends not using TRACE as detailed logging can be utilized as a DDOS attack

```
ALTER SYSTEM SET sec_protocol_error_trace_action = 'ALERT'
COMMENT='Set to ALERT on 21-APR-2016'
COMMENT='Set to LOG <date>'
SID='*' SCOPE=BOTH;
```
Explanation
Specify the action a database should take when a bad packet is received. TRACE generates a detailed trace file and should only be used when debugging. ALERT or LOG should be used to capture the event. Use currently established procedures for checking console or log file data to monitor these events.

Validation
```
SELECT value
FROM v$parameter
WHERE name = 'sec_protocol_error_trace_action';
```

The return value should be LOG or ALERT.

Finding
```
VALUE
--------
TRACE
```

Action
```
ALTER SYSTEM SET sec_protocol_error_trace_action = 'ALERT'
COMMENT='Set to LOG <date>'
SID='*' SCOPE=BOTH;
```
SEC_RETURN_SERVER_RELEASE_BANNER (1:2)

- Specifies whether or not the server returns complete database software information to clients
- Range of values: \{FALSE | TRUE\}
- The default is FALSE

Recommendation
- The parameter no longer appears to do anything and can be ignored but keep it FALSE in view of the possibility of Oracle making changes

```sql
ALTER SYSTEM SET sec_return_server_release_banner = TRUE
COMMENT='Set to TRUE on 21-APR-2016'
SID='*' SCOPE=MEMORY;

ALTER SYSTEM SET sec_return_server_release_banner = FALSE
COMMENT='Reset to FALSE on 21-APR-2016'
SID='*' SCOPE=MEMORY;
```
-- startup with parameter set to TRUE
C:\Users\oracle>sqlplus uwclass/uwclass@pdbdev

SQL*Plus: Release 12.1.0.2.0 Production on Tue Apr 19 07:32:15 2016

Copyright (c) 1982, 2014, Oracle. All rights reserved.

Last Successful login time: Tue Apr 19 2016 07:32:04 -07:00

Connected to:
Oracle Database 12c Enterprise Edition Release 12.1.0.2.0 - 64bit Production
With the Partitioning, OLAP, Advanced Analytics and Real Application Testing options

-- startup with parameter set to FALSE
C:\Users\oracle>sqlplus uwclass/uwclass@pdbdev

SQL*Plus: Release 12.1.0.2.0 Production on Tue Apr 19 07:37:18 2016

Copyright (c) 1982, 2014, Oracle. All rights reserved.

Last Successful login time: Tue Apr 19 2016 07:32:15 -07:00

Connected to:
Oracle Database 12c Enterprise Edition Release 12.1.0.2.0 - 64bit Production
With the Partitioning, OLAP, Advanced Analytics and Real Application Testing options
SQL92_SECURITY

- The SQL standard specifies that security administrators should be able to require that users have SELECT privilege on a table when executing an UPDATE or DELETE statement that references table column values in a WHERE or SET clause.
- SQL92_SECURITY specifies whether users must have been granted the SELECT object privilege in order to execute such UPDATE or DELETE statements.
- Range of values: \{FALSE \mid TRUE\}
- The default is FALSE.

Recommendation
- Enabling this decreases security as it grants the ability to see what is being updated or deleted as well as all other rows in the object(s).
UTL_FILE_DIR

- This parameter designates a directory path to which, without further permission grants, users can read and write data.

<table>
<thead>
<tr>
<th>Explanation</th>
<th>Remove the initialization parameter UTL_FILE_DIR and use Directory objects. Do not use the utl_file_dir parameter as the locations can be read and written to by all users. Specify directories using CREATE DIRECTORY which requires granting of privileges to each user. This function has been deprecated since version 9.2 migration is recommended.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Validation</td>
<td>SELECT value FROM v$parameter WHERE name = 'utl_file_dir';</td>
</tr>
<tr>
<td>Finding</td>
<td>Set in PRD and QA to: ..utl_file_dir='/backup/fileio'</td>
</tr>
<tr>
<td>Finding</td>
<td>This parameter should be removed and a directory object created in its place.</td>
</tr>
<tr>
<td>Action</td>
<td>ALTER SYSTEM SET utl_file_dir='' COMMENT='Set to FALSE <date>' SID='*' SCOPE=SPFILE;</td>
</tr>
<tr>
<td>Action</td>
<td>The database must be restarted for this change to take effect.</td>
</tr>
<tr>
<td>Action</td>
<td>Use CREATE DIRECTORY to create corresponding directory object(s) as required.</td>
</tr>
</tbody>
</table>
The following are all locations commonly used to store data assets or information that can be used to compromise access to those assets:

- Data Files (both file systems and ASM)
- Standby Databases
- Archived redo logs
- On-site Backups
- Courier shipments
- Exports
- RMAN scripts
- Data Pump export and import scripts
- Shell scripts and cron jobs
- Replication tools such as GoldenGate, ODI, Informatica
- Used storage drives
- The entire $ORACLE_BASE file system
 - /rdbms/admin directory
 - Trace files
- Virtual machines are not more secure than any other operating environment
 - Implement regular password changes as a matter of policy and procedure
 - Force password complexity
 - Track the names of all persons with access to the password
 - Determine whether ESXi Credentials in use and if not implement them
 - Regularly review logs that live, by default, in the vmdk hypervisor
Virtual Machines (2:2)

- Virtual machines are not more secure than any other operating environment
 - Implement regular password changes as a matter of policy and procedure
 - Force password complexity
 - Track the names of all persons with access to the password
 - Determine whether ESXi Credentials in use and if not implement them
 - Regularly review logs that live, by default, in the vmdk hypervisor
Security in the Oracle Cloud
The OCI Cloud may not be available to you ... but many of its security features are and can be quickly adopted

Here is Oracle's SQLNET.ORA

```bash
[oracle@db18c-ee-hp admin]$ more sqlnet.ora

SQLNET.ENCRYPTION_SERVER = required

SQLNET.CRYPTO_CHECKSUM_TYPES_SERVER = (SHA1)

SQLNET.CRYPTO_CHECKSUM_SERVER = required

ENCRYPTION_WALLET_LOCATION =
  (SOURCE=(METHOD=FILE)(METHOD_DATA=(DIRECTORY=/u01/app/oracle/admin/orcl/tde_wallet)))

SQLNET.ENCRYPTION_TYPES_SERVER = (AES256, AES192, AES128)

NAMES.DIRECTORY_PATH = (TNSNAMES, EZCONNECT)

SQLNET.WALLET_OVERRIDE = FALSE

SQLNET.EXPIRE_TIME = 10

SSL_VERSION = 1.2

WALLET_LOCATION = (SOURCE=(METHOD=FILE)(METHOD_DATA=(DIRECTORY=/u01/app/oracle/admin/orcl/db_wallet)))
```
Oracle 18c in Oracle Cloud Infrastructure

- The OCI Cloud may not be available to you ... but many of its security features are and can be quickly adopted
- Here is Oracle's LISTENER.ORA

```
[oracle@db18c-ee-hp admin]$ more listener.ora
# listener.ora Network Configuration File: /u01/app/oracle/product/18.0.0/dbhome_1/network/admin/listener.ora
# Generated by Oracle configuration tools.

LISTENER =
  (DESCRIPTION_LIST =
    (DESCRIPTION =
      (ADDRESS = (PROTOCOL = TCP)(HOST = db18c-ee-hp.compute-a430291.oraclecloud.internal)(PORT = 1521))
      (ADDRESS = (PROTOCOL = IPC)(KEY = EXTPROC1521))
    )
  )

VALID_NODE_CHECKING_REGISTRATION_LISTENER=ON
SSL_VERSION = 1.2
```
OEM and OMC

- The OEM development team has been split in half with one half continuing to work on OEM and the other half building the Oracle Management Cloud (OMC) and migrating functionality to OMC.
- What will remain in OEM is basic functionality such as starting and stopping.
- Monitoring activities are moving to OMC.
- OMC will be available on-premise and in the cloud.

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application Performance Monitoring</td>
<td>Diagnostic & Tuning Pack</td>
</tr>
<tr>
<td>Infrastructure Monitoring</td>
<td>Single Pane-of-Glass</td>
</tr>
<tr>
<td>Log Analytics</td>
<td>Splunk Killer</td>
</tr>
<tr>
<td>IT Analytics</td>
<td>Splunk Killer</td>
</tr>
<tr>
<td>Configuration & Compliance</td>
<td>Governance</td>
</tr>
<tr>
<td>Security Monitoring & Analytics</td>
<td>Security Warnings & Alerts</td>
</tr>
<tr>
<td>Orchestration</td>
<td>Process Automation</td>
</tr>
<tr>
<td>Dashboards</td>
<td>Business Intelligence</td>
</tr>
<tr>
<td>Explorers</td>
<td>Business Intelligence</td>
</tr>
</tbody>
</table>
Oracle Management Cloud

Application Performance Monitoring
Rapidly identify, response, and resolve your software roadblocks

Infrastructure Monitoring
Monitor your entire IT infrastructure - on-premise or on the cloud - from one unified platform

Log Analytics
Topology aware log exploration and analytics for modern applications and infrastructure

IT Analytics
Operational big data intelligence for modern IT

Configuration and Compliance
Automate application and infrastructure configuration assessments

Security Monitoring and Analytics
Detect, investigate and mitigate security threats

Orchestration
Schedule, execute and report on tasks at scale

Dashboards
Build custom dashboards using out-of-the-box widgets or your own visualization of data

Explorers
Search, analyze, and visualize data
Experian: A Case Study
Are You The Next Experian? (1:5)

- Do Experian employees need a valid userid and password to access data?
- Are Experian's customers required to identify themselves to log in?
- Did Experian pass their Sarbanes-Oxley and PCI audits?
- Did Experian meet their internal governance rules?
- Does Experian use Identity Management?
- Does Experian have a firewall?
According to Experian an Apache Struts patching failure allowed the theft of data from 145,000,000 people some of whom are sitting in this room.

Do you believe Experian?
I don't

Security is not "I put a lock on the front door"
Are You The Next Experian? (3:5)

- Every bank has a front door with a lock
- Every bank also has a vault with a separate door and its own lock
- If you get into a bank vault you don't get access to every safe deposit box
- But if you get into Experian...

If someone gets into your database what do they get? One row or all rows?

SELECT *
FROM all_records
WHERE rownum < ∞;
What if?

- Every database login fired a SYSTEM EVENT trigger?

```sql
CREATE OR REPLACE TRIGGER sec_trig
AFTER LOGON
ON DATABASE
DECLARE
    connIP VARCHAR2(20);
BEGIN
    connIP := STANDARD_HASH(sys_context('USERENV', 'IP_ADDRESS'));
    IF connIP is NULL THEN
        RAISE_APPLICATION_ERROR(-20099, 'No IP Address - Notify Security');
    END IF;

    IF connIP = '90AA44756BD2F4FC2390F903A6F25F43216B0790' THEN
        seclvl.user_ctx.set_ctx;
    ELSIF connIP = '2644215C027E084A0E992F026F9F3B484150D184' THEN
        seclvl.bank_ctx.set_ctx;
    ELSE
        RAISE_APPLICATION_ERROR(-20099, 'Invalid IP Address - Notify Security');
    END IF;
END sec_trig;
/```
Are You The Next Experian? (5:5)

- And every user access had a Row Level Security policy?

```sql
exec dbms_rls.add_policy(USER, 'CREDIT_RPT_VIEW', 'USER_VIEW_POLICY', USER, 'credit_sec.user_sec', 'SELECT');
exec dbms_rls.add_policy(USER, 'CREDIT_RPT_VIEW', 'BANK_VIEW_POLICY', USER, 'credit_sec.bank_sec', 'SELECT');
```

- And every access request was row limited by the context?

```sql
CREATE OR REPLACE PACKAGE credit_sec AS
 FUNCTION user_sec(owner VARCHAR2, objname VARCHAR2) RETURN VARCHAR2;
 FUNCTION bank_sec(owner VARCHAR2, objname VARCHAR2) RETURN VARCHAR2;
END credit_sec;
/
```

- And the user_sec function did this

```sql
IF (sys_context('credit_rpt', 'user_role') = 'USER') THEN
 predicate := 'rownum <= 1';
ELSE
 predicate := '1 = 2';
END IF;
RETURN predicate;
```

- Or this

```sql
IF (sys_context('credit_rpt', 'user_role') = 'BANK') THEN
 predicate := 'rownum <= 10001';
ELSE
 predicate := '1 = 2';
END IF;
RETURN predicate;
```

Could someone steal 145,000,000 rows?
Wrap Up
Both Of These Train Wrecks Were Avoidable

DIR=/opt/oracle/scripts
   . /home/oracle/.profile_db

   DB_NAME=hrprt
ORACLE_SID=$DB_NAME"1"
export ORACLE_SID

   SPFILE=`more $ORACLE_HOME/dbs/init$ORACLE_SID.ora | grep -i spfile`
   PFILE=$ORACLE_BASE/admin/$DB_NAME/pfile/init$ORACLE_SID.ora
LOG=$DIR/refresh_$DB_NAME.log
RMAN_LOG=$DIR/refresh_$DB_NAME"_rman".log

   PRD_PWD=sys_pspr0d
   PRD_SID=hrprd1
   PRD_R_UNAME=rman_pshrprd
   PRD_R_PWD=pspr0d11
   PRD_BK=/backup/hrprd/rman_bk
   SEQUENCE=`grep "input archive log thread" $PRD_BK/bk.log | tail -1 | awk '{ print $5 }'`
   THREAD=`grep "input archive log thread" $PRD_BK/bk.log | tail -1 | awk '{ print $4 }'`

   BK_DIR=/backup/$DB_NAME/rman_bk
   EXPDIR=/backup/$DB_NAME/exp
   DMPFILE=$EXPDIR/exp_sec.dmp
   IMPLOG=$EXPDIR/imp_sec.log
   EXPLOG=$EXPDIR/exp_sec.log
   EXP_PARFILE=$DIR/exp_rpt.par
   IMP_PARFILE=$DIR/imp_rpt.par

   uname=rman_pshrprd
   pwd=pspr0d11

rman target sys/$PRD_PWD@$PRD_SID catalog $PRD_R_UNAME/$PRD_R_PWD@catdb auxiliary / << EOF > $RMAN_LOG
   run{
set until $SEQUENCE $THREAD;
   ALLOCATE AUXILIARY CHANNEL aux2 DEVICE TYPE DISK;
duplicate target database to $DB_NAME;
}
EOF

Conclusions

- Securing the Perimeter has proven that its primary value is to companies selling products that claim to secure the perimeter.
- Auditing is not security.
- Passing audits is not security and provides a false sense of security.
- What is wrong with the way our industry views security is that we must secure data as well as software.
  - Oracle is generic software.
  - We build our own database structure/layout/design.
  - We build our own applications (APEX, JAVA, JavaScript, C#, Python, C++, PHP, Ruby).
  - We must also build our own security.
  - Security is not done well or forgotten in the rush implement features and performance.
  - We must assume break-ins will take place.
- To begin securing data we must utilize the Oracle Database's built-in features.
- To fully secure data we must enable built-in features and we must invest real effort ... not just throw money at the problem.
Conclusions (2:2)

- It is difficult to dig yourself out of a hole after the sides have fallen in.
- Very few organizations have employees with the skill set required to secure their databases and operational environments: Less than 1% of DBA "training" involves security.
- If you don't have the internal skills to know what to protect and how to protect it you need to go outside your organization and ask for help.
ERROR at line 1:
ORA-00028: your session has been killed

Thank you

Questions? dmorgan@forsythe.com