Hereditary Paraganglioma-Pheochromocytoma Syndrome: SDHA Mutations

SDHA-Associated Tumor Risks

Mutations in the SDHA gene are primarily associated with increased risks for neuroendocrine tumors called paragangliomas (PGL) and pheochromocytomas (PCC). While many of these tumors are not cancerous, there is a risk for malignant transformation or other complications such as high blood pressure or stroke, so early detection is important. SDHA mutations are a rare cause of PGL/PCCs, accounting for about 3% of cases. The chance for a person with a SDHA mutation to develop a PGL or PCC by 70 years old is currently thought to be up to 10%. The median age at diagnosis was 43 years (range: 17 to 81 years) in index SDHA mutation carriers. Given the small number of SDHA mutations identified to date, the true prevalence of mutations and rates of malignancy are yet to be determined.

Paraganglioma (PGL): Paragangliomas (PGLs) are neuroendocrine tumors that arise from paraganglia. Paraganglia are a collection of neuroendocrine tissue that are distributed throughout the body, from the middle ear and base of the skull to the pelvis.

- **Head and Neck PGL:** These are generally located in the areas surrounding the carotid body, vagus nerve, and jugulotympanic region. While typically nonfunctioning, 5% may hypersecrete catecholamines. Individuals may present with enlarging lateral neck masses, cranial nerve and sympathetic chain compression, dysphonia, hoarseness, pain or cough (depending on the PGL location). Jugulotympanic PGL can also present with tinnitus or hearing loss and otoscopic examination may reveal blue-colored masses behind the tympanic membrane.

- **Thoracic, Abdominal, and Pelvic PGL:** Intra-abdominal and thoracic sympathetic-associated PGLs are generally functionally active with excess catecholamine production. PGls in these sites often present with symptoms associated with catecholamine hypersecretion, including elevations in blood pressure and pulse, headaches, palpitations, excessive sweating, and anxiety.

Pheochromocytoma (PCC): These are catecholamine-secreting PGLs confined to the adrenal medulla. These often present with symptoms associated with catecholamine hypersecretion, including elevations in blood pressure and pulse, headaches, palpitations, excessive sweating, and anxiety.

Other Risks: There appears to be an association of GISTs with SDHA mutations. A recent study reports that 47% of germline mutations reported in GISTs were in SDHA. Renal cancer, pituitary adenomas and papillary thyroid cancer have also been reported in individuals with mutations in the four genes encoding the SDH subunit.

SDHA Risk Management

It is suggested that individuals with hereditary paraganglioma-pheochromocytoma syndrome have regular clinical monitoring by a physician or medical team with expertise in the treatment of hereditary PGL/PCC and GIST syndromes. A consultation with an endocrine surgeon, endocrinologist, and otolaryngologist is also recommended to establish an individualized care plan.

The Endocrine Society has published Pheochromocytoma and Paraganglioma Clinical Practice Guidelines. Recommended screening is outlined below. In general, imaging modalities should be at the discretion of the managing provider due to conflicting data regarding the utility and efficacy of the various options. Per the AACR Pediatric Oncology Series, routine screening should begin between the ages of 6 to 8 years.
Perioperative Medical Management

Patients should undergo appropriate perioperative medical management including preoperative blockade of hormonally active tumors to prevent perioperative cardiovascular complications.6

Treatment

The management of tumors in individuals with hereditary PGL/PCC syndromes resembles management of sporadic tumors.3,6

Pregnancy Management

Evaluation for PGL/PCC should be performed prior to achieving pregnancy. However, after a diagnosis of PGL/PCC in pregnancy, it is important that delivery be in a tertiary hospital with an experienced obstetric, anesthetic, and endocrine service as well as a neonatal intensive unit.15

Implications for Family Members/Reproductive Considerations

- First-degree relatives (i.e., parents, siblings, and children) have a 50% chance to have the familial SDHA mutation. Second-degree relatives (i.e., nieces/nephews, aunts/uncles, and grandparents) have a 25% chance to have the familial mutation.
- Rarely, individuals can inherit two SDHA mutations (one from each parent), and develop juvenile encephalopathy (Leigh syndrome).
 - Leigh syndrome is a neurologic disorder that causes loss of movement and mental abilities.
 - *SDHA* genetic testing for the partner of an individual with a *SDHA* mutation may be appropriate to clarify the risk of having a child with Leigh syndrome.
- For carriers of a known mutation, assisted reproduction (with or without egg or sperm donation), pre-implantation genetic testing, and prenatal diagnosis options exist.
- All family members are encouraged to pursue genetic counseling to clarify their risks. Family members can visit www.FindAGeneticCounselor.com to find genetic services near them.

Support Services for Hereditary PGL/PCC Syndrome

- Pheo Para Troopers (www.pheoparatroopers.org) is a national organization that offers resources, support and advocacy for families facing Hereditary PGL/PCC syndromes.

<table>
<thead>
<tr>
<th>SDHA Surveillance Recommendations<sup>6,9,13,14</sup></th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical Exam</td>
<td>• Physical exam (including blood pressure and evaluation for arrhythmia and/or palpable abdominal masses)</td>
</tr>
<tr>
<td>Biochemical Screening for PGL/PCC</td>
<td>• 24 hour urine fractionated metanephrines and catecholamines and/or plasma free fractionated metanephrines
 o Follow-up imaging by CT, MRI, I-MIBG, or FDG-PET if levels become elevated or if the original tumor had minimal or no catecholamine/fractionated metanephrine excess
 o Plasma methoxytyramine**</td>
</tr>
<tr>
<td>Imaging for PGL/PCC</td>
<td>• MRI/CT of skull base and neck, abdomen, thorax, and pelvis
 o Unless contraindicated, CT is generally recommended over MRI as a first-choice imaging modality due to its spatial resolution for the thorax, abdomen, and pelvis.
 • Periodic 123I-MIBG (metaiodobenzylguanidine) scintigraphy may detect paragangliomas or metastatic disease that are not detected with MRI or CT</td>
</tr>
<tr>
<td>Renal Cancer Screening</td>
<td>• Screening tests for renal cancer can include urinalysis (urine test) to screen for small amounts of blood in the urine or imaging tests (ultrasound, CT, MRI)</td>
</tr>
</tbody>
</table>
References:

