Meeting Synopsis:

1. Call to order
2. Consent agenda
 a. Minutes from January 29, 2021
 b. SCAP report
3. Chair’s Updates
4. New legislation for consideration
 a. SR Chapter 102
 b. SR Chapter 110
5. UWCC issue
6. Discussions on FCAS Website: next step for updates
7. Good of the order
8. Adjourn

1) Call to Order

The meeting was called to order at 1:30 p.m.

2) Consent agenda
 a. Minutes from January 29, 2021
 b. SCAP report

Chair Huppert asked the council for a motion to approve the consent agenda. The council voted to approve the consent agenda.

3) Chair’s Updates

Chair Huppert provided an update on legislation moving through the SEC and Faculty Senate, and progress on the diversity credit requirement taskforce.

4) New legislation for consideration
 a. SR Chapter 102
 b. SR Chapter 110
Helen Garrett shared drafted Class B legislation regarding Scholastic Regulations Chapter 102 (Exhibit 1) and Chapter 110 (Exhibit 2).

A motion was made to approve the proposed changes to SR Chapter 102. The council voted to approve.

The council will not consider SR Chapter 110 until additional review on FCAS responsibilities and expectations with professional/graduate schools is completed.

5) **UWCC issue**

Niko Kirsch (UWCO) and Tina Miller shared a course proposal issues from the Atmospheric Sciences department (Exhibit 3).

A motion was made to approve the proposal of a new course in Atmospheric Sciences. The council voted to approve the proposal.

6) **Discussions on FCAS Website**: next step for updates

The council reviewed proposed changes to the FCAS webpage on Policies, Procedures, and Guidelines.

A motion was made to remove the FCAS policy on W (“additional writing”) credit as posted on the website. Members voted to approve the removal. The Policy on W (“additional writing”) credit was removed from the FCAS webpage.

Members discussed the drafting of Class B legislation based on the FCAS policy on satisfactory progress to codify the best practices in Scholastic Regulations.

7) **Good of the Order**

Nothing was stated.

8) **Adjourn**

The meeting was adjourned at 3:03 p.m.

Minutes by Alexandra Portillo, council analyst, xanport@uw.edu

Present:
Faculty Code Section 21-61 A: Ann Huppert (chair), Tom Lee, Mike Lockwood, Marjorie Olmstead, Scott Spaulding, Jennifer Turns, Yusuf Pisan
Faculty Code Section 21-61 B: Jennifer Payne, Susanne Redalje, Clara Coyote, Sarah Garner, Luz Iniguez
President’s Designee: Philip Reid
Regularly invited guests: Scott Fallgren, Tina Miller, Dan Feetham, Jason Johnson, Dave Sundine, LeAnn Wiles, Helen Garrett, Niko Kirsch

Absent:
Faculty Code Section 21-61 A: Zhi Lin, Joel Ross, Steve Groening
Faculty Code Section 21-61 B: Joe Wilson

Exhibits
Exhibit 1 – consent agenda
Exhibit 2 – SR Chapter 102
Exhibit 3 – SR Chapter 110
Exhibit 4 – ATM S 310 proposal issue
Subcommittee on Admissions and Programs (SCAP) Report
February 5, 2021, 1:30pm-3:00pm

Routine Business:

Industrial and Systems Engineering (UG-IND E-MAJOR) Revised admission and program requirements for the Bachelor of Science in Industrial Engineering degree.

Background: The department is proposing to update program requirements due to recently UWCC approved course renumbering changes effective (IND E 310 was IND E 410; IND E 311 was IND E 411; IND E 338 was IND E 424). In addition, updates are being proposed to change the credit requirements for Industrial Engineering core courses (37 credits; currently 24 credits) and Technical electives (16 credits; currently 37 credits), and the addition of two new requirements (8 total credits) without changing the required overall required major credits (89 credits). The department is also proposing to update both admission and general education requirements due to recently UWCC approved course renumbering changes (MATH 207 becomes MATH 307 effective AUT/2021; MATH 208 becomes MATH 308 effective AUT/2021).

Action taken 01/08/2021: Not reviewed.

Action taken 01/22/2021: SCAP asked the unit to revise the proposed Written and Oral Communications credits (unit proposed changing from 12 credits to 8 credits) because the university requirement is 12 credits. The committee asked the department to clarify what is meant by ‘engineering courses’ in the minimum grade requirement #6, “Minimum 2.00 cumulative GPA in all engineering courses applied to the major, with no grade below 1.0 in these courses.” The committee also asked the department to update the current language for admission consideration factors for current UW students and transfer students.

Update 01/28/2021: The department (see audit log for comments) has updated the general education requirements for Written and Oral Communications and clarified major requirement #6 (see completion requirements field in the Catalog section of UW CM proposal) and updated the current language for admission consideration factors for current UW students and transfer students per SCAP’s recommendation (see admission requirements field in the Catalog section of the UW CM proposal).

Action taken 02/05/2021: Forwarded to FCAS.

SCAP Chair Notes: The department made all SCAP recommended edits (1. Minimum 2.00 cumulative GPA in all engineering courses applied to the major, not every engineering course and 2. Added the additional 4 credits of writing back to the Gen Eds, and 3. removed the admissions language that implied that students had to have been full-time students prior to applying.) No additional issues were identified. SCAP members voted unanimously to move the program proposal to FCAS for approval.
Non-Routine Business:

Landscape Architecture (LARCH_20190730) Revised program requirements for the Bachelor of Landscape Architecture degree

Background: The department is proposing to update the program requirements by adding minimum grade requirements for accreditation purposes. In addition, the department is proposing to change multiple program requirements to create flexibility for students.

Action taken 11/13/2020: Based on Scholastic Regulations 114.2A.2a, SCAP has requested the department provide stronger justification (such as a statement or documentation from the accrediting body) to support the proposed, “Minimum 2.0 GPA for courses presented for the major (BLA).” SCAP requested the department provide updated course lists and approval by ESS to use ESS 305 as a course option for major requirement #10.

Update 12/23/2020: The department has responded (p.6), provided ESS approval for ESS 305 (p.40) as well as approval from units for all directed elective courses (p.10-66). In addition, the department has updated the proposed catalog copy (p.3) for overall required credits to a minimum of 111 credits (was minimum of 113 credits).

Update 01/08/2021: Some discussion ensued, no official comments.

Action taken 01/22/2021: SCAP recommended the department change the proposed minimum grade requirements (requirement #12), to, “Minimum 2.0 grade in each course applied to major requirements.” In addition, the committee asked the department to update their continuation policy for the proposed minimum grade requirement changes.

Update 01/27/2021: The department has updated the 1503 (p.1-3), and provided an updated continuation policy (p.10-16).

Action taken 02/05/2021: Forwarded to FCAS, pending department acknowledgement that they will update the ‘W’ and ‘HW’ letter grade information in the BLA Program Guide (p.12 of 1503 proposal; p.13 of program guide) when the UW Grading System website is revised for proposed changes to this information (under review).

Update 02/09/2021: The department has responded (p.6) and acknowledged they will make this update.

SCAP Chair Notes: The department accepted all of SCAP recommendations to their program proposal (1. Remove cumulative 2.5 GPA while retaining 2.0 grade in each course as required by their professional accreditation and 2. Update Continuation Policy). A few minor editorial edits were needed to the continuation policy as mentioned above to bring the policy into alignment with the current OUR terminology. SCAP did not identify any additional issues with the program proposal and voted unanimously to forward it to FCAS for approval.
Background and Rationale

The Faculty Council on Academic Standards and the Office of the University Registrar, recommends amending Scholastic Regulations Chapter 102 (Registration) based on the following findings:

- Changes made to Scholastic Regulations Chapter 110 related to the new Registrar Drop (RD) withdrawal code and the inception of the Current Quarter Drop and Former Quarter Drop require amendments to this chapter.

Student Governance and Policies

Scholastic Regulations
Chapter 102

5. Change of Registration

A. Online Academic Calendar

Information on dates and procedures for registration changes is published in the online Academic Calendar.

B. Registration Change Fee

No registration charge fees are assessed for changes in registration during periods 1, 2, and 3. A registration change fee will be assessed for changes in registration after period 3.

C. Withdrawals

No registration change fees are assessed for a complete withdrawal from the University. However, after the end of period 3, students are charged tuition forfeiture for a complete withdrawal.

D. Courses Dropped Before the First 14 Days

Courses dropped through the first 14 calendar days of the quarter will not be recorded on the University transcript. If all courses are dropped during this time and not re-registered, a statement of WITHDRAWN with the date of withdrawal will be recorded on the University transcript.

E. Courses Dropped After the First 14 Days

Courses dropped after the 14th calendar day through the seventh week of the last date of instruction of the quarter will be recorded with a grade of W RD for Registrar Drop, to be followed by a number representing the week of the quarter in which the drop occurred.

F. Hardship Withdrawals [Former Quarter Drop]
No courses may be dropped after the seventh week of the quarter unless approved as hardship withdrawal exceptions by the Registrar's Office. (See Scholastic Regulations, Chapter 113, Section 3.) Courses that have been approved for a Former Quarter Drop will be annotated with an RD for Registrar Drop and the GPA points and grade awarded for the course will be removed from the transcript. (See Scholastic Regulations, Chapter 113, Section 3.)

G. Instructor or Departmental Approval

Courses added after registration period 3 through the third week of the quarter require instructor or departmental approval as determined by departmental policy. After the third week of the quarter the student must have the permission of both the department chair and the instructor. Approval is granted only in very unusual circumstances.

H. Dropped Courses

A course is officially dropped only when transacted through the University's online system or when accepted by a representative of the Registrar's Office campus registration team. An academic department can request a student to drop a course if the student does not meet publicized departmental participation requirements.

I. Tuition and Fees for Dropped or Added Courses

Students dropping courses may receive some refund of tuition and fees depending upon the number of credits dropped and the time of the quarter. Students adding courses may be required to pay additional tuition and fees as determined by the fee schedule.

J. Summer Quarter

Proportional schedules will be publicized in the Academic Calendar for Summer Quarter a, b, and full terms.

Background and Rationale

The Faculty Council on Academic Standards and the Office of the University Registrar, recommends amending Scholastic Regulations Chapter 110 (Grades, Honors, and Scholarship) based on the following findings:

- When reviewing this chapter for possible revisions it became apparent that many sections had not been updated for many years. This was especially apparent with the Graduate School and professional school sections for the School of Law, School of Medicine, School of Dentistry, and School of Medicine.

- In the spirit of honoring gender inclusivity, prior references to “his and her” are being changed to the corresponding noun.

B. Grading Practices for Graduate Students

To provide for consistency in reporting of grades for graduate students, the system of numeric and letter grades listed in Subsection 1.A shall be used subject to the following special provisions:

1) Minimum Grade Level

 Grades below 1.7 will be recorded as 0.0 by the Registrar and will not count toward total credit count or grade and credit requirements. A minimum of 2.7 shall be required in each graded course which counts toward satisfying graduate degree requirements. A minimum cumulative grade-point average of 3.0 is required for graduation.

2) The Grade I

 a) An Incomplete may be given as indicated in Subsection 1.A.3.a, with the exception that an incomplete received by the graduate student does not automatically convert to a grade of 0.0 but the “I” will remain as a permanent part of the student’s record.

 b) In order to obtain credit for the course, a student must convert an Incomplete into a passing grade by the last day of the next quarter in residence. This rule may be waived by the dean of the college in which the course is offered. In no case may an Incomplete be converted into a passing grade after a lapse of two years without the approval of the Graduate School.

3) The Grade N
The grade N is used only for hyphenated courses and courses numbered 600 (Independent Study and Research), 700 (Thesis), 800 (Dissertation), and 801 (Practice Doctorate Project/Capstone). An N grade indicates that satisfactory progress is being made, but evaluation depends on completion of the research, thesis, dissertation, or project/capstone, at which time the instructor or supervisory committee chair should change the N grade or grades to one more appropriate to the final evaluation (normally CR/NC).

4) The Grade W RD

Grading for Withdrawals from the University and for Drops from Courses are specified in Scholastic Regulations, Chapter 113. The special provisions pertaining to graduate students are that:

a) Except for Subsections 1.A.4, 1.C, and 1.D, the provisions of Scholastic Regulations, Chapter 113, Section 3, "Dropping a Course," do not apply to graduate students.

b) Official withdrawal from a course during the first 10 class days of a quarter will not be entered on the permanent academic record. After the first two weeks and through the seventh week of the course, a graduate student may withdraw from a course by filing a form with the Registrar's Office. A grade of W RD will be recorded. No official withdrawal will be permitted after the seventh week of the quarter except under the conditions described in Scholastic Regulations, Chapter 113, 3.A.4.

5) The Grade S/NS

A graduate student, with the approval of the graduate program advisor or supervisory committee chair, may elect to be graded S/NS in any numerically-graded courses for which he or she is eligible. If a student does not so elect, then he or she will be graded on a numerical basis. If approval is granted, the student must elect the S/NS option when registering or no later than the end of the seventh week of the quarter. Numeric grades will not subsequently be converted to S/NS grades (or vice versa). The instructor shall submit a numeric grade to the Registrar, who shall convert grades of 2.7 and above to S and grades lower than 2.7 to NS for graduate students in graduate or

6) The Grade CR/NC

With the approval of the faculty in the academic unit, any course may be designated for grading on the CR/NC basis by notice in the appropriate Time Schedule. For such courses, the instructor shall submit a grade of CR or NC to be recorded by the Registrar for each student in the class at the end of the quarter.

7) Numerical Grade Requirement

Of the minimum credits required for a graduate degree, a graduate student must show numerical grades in at least 18 quarter hours of course work taken at the University of Washington. These numerical grades may be earned in 400- and 500-level courses.

8) Grade-Point Average

A graduate student's grade-point average shall be calculated entirely on the basis of numeric grades in 400- and 500-level courses. The grades of S, NS, CR, NC, and N shall be excluded, as shall all grades in courses numbered 600, 700, 800, and 801, and in 100-, 200-, and 300-level courses.

9) Petition for Modification of Grading Practice
The student may petition the Dean of the Graduate School to make an exception to the policies described above. The petition shall be accompanied by comments and recommendations from the graduate program adviser or supervisory committee chair.

C. Grading Practice for the School of Medicine

The system of grades for the School of Medicine shall be Satisfactory/Not Satisfactory/Honors. All required courses in the medical school curriculum must be completed with a Satisfactory grade, and the determination of Honors grades shall remain the prerogative of the faculty instructing the courses. An Incomplete shall be converted to a passing grade by the next quarter in residence except that this time limit may be extended up to one year with the approval of the dean’s office. Incompletes not so converted shall be replaced by a Not Satisfactory grade.

Withdrawals are unusual, as in illness situations, and are processed upon approval of the dean’s office.

In the Foundations Phase, the grading system for required courses is Pass and Fail only. In the Patient Care and Explore & Focus Phases, the grading system is Honors, High Pass, Pass, and Fail. The Honors and High Pass designations are available in clinical clerkships greater than or equal to four weeks in length. Two-week clinical electives and international clinical electives are graded on Pass/Fail only.

An Incomplete shall be converted to a passing grade by the next quarter in residence except that this time limit may be extended up to one year with the approval of the dean’s office. Incompletes not so converted shall be replaced by a Fail grade.

Registrar Drops are unusual, as in illness situations, and are processed upon approval of the dean’s office.

D. Grading Practice for the School of Law

Applicable to first-year J.D. students who matriculate in Autumn 1998 and thereafter, grades to be assigned to all courses for credit toward the J.D. degree, except courses taken on a Credit/No Credit (CR/NC) or Satisfactory/Non-Satisfactory (S/NS) basis, shall consist of the following: A, A-, B+, B, C, D, and E.

1) Grade Significance

The significance of each grade is as follows:

<table>
<thead>
<tr>
<th>Letter Grade</th>
<th>Numerical Equivalent</th>
<th>Explanation</th>
<th>Percentage of Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>—A</td>
<td>4.0</td>
<td></td>
<td>Less than or equal to 10% (may be 0%)</td>
</tr>
<tr>
<td>—A-</td>
<td>3.7</td>
<td></td>
<td>Less than or equal to 30% (minus % given A)</td>
</tr>
<tr>
<td>—B+</td>
<td>3.3</td>
<td>Median grade</td>
<td>More than 50% (minus % given A and A-) and less than or equal to 60%</td>
</tr>
<tr>
<td>Grade</td>
<td>Percentage</td>
<td>Note</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>------------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>3.0</td>
<td>This grade indicates that the level of performance is below that which on average is required for the award of the degree.</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>2.0</td>
<td>No credit. This grade indicates unsatisfactory performance and no credit is given for the course.</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>1.0</td>
<td>No credit. This grade indicates unsatisfactory performance and no credit is given for the course.</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>0.0</td>
<td>No credit. This grade indicates unsatisfactory performance and no credit is given for the course.</td>
<td></td>
</tr>
</tbody>
</table>

But this significance is subject to the following conditions:

a) The percentage for the grade of B+ is mandatory for all required first-year courses.

b) The percentage ranges for grades of A and A- in all three years, and of B+ in the second and third-year classes, are guidelines and are strongly recommended. These guidelines should not be thought of as applicable to specialized and individualized courses such as seminars, clinical, experiential, and "practice" offerings, independent study, and workshops, nor to summer-quarter courses, courses heavily directed to non-law students, and courses in which most of the enrolled students are candidates for post-J.D. graduate degrees. They would also not have significance for classes of ten students or less.

c) A faculty member who submits grades that deviate from the suggested percentages shall submit a written explanation to the associate dean before the grades are recorded.

d) A numerical class rank, based on the numerical equivalencies shown above, shall be computed for the sole purpose of awarding academic honors, including graduation awards, prizes, or membership in scholarly societies, including Order of the Coif, legal journals and reviews. Class rank shall not be disclosed on a student's transcript or otherwise disclosed except for the purpose of computing eligibility for academic honors.

2) Academic Difficulty and Disqualification Rules

a) A student will be in Academic Difficulty if he or she receives, during any three consecutive quarters, a grade of E or two grades of D. A student will regain good academic standing upon completion of two consecutive quarters with no grade of D or E. A student in Academic Difficulty shall be counseled by a dean concerning ways to improve his or her performance.

b) A student will be disqualified as a candidate for the J.D. degree and will not be allowed to re-enroll in the Law School if he or she receives:

- During any academic year, grades of E for nine credit hours or grades of E or D for 17 credit hours;
- During the first and second years, grades of E for 14 credit hours or grades of E or D for 25 credit hours;
- During three years, grades of E for 21 credit hours or grades of E or D for 37 credit hours.
A student who has been disqualified as a J.D. candidate for unsatisfactory grades may petition the faculty for readmission.

3) Grade System Start Date

This grading system shall apply to all incoming first-year students in the Autumn of 1998, and to all incoming first-year students thereafter.

1) Anonymous Grading

Anonymous grading shall apply to all examinations and papers. If a professor chooses to use class performance as a component of the overall grade, he or she shall irrevocably report that component for all students to Student Services for factoring in the overall grade before release to the instructor of the examination grades.

The anonymous grading rule is inapplicable to papers written in courses in which students are writing multiple drafts and/or meeting with the instructor to discuss individual paper topics.

2) Class Rank

Class rank shall be computed at the end of students’ 1L year and at the end of each academic year thereafter. Transfer students will receive a UW ranking after completing one academic year (a minimum of three academic quarters) at UW Law.

The ranking is only for the following purposes:

a) To award academic honors, including graduation awards, prizes, or membership in scholarly societies, including Order of the Coif, legal journals and reviews; or

b) To define percentile bands of 5% and 10% at the conclusion of the first year; and

c) To define percentile bands of 5%, 10%, 20%, and 33 1/3% at the conclusion of the second and third years (after the submission and calculation of Spring quarter grades).

Only students who fall within a percentile band will be notified of the percentile band in which they placed. Students who are ranked first through fifth in their class will be notified of an individual rank. Students below the percentile cut-off will not be ranked. Neither students’ individual class rank nor the grade point average (GPA) cut-offs for the percentile bands described above will appear on students’ transcript.

Under the Family Educational Rights and Privacy Act (FERPA), release of an individual student’s placement within the defined GPA percentile bands by the law school requires the written permission of the student. To further preserve student privacy, additional ranking information, including the GPA percentile bands, will not be disclosed by the law school.

Class of 2020

In view of the evolving public health crisis, the Order of the Coif has suspended its restrictions on Satisfactory/Not satisfactory credit through the end of the 2019-20 academic year for the Class of 2020. Students who elect Satisfactory/Not Satisfactory will still be considered for Order of the Coif if they meet the other eligibility requirements.

3) Computation of Grade Point Average

Grades assigned in Law 600, Independent Research, shall not be included in the calculation of a student’s grade point average after this academic year.
4) **Law School Grading System**

Grades to be assigned to all courses for credit toward the J.D. degree, except courses taken on a Credit/No Credit basis, shall consist of the following: A, A-, B+, B, B-, C, D, and E.

a) The significance of each grade is as follows:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Percentage of Class</th>
<th>Numerical equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>At least 5% and less than or equal to 15%.</td>
<td>4.0</td>
</tr>
<tr>
<td>A-</td>
<td>At least 20% minus (% given A) and less than or equal to 40% minus (% given A).</td>
<td>3.7</td>
</tr>
<tr>
<td>B+</td>
<td>At least 50% minus (% given A or A-) and less than or equal to 75% minus (% given A or A-).</td>
<td>3.4</td>
</tr>
<tr>
<td>B</td>
<td>% Discretionary.*</td>
<td>3.0</td>
</tr>
<tr>
<td>B-</td>
<td>% Discretionary.*</td>
<td>2.7</td>
</tr>
<tr>
<td>C</td>
<td>% Discretionary. C or D grades are capped at a total of 5% for first-year courses.*</td>
<td>2.0</td>
</tr>
<tr>
<td>D</td>
<td>% Discretionary. This grade indicates that the level of performance is below that which on average is required for the award of the degree. C or D grades are capped at a total of 5% for first-year courses.*</td>
<td>1.0</td>
</tr>
<tr>
<td>E</td>
<td>% Discretionary. No credit. This grade indicates unsatisfactory performance and no credit is given for the course.*</td>
<td>0.0</td>
</tr>
</tbody>
</table>
At least 25% (but no more than 50%) B and below, combined.

b) The significance of each grade is further subject to the following conditions:

- These percentage ranges are mandatory for all J.D. courses, subject to the exceptions in (b) or (c) below. There is no discretion outside of these ranges. A faculty member who submits grades for a course subject to the mandatory distribution that fails to comply with the mandatory distribution will have the grades returned to her or him by the Dean, with instructions to re-submit the grades in accordance with the distribution. If the faculty member fails to do so, the faculty member will submit exam scores to the Dean or his designee, and the latter would assign grades at the mid-point of each range (i.e., 10 percent A’s, 20 percent A-’s, 32.5% B+’s, 37.5% B and lower).

- The mandatory distribution is not applicable to specialized and individualized courses such as seminars, clinical, experiential, and ‘practice’ offerings, independent study, and workshops, nor to summer quarter courses, courses heavily directed to non-law students, and courses in which most of the enrolled students are candidates for non-J.D. graduate degrees. They would also not have significance for classes of fifteen students or less.

- The mandatory distribution is not applicable to designated "mastery" courses. A faculty member may have her or his course designated as a mastery course by submitting the course syllabus and evaluative elements to the Curriculum Committee, and ultimately the faculty, for approval, subject to the following conditions: (a) the course must require significant, periodic written work and feedback during the course, with stated performance standards for achieving specific grades; (b) first-year courses cannot be designated as mastery courses unless all sections of that course are offered on a mastery basis; and (c) mastery courses will be designated as such, in the catalog and course description.

- A numerical class rank, based on the numerical equivalencies shown above, shall be computed for the sole purpose of awarding academic honors, including graduation awards, prizes, or membership in scholarly societies, including Order of the Coif, legal journals and reviews. Class rank shall not be disclosed on a student’s transcript or otherwise disclosed except for the purpose of computing eligibility for academic honors.

- Effective Spring Quarter 2007, transcripts for law students who began in Autumn Quarter 2005 or later will include a full calculated grade point average, with the following numerical conversions: A(4.0), A-(3.7), B+(3.4), B(3.0), B-(2.7), C(2.0), D(1.0), E(0.0). Students who began earlier than Autumn 2005, will have a transcript that only shows their grade point average in classes taken since Autumn 2005.
5) **COVID-19 grading changes**

Spring Quarter 2020

In recognition of the impact these extraordinary times are having on students, UW Law faculty voted to shift grading for all spring quarter courses to credit/no credit.

Winter Quarter 2020 limited grading change

In view of the evolving public health crisis, UW Law faculty voted to:

- Reopen the period by which 2L, 3L, and graduate students can elect to receive Satisfactory/Not satisfactory credit for elective courses only.
- Waive the eight credit-limit for Satisfactory/Not satisfactory credit for winter quarter 2020 only. Satisfactory/Not satisfactory elections for electives will not count against the eight-credit cap.

6) **Incompletes**

The Committee’s memo to the faculty of May 28, 1975 also reported that as a part of the same University study which led to the change in the withdrawal policy, the University policy on the use of Incompletes was studied. The existing policy permits the grade of I to remain on a transcript indefinitely. The growth of the number of I grades (tripled since 1966) was regarded by the Faculty Council as a further erosion of the reliability of the University’s GPA’s. The Incomplete was also used as a withdrawal technique after the final date of the quarter. Hence, correction of the withdrawal policy required a change in the policy on Incompletes.

The recently adopted University policy does not change the grounds for giving an Incomplete. (They remain essentially that the student establish to his instructor's satisfaction that illness or other circumstances beyond the student's control prevent the student's completion of the course.) What is changed is that the grade of I is automatically converted to a failing grade if it is not made up (i.e., the course requirements completed) by the end of the following quarter. The student may petition the Registrar for additional time (up to three quarters) and the Registrar will grant the extension if approved by the Instructor.

It was moved and seconded, that (1) the law school follow the University's newly-adopted policy on Incompletes, with the Associate Dean performing the function assigned the Registrar in the University scheme; (2) the failing grade' assigned in case an Incomplete is not made up be recorded as a [1.9]; (3) Incompletes given to Spring Quarter need not be made up until the end of the following Fall Quarter, irrespective of whether the student is enrolled in the intervening Summer Quarter.

7) **Information Faculty Must Provide to Students on Grading**

Each professor should announce during the first week of any course the nature of the grading practice to be followed, including any components of the course grade other than a final examination grade. Such components may include one or more papers, preliminary examinations, class participation. If a final or end-quarter examination is not "closed book," the announcement should so state and should in such case include a statement of what materials may be consulted by students during an examination. If coursebooks are to be permitted, but student notes are not, students should be advised in the announcement that coursebooks should not be annotated with a student's notes.
Precise allocation of course grade to components need not be announced in advance. However, such allocation to the extent possible should be indicated, and each student should have available on request the allocation among all components of any course grade after grading has been completed.

All final and end-quarter examinations should be graded anonymously, with papers identified by student numbers which shall not be released to a professor until grades on examinations have been turned into the Office of Student Services. If any exception is necessary in a professor's judgment, an examination number will be released, but the student whose number is released will be informed of the circumstances as soon as conveniently possible.

After the professor has turned in final and end-quarter examination grades, the names of students and grades will be available to the professor, but not the student numbers unless those numbers are not to be used again in any course by the same students in a subsequent quarter. Course grades should be calculated by the professor after examination grades have been turned in. Course grades and final examination grades will be made available to students by the Office of Student Services. A student's request to the professor for components of the student's grade should be necessary only if the professor uses multiple components of course grades other than final or end-quarter examinations.

8) Satisfactory Academic Progress

To be eligible for financial aid at the University of Washington students must maintain Satisfactory Academic Progress. The requirements for Satisfactory Academic Progress are that full-time J.D. students enroll in a minimum of 12 credits per quarter, and

a) Complete a minimum of 6 credits each quarter.

b) Complete 36 credits for full-time aid received in the autumn through spring quarters.

c) Finish the J.D. program no earlier than 24 months and no later than 72 months after commencing study at the law school or a law school from which the school has accepted transfer credit.

d) Must not be in Academic Difficulty or Disqualified for Low Scholarship.

J.D. students who do not meet these requirements must file an appeal with the Office of Student Financial Aid for reconsideration of continued financial aid.

9) Academic Difficulty and Disqualification Rules

A J.D. student will be in Academic Difficulty if he or she receives, during any two consecutive quarters, a grade of E or two grades of D or three grades of C.

A J.D. student in Academic Difficulty must meet with the Dean for Students or the Director of Academic Support for counseling each quarter until the student regains good academic standing. Good academic standing requires two consecutive quarters with no grades of C or below.

A J.D. student will be Disqualified for Low Scholarship and will not be allowed to re-enroll if he or she receives:

a) During the first and second years, grades of E or No Credit for 12 credit hours or a combination of grades of C, D, E, or No Credit for 20 credit hours;

b) During any three academic years, grades of E or No Credit for 15 credit hours or grades of C, D, E, or No Credit for 24 credit hours.
10) Readmission After Disqualification for Academic Failure

A student who has been disqualified as a J.D. candidate for academic failure may seek readmission by petitioning the faculty. ABA Standard 505 permits readmission "upon an affirmative showing that the student possesses the requisite ability and that the prior disqualification does not indicate a lack of capacity to complete the course of study at the admitting school." Upon receipt of a petition, the Dean will appoint a panel of faculty and administrators to evaluate the candidate’s ability to successfully complete the study of law if readmitted. Factors which may be considered include:

a) The existence, while the student was enrolled, of extraordinary circumstances beyond the student's control (serious illness, unusual hardship or qualitatively similar circumstances) that adversely affected the student's performance or otherwise contributed to the student's failure.

b) The extent of the student's understanding of the reasons for the student’s failure.

c) The extent to which the reasons for failure have been alleviated.

d) The nature and extent of the student's experiences since disqualification.

e) Any other factors that positively indicate a substantial likelihood that the student will successfully complete the prescribed study of law.

11) Mastery Courses

Certain courses have been approved by the faculty as mastery courses. The mandatory distribution is not applicable to designated "mastery" courses. A faculty member may have her or his course designated as a mastery course by submitting the course syllabus and evaluative elements to the Curriculum Committee, and ultimately the faculty, for approval, subject to the following conditions:

a) the course must require significant, periodic written work and feedback during the course, with stated performance standards for achieving specific grades;

b) first-year courses cannot be designated as mastery courses unless all sections of that course are offered on a mastery basis;

c) and mastery courses will be designated as such, in the catalog and course description.

Even though a course has been approved as a mastery course, an instructor has discretion to teach it in a non-mastery format.

12) Repeating Courses

a) A student in the School of Law in good standing who has failed a required course must repeat the course or take, with the approval of the Dean, a second examination without registration at the time a regular examination for the course is offered. If a passing grade is received upon re-examination, the student receives the same credit for the course that it carried at the time the student was first examined. The failing grade remains on the record, but only the passing grade is computed in the student's grade point average.

b) A student may also be required to repeat a course or courses as a condition of readmission, at the discretion of the Dean. (See Faculty Policy on Academic Probation and Readmission.)
c) In no other circumstances will a grade earned in a course which the student has previously audited or taken for credit be computed in the student's grade point average.

13) Deadline for Faculty to Turn in Grades

The deadlines for faculty to turn in grades to Academic Services are as follows:

- Autumn Quarter: 7th calendar day from the start of Winter Quarter
- Winter Quarter: 7th calendar day from the start of Spring Quarter
- Spring Quarter (upper-level classes): 14th calendar day after the end of the upper-level exam period
- Spring Quarter (1L classes): 14th calendar day after the end of the 1L exam period
- Summer Quarter: 14th calendar day after the end of the exam period

These deadlines are subject to the following exceptions:

a) Professors who teach both a compressed course and a non-compressed course in Spring Quarter are not required to submit grades for either course until the 14th day after the non-compressed exam period.

b) The Registrar has the authority to waive the grade deadline in any quarter for good cause shown. Faculty teaching 2 large classes in a single quarter should contact the Registrar. If such a waiver is granted, students will be notified of the fact that a waiver has been granted.

This policy shall be enforced through the following steps:

- At the last faculty meeting of each quarter, the Dean reminds the faculty of the grading deadlines, of the importance of grading and of the desirability of leaving word about how the faculty member can be contacted by Academic Services;
- On the day after the applicable grade deadline, Academic Services will announce the classes for which grades are not received, and, when available, the expected posting date;
- The Associate Dean for Academic Administration confers with faculty members who are late in turning in grades to bring them into compliance;
- If the Associate Dean for Academic Administration cannot arrive at a satisfactory resolution, he or she informs the Dean of the problem.

14) Change of Grade

Except in case of error, no instructor may change a grade that he or she has turned in to the Registrar. Grades cannot be changed after a degree has been granted.

E. Grading Practice for the School of Dentistry
The School of Dentistry uses the following University grade-point system: A=4, B=3, C=2, and E=0. The grade-point average is calculated by multiplying the grade points received in a course by the number of credits earned in the course, totaling these values, and dividing by the total number of credits earned.

The progress of professional dental students is reviewed at least quarterly. Students experiencing academic or clinical difficulties are identified and referred to student progress committees which make determinations regarding academic progress. If the work in a course is incomplete or inadequate, a grade of I may be given. This Incomplete must be removed before September 15 if the student is to advance into the next year's class. If academic or clinical achievement is unsatisfactory the student may be dismissed from the school.

Student work shall be evaluated and awarded a range of grades from 4.0 to 2.8 in 0.1 increments, and the grade 0.0. Grades in the range 2.7 to 0.1 may not be assigned.

1) Numerical grades having significance are:

- 4.0: Highest grade attainable, assigned for extraordinary high performance
- 2.8: Cumulative average necessary for good academic standing in the School of Dentistry and for graduation. Failure to achieve a 2.8 cumulative GPA at the end of each academic year shall usually lead to dismissal.
- 2.8: Lowest grade providing unconditional course credit toward graduation.
- 0.0: Total failure of performance, or other than official withdrawal. Requires submission of "Student Deficiency Report" to Academic Affairs by the Course Director.

2) Grading Information

a) Grades 4.0 - 2.8

All grades awarded in this range denote satisfactory completion of coursework and provide unconditional course credit toward graduation.

b) Credit/No Credit Grades

With the approval of the Curriculum Committee, certain School courses may be graded on a Credit/No Credit basis. All students registered in such courses are assigned Credit or No Credit grades. Credit/No Credit Grades do not enter into computation of cumulative grade-point-averages. However, No Credit (NC) grades shall be considered the equivalent of a failing (0.0) grade in Student Progress Committee decisions.

c) Incomplete Grades

Incomplete (I) grades may be awarded when all the following circumstances are in evidence:

- The student does not complete all course requirements by the final day of the course;
- The student's performance has been satisfactory to within two (2) weeks of the end of the quarter; OR extenuating circumstances prevent the student from successfully completing or fully participating in the course; AND
- The student presents proof satisfactory to the Course Director that circumstances beyond the student's control prevented completion of course requirements. Such proof must be received by the Course Director no later than the time grades are due at the Registrar's Office according to the University calendar.
If the above conditions are not in evidence, a 0.0 grade shall be awarded. At the time grades are due, the Course Director shall submit a Student Deficiency Report to Academic Affairs describing reasons for the I grade, listing the requirements the student must fulfill to remove the I, and stating the deadline for fulfillment of course requirements.

The student's opportunity to proceed with additional work to remove an I grade and the time by which such work must be completed are contingent upon decisions of the Course Director, the Student Progress Committee, and the Dean during quarterly review of student progress.

I grades shall be converted to "0.0" grades by the Course Director if deadlines for removal specified by the Course Director are not met.

If an I in a preclinical course is not removed by the deadline, the student shall be prohibited from proceeding to clinical activity.

3) N Grades

N grades are limited to hyphenated courses and indicate satisfactory progress at the end of a quarter other than the terminal quarter of a hyphenated series.

At the end of the last quarter of a hyphenated series, a numerical grade or an I must be recorded. This terminal grade shall be the grade for each preceding quarter of the hyphenated sequence and shall replace N grades previously recorded on the University transcript.

A 0.0 grade may be submitted at the end of any quarter in a hyphenated sequence.

i. N grades shall not be submitted when student performance is unsatisfactory.

ii. N grades shall not be submitted at the end of a course if the course director has not yet assigned a grade for a particular course that has been completed.

4) X Grades

An X (No Grade Now) appears on a student's transcript when the instructor has not yet assigned a grade for a particular course. This remains on a student's record until a grade is submitted. The X option only signifies that the instructor has not completed evaluating a student's performance and is not yet prepared to assign a final grade.

X grades do not affect the GPA, but they do affect student status and eligibility for some types of financial aid. As a result, instructors must make every effort to submit grades in a timely manner.

5) Withdrawal Grades

Withdrawal (W) grades are unusual in UWSOD because of the prerequisites and sequence in the dental curriculum. Therefore, withdrawal from a course requires the approval of the Course Director and the Dean or the Dean's delegates. Withdrawal without such approval shall result in a 0.0 grade.

6) Proceeding to Clinical Care

If a 0.0, NC, or I grade in a preclinical course is not removed by the deadline set by the Course Director and approved by the Student Progress Committee and the Dean, the student may be prohibited from proceeding to clinical activity.
If a 0.0, NC, or I grade in a clinical course is not removed by the deadline set by the Course Director and approved by the Student Progress Committee and the Dean, the student may be prohibited from continuing with further clinical activity.

7) COVID-19 Grading Changes for UW School of Dentistry

Spring Quarter 2020

In response to appeals from our students, the UWSOD converted all predoctoral courses that began the quarter with a 4.0 scale grading to credit/no credit. The only exception were the quarterly third-year clerkships, DENTCL 633, DENTCL 636, DENTCL 637, and DENTCL 638, which had previously graded 75% of the class on a 4.0 scale and had to maintain equivalency.

2020-2021 Academic Year

In the continued best interests of our dental students, the UWSOD changed the grading for all predoctoral courses to credit/no credit for the 2020-2021 academic year.

Submitted by:
Faculty Council on Academic Standards
ATM S 310 course proposal issue

Overview:
Atmospheric Sciences has proposed a new course, ATM S 310 – Programming for Atmospheric Data Analysis. The Computer Science and Engineering department, who was identified as a potentially affected unit, has expressed concern regarding overlap with existing CSE courses and the lack of prerequisites required for the proposed ATM S 310. Atmospheric Sciences has revised the course information and justification, and had multiple discussions with CSE, but the issue remains unresolved. The UW Curriculum Committee has referred this to FCAS for determination as to whether Atmospheric Sciences should be able to offer the proposed course despite the concerns of CSE.

Timeline:

<table>
<thead>
<tr>
<th>Date/Time</th>
<th>Action</th>
<th>Notes and/or comment related to action</th>
</tr>
</thead>
<tbody>
<tr>
<td>09/30/2020 06:02pm</td>
<td>New course proposal submitted for approval</td>
<td>N/A</td>
</tr>
<tr>
<td>10/01/2020 09:16am</td>
<td>Proposal acknowledged by Computer Science and Engineering with comment</td>
<td>"I have concerns about how this course overlaps with CSE 160 and CSE 163, newer courses that cover everything I see in the syllabus (and more) except data formats specific to Atomspheric Sciences. I'd be happy to discuss to see how an ATM S course might leverage and/or complement these CSE courses or may be unnecessary particularly since the CSE courses have capacity for several hundred students per year (and growing), so creating a new course for 30 students per offering seems inefficient and unnecessary."</td>
</tr>
<tr>
<td>10/14/2020 10:20am</td>
<td>Proposal sent back to submitter by College of the Environment Curriculum Committee with comment</td>
<td>"Sending back per 10/5/20 email from Cecilia Bitz. ATM S will discuss possible overlap with CSE courses with CSE department."</td>
</tr>
<tr>
<td>11/01/2020-11/02/2020</td>
<td>Proposal edited by Atmospheric Sciences</td>
<td>Revised: Justification (see Appendix A), Overlapping Courses (added CSE 142, CSE 160, and CSE 163), Overlapping Course Departments (added Computer Science and Engineering)</td>
</tr>
<tr>
<td>11/02/2020 05:34pm</td>
<td>Proposal re-submitted by Atmospheric Sciences with comment</td>
<td>"I have listed our class as overlapping with CSE 142, 160, and 163 and explained how it overlaps with them in the justification. I've also explained the ways our course is unique and is needed despite the overlap."</td>
</tr>
</tbody>
</table>
| 11/13/2020 07:44pm| Proposal acknowledged by Computer Science and Engineering with comment | "This is my second time reviewing this proposal after a constructive discussion with two Atmospheric Sciences faculty members, the instructor of this course's pilot offerings and the Associate Chair in charge of Undergraduate Programs. While I know this small
The department is eager to offer this course without any prerequisites and has made adjustments to the course proposal based on my feedback, I still have concerns on the overlap with existing courses and lack of prerequisites.

My reading of the course outline indicates less than 3 weeks of content specific to Atmospheric Sciences. The rest is a general programming course with content that fully overlaps with CSE 160 and/or CSE 163. It would be much more effective to have a prerequisite of one of these courses or "CSE 160 or CSE 163" just as the Atmospheric Sciences major requires three MATH courses and two PHYS courses before pursuing domain-specific content. Students should not receive credit for a course like this and CSE 160 or CSE 163 (whereas CSE 142 would be fine just as we already have students take CSE 142 and CSE 160).

In the past, CSE 160 did not have capacity to accommodate all interested students and CSE 163 did not exist (it was first piloted in Spring 2019). This should not be an issue in the present or future and, if it is, CSE can work with Atmospheric Sciences to make sure there is room for their majors, an issue only recently brought to our attention. We are also happy to work with Atmospheric Sciences and other units on when our CSE 160 and CSE 163 offerings are scheduled.”

<table>
<thead>
<tr>
<th>Date</th>
<th>Unit</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>11/13/2020 04:58pm</td>
<td>Proposal approved by College of the Environment Dean/VC with comment</td>
<td>"My understanding from discussions with the unit chair, and with the college curriculum committee, and after reviewing the comments provided by Dan Grossman from CS, is that the newly proposed AtmS 310 course does partially overlap with CSE 160 and CSE 163 in that both the CSE courses and the AtmS course use Python as the programming language of choice. Where these courses diverge is in the analysis packages and dataset content used to explore and master the coding. Students in AtmS 310 also do a final project on an atmospheric sciences problem. In AtmS 310, the datasets are devoted to Atmospheric Sciences, as is appropriate for students in that major. Because the CSE courses serve a wider audience, the instructor(s) would not be able to guarantee a focus on Atmospheric Sciences, nor should they. This type of “bridge course,” where students are learning fundamental skills with a focus..."</td>
</tr>
</tbody>
</table>
on data, issues and science relevant to their disciplines, has been extremely successful in the College of the Environment. For example, we maintain courses in atmospheric chemistry, in ocean chemistry, and in natural resource statistics, among others, that conjoin fundamental skill and discipline. This approach allows our majors the flexibility in major requirements, which necessarily includes prerequisites, needed in STEM majors which already have a high required course credit count. AtmS is such a major. For these reasons, we believe that AtmS 310 should go forward. We note that exactly because AtmS 310 is focused on Atmospheric Science data and analysis packages, it will not be a course that would draw students away from CSE 160 or CSE 163, as students outside the AtmS major have no need of this conjoint approach. We have listed AtmS 310 as overlapping with 142 since CSE 160 is listed as overlapping with 142. The reasoning is that if the new class overlaps with 160 it should therefore also overlap with 142. Finally, note that AtmS has piloted this class and students did not need prerequisites.

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>11/25/2020</td>
<td>Proposal sent back to submitter by Curriculum Office with comment</td>
<td>Request to review CSE’s concerns and revise if necessary.</td>
</tr>
<tr>
<td>12/02/2020 - 12/03/2020</td>
<td>Proposal edited by Atmospheric Sciences</td>
<td>Revised: Justification (see Appendix B)</td>
</tr>
<tr>
<td>12/03/2020 01:02pm</td>
<td>Proposal re-submitted by Atmospheric Sciences with comment</td>
<td>“Thank you for your review Niko. I believe I have addressed all of your points. (1) I have changed the abbreviated title as you suggest. (2) I apologize for misstating that CSE 160 and 142 have overlap. I have corresponded with Daniel Gorssman again. He thinks ATM S 310 overlaps most with CSE 163 and that we should not list overlap with 160 or 142. I agree, and have changed our application accordingly. (3) I read Julia Parish’s comments. and (4) Thank you for adding Bothell’s Computing and Software Systems and Tacoma’s School of Engineering and Technology as potentially affected units.”</td>
</tr>
<tr>
<td>12/04/2020 11:42am</td>
<td>Proposal acknowledged by Computer Science and Engineering with comment</td>
<td>“I had a conversation yesterday the conclusion of which was that the overlapping courses would change to just CSE 163, so I think this current version is not yet up-to-date? In previous versions, I already indicated my concern that the overlap with CSE 163 is very significant.”</td>
</tr>
<tr>
<td>Date</td>
<td>Action</td>
<td>Comment</td>
</tr>
<tr>
<td>-------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>12/08/2020 01:04pm</td>
<td>Proposal edited by College of the Environment Curriculum Committee</td>
<td>Revised: Overlapping Courses (removed CSE 142 and CSE 160)</td>
</tr>
<tr>
<td>12/08/2020 01:13pm</td>
<td>Proposal approved by College of the Environment Curriculum Committee with comment</td>
<td>“Approved on behalf of the College of the Environment Curriculum Committee. Deleted CSE 142 and CSE 160 as overlapping courses per conversation with ATM S Chair, Cecilia Bitz. This revision addresses final revisions requested by the UW Curriculum Committee and addresses Dan Grossman’s acknowledgment comment requesting that only CSE 163 be listed as overlapping.”</td>
</tr>
</tbody>
</table>
| 12/10/2020 08:57pm | Proposal acknowledged by Computer Science and Engineering with comment | “This is my third time reviewing this proposal after constructive discussions with two Atmospheric Sciences faculty members, the instructor of this course’s pilot offerings and the Associate Director for Undergraduate Programs. While I know this small department is eager to offer this course without any prerequisites and has made adjustments to the course proposal based on my feedback, I still have concerns on the overlap with existing CSE courses and the lack of prerequisites.

The main change in this version is to revise some of the course justification and to list CSE 163 as an overlapping course. These are improvements. But I think fundamental questions and issues remain:

1. The course has no programming-course prerequisite, while my understanding of the major’s degree requirements is that it has multiple required courses from MATH and PHYS. Why wouldn’t this course, even if approved, have a prerequisite of “CSE 142 or CSE 160”?

2. I still estimate that this course content overlaps 70% or so with CSE 163, including 163 content on pandas, handling missing data, and more. Similarly, 2 of the 4 stated learning objectives are not specific to atmospheric sciences. CSE 163 serves many other campus needs well and includes a project where students can bring data from their domain of study -- it seems far less duplicative to
leverage and complement CSE 163. I would have no problem with a post-163 course that could focus exclusively on in-domain issues rather than teach programming from scratch.

3. The justification still refers to capacity issues in CSE 160, but CSE 163 in particular (as well as CSE 160) are now in a position to meet campus demand and if there is specific concern for the small ATM S major, we can ensure enrollment slots are available.

In the end, it is up to the relevant faculty council to determine whether to allow a course with this level of overlap. The "taught better in the domain" justification has typically not been considered a strong one for not just programming, but also for other fundamental topics like calculus and physics.”

<table>
<thead>
<tr>
<th>Date/Time</th>
<th>Event Description</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>01/08/2021 09:34am</td>
<td>Proposal sent back to submitter by Curriculum Office</td>
<td>Atmospheric Sciences was provided the opportunity to respond to CSE’s concerns before the proposal was further reviewed at the 01/19/2021 UW Curriculum Committee meeting.</td>
</tr>
<tr>
<td>01/11/2021 05:10pm</td>
<td>Proposal edited by Atmospheric Sciences</td>
<td>Revised: Justification (see Appendix C)</td>
</tr>
<tr>
<td>02/05/2021 08:34am</td>
<td>Proposal sent back to College of the Environment Dean/VC by Curriculum Office per college request</td>
<td>N/A</td>
</tr>
</tbody>
</table>
| 02/05/2021 01:37pm | Proposal approved by College of the Environment Dean/VC with comment | “I am adding additional comments in support of ATM S 310. We thank CS faculty for their careful review of ATM S 310, for their recommendations, and for continuing to provide space in CSE classes for ATM S students. CSE classes, including some of those mentioned in the comments from Professor Grossman, are currently listed in the ATM S curriculum as viable options for the students.

After a thorough review, I continue to believe that this course – ATM S 310 – should go forward, as proposed by the department.

In my view, this new course will:

• Add to the set of choices for ATM S majors to meet their 4-8 credit programming requirement (currently a selection of courses across multiple units, including CSE courses).
• Not prevent students from selecting CSE courses as a choice for meeting their programming requirement.
• Offer ATM S students a unique learning option at the intersection of programming skills and ATM S content.

In my view, requiring a CSE prerequisite to this course is unreasonable because:
• This major already has a relatively high number of required credits.
• CSE 160 is not needed to perform well in ATM S 310.”

<table>
<thead>
<tr>
<th>Appendices</th>
</tr>
</thead>
</table>

Appendix A

Justification after edits made between 11/02/2020-11/03/2020. Additions to the justification are in bold.

Our undergraduate majors use programming in Python for most 300 and 400 level courses in our major. This course is designed to prepare students in programming language and approaches used in the Atmospheric Sciences. *At present, the primary language for data analysis of our field is Python.* We have been teaching the fundamentals of Python programming and analysis in several of our courses, as students needed the skills to do the lab assignments in those classes. This practice was inefficient because students can take the lab classes in different orders, so we had to repeat the same introductory material several times.

We presently require our students to take Applied Math 301 (Beginning Scientific Computing), which has been useful to give our students a broad understanding of scientific programming among many fields. *AMATH 301 has a heavy emphasis on programming MATLAB, which is not used in our courses and is not used in industries where our students find jobs. The applied mathematical methods taught in AMATH 301 continue to be valuable, even though the programming language taught is not serving our students’ needs.*

In our application we have listed ATM S 310 as overlapping with Computer Science and Engineering 142 (Computer Programming I), 160 (Data Programming), and 163 (Intermediate Data Programming) because there is partial overlap. Our new course is most distinct from CSE 142 because the programming languages taught in CSE 142 (Java) and ATM S 310 (Python) are very different. However, both are intended to teach the beginning principles of programming and therefore can be considered to have overlap. Our students have found programming in Java, like programming in MATLAB, to be of limited value for future coursework and in their careers. Recently we have encouraged our students to take CSE 160 rather than...
142 because 160 covers Python programming. However, the majority of our students were unable to take CSE 160 because it fills up quickly and because it is not necessarily scheduled at a time that is suitable for our student’s schedules.

Because programming is such an essential part of our field, we are creating our own class. If our students take our class, they will not need to take CSE 142, 160, or 163 and will not get credit for our class if they have already taken any of CSE 142, 160, or 163.

ATM S 310 will be of substantially greater value to students in our field compared to these three CSE classes because in ATM S 310 students will learn to handle real atmospheric science datasets. They will read data in NetCDF format - a specialized file type commonly used for atmospheric science data. They will create their own, leveraging tools such as numpy.meshdata() to grid geographical information in a useful way. In addition, common Python packages such as Pandas (for CSV support) are explored using multi-decadal hourly data for a single weather station - tying in concepts from other classes such as data quality and learning to deal with missing data - and the discussion of object-oriented programming brings in geoscience-specific class types such as a SurfaceDomain object. Students also get introductions to modern atmospheric science-specific packages actively being used and developed, including MetPy and PyART, and there is an additional element of professional development as students are introduced to guest speakers who do a lot of the heavy lifting of atmospheric science Python code development in government and academia. In a final project, students use either their own atmospheric data (e.g., from a research internship) or an instructor-provided dataset to perform an exploratory data analysis in Python and present their results to the class.

Appendix B

Justification after edits made between 12/02/2020-12/03/2020. Additions to the justification are in bold.

This course is designed to prepare students in the programming language and approaches used in the Atmospheric Sciences. At present, our undergraduate majors use programming in Python for most 300 and 400 level courses in our major and continue to use Python in their careers. We have been teaching the fundamentals of Python programming and analysis in several of our **300 level courses with labs**, as students needed the skills to do the lab assignments in those classes. This practice was inefficient because students can take the lab classes in different orders, so we had to repeat the same introductory material several times. We are creating this class so our students will learn the skills they need more thoroughly in one class that they take at the start of their junior year (or earlier).

We presently require our students to take Applied Math 301 (Beginning Scientific Computing), which has been useful to give our students a broad understanding of scientific programming among many fields. AMATH 301 has a heavy emphasis on programming MATLAB, which is not used in our courses and is not used in industries where our students find jobs. The applied mathematical methods taught in AMATH 301 continue to be valuable, even though the programming language taught is not serving our students’ needs.
Our students are also required to take CSE 142, which is a class in JAVA programming. Recently we have encouraged our students to take CSE 160 rather than our CSE 142 because 160 covers Python programming. However, the majority of our students were unable to take CSE 160 because it fills up quickly and because it is not necessarily scheduled at a time that is suitable for our student’s schedules. While either of these courses provides a good foundation in programming, we still found the need to teach students additional programming skills that are specific to our field. Because programming is such an essential part of our field, we have created ATM S 310.

In this application we have listed ATM S 310 as overlapping with CSE 163 (Intermediate Data Programming) because there is partial overlap between the learning objectives in the two courses. ATM S 310 will be of substantially greater value to students in our field compared to CSE 163 because in ATM S 310 students will learn to handle real atmospheric science datasets. They will read data in NetCDF format - a specialized file type commonly used for atmospheric science data. They will create their own, leveraging tools such as numpy.meshdata() to grid geographical information in a useful way. In addition, common Python packages such as Pandas (for CSV support) are explored using multi-decadal hourly data for a single weather station - tying in concepts from other classes such as data quality and learning to deal with missing data - and the discussion of object-oriented programming brings in geoscience-specific class types such as a SurfaceDomain object. Students also get introductions to modern atmospheric science-specific packages actively being used and developed, including MetPy and PyART, and there is an additional element of professional development as students are introduced to guest speakers who do a lot of the heavy lifting of atmospheric science Python code development in government and academia. In a final project, students use either their own atmospheric data (e.g., from a research internship) or an instructor-provided dataset to perform an exploratory data analysis in Python and present their results to the class.

Appendix C

Justification after edits made on 01/11/2021. Additions to the justification are in bold.

This course is designed to prepare students in the programming language and approaches used in the Atmospheric Sciences. At present, our undergraduate majors use programming in Python for most 300 and 400 level courses in our major and continue to use Python in their careers. We have been teaching the fundamentals of Python programming and analysis in several of our 300 level courses with labs, as students needed the skills to do the lab assignments in those classes. This practice was inefficient because students can take the lab classes in different orders, so we had to repeat the same introductory material several times. We are creating this class so our students will learn the skills they need more thoroughly in one class that they take at the start of their junior year (or earlier).

We presently require our students to take Applied Math 301 (Beginning Scientific Computing), which has been useful to give our students a broad understanding of scientific programming among many fields. AMATH 301 has a heavy emphasis on programming MATLAB, which is not used in our courses and is not used in industries where our students find jobs. The applied mathematical methods taught in AMATH 301 continue to be valuable, even though the programming language taught is not serving our students’ needs.
Our students are also required to take CSE 142, which is a class in JAVA programming. Recently we have encouraged our students to take CSE 160 rather than CSE 142 because 160 covers Python programming. However, the majority of our students were unable to take CSE 160 because it fills up quickly and because it is not necessarily scheduled at a time that is suitable for our student’s schedules. While either of these courses provides a good foundation in programming, we still found the need to teach students additional programming skills that are specific to our field. Because programming is such an essential part of our field, we have created ATM S 310.

In this application we have listed ATM S 310 as overlapping with CSE 163 (Intermediate Data Programming) because there is partial overlap between the learning objectives in the two courses. ATM S 310 will be of substantially greater value to students in our field compared to CSE 163 because in ATM S 310 students will learn to handle real atmospheric science datasets. They will read data in NetCDF format - a specialized file type commonly used for atmospheric science data. They will create their own, leveraging tools such as numpy.meshdata() to grid geographical information in a useful way. In addition, common Python packages such as Pandas (for CSV support) are explored using multi-decadal hourly data for a single weather station - tying in concepts from other classes such as data quality and learning to deal with missing data - and the discussion of object-oriented programming brings in geoscience-specific class types such as a SurfaceDomain object. Students also get introductions to modern atmospheric science-specific packages actively being used and developed, including MetPy and PyART, and there is an additional element of professional development as students are introduced to guest speakers who do a lot of the heavy lifting of atmospheric science Python code development in government and academia. In a final project, students use either their own atmospheric data (e.g., from a research internship) or an instructor-provided dataset to perform an exploratory data analysis in Python and present their results to the class.

We have piloted the proposed class twice, in two separate quarters. We did not require any prerequisites for the class, and students succeeded equally well with and without taking any previous programming. The students who took our pilot class were well-prepared for data analysis in our major. ATM S 310 covers the fundamental principles of data analysis programming and so no prerequisites are needed. Because ATM S 310 teaches programming for analysis and the data types used in atmospheric sciences, we can teach the material that is covered in more introductory courses, like CSE 142 and 160, in an efficient and streamlined way, while also teaching some of the topics that are covered in CSE 163. However, our class is not intended to be as advanced as CSE 163. We list our class as overlapping with CSE 163, rather than 160, because we want our students who want extra background and practice to have the option of taking CSE 160 for credit. This decision was made in consultation with Daniel Grossman of CSE, as he has noted in the log on 12/10/2020.

We contend that ATM S 310 overlaps only about 1/3 with specific content in CSE 163. Contrasting our learning goals and syllabus with the four items listed under “what will I learn” in CSE 163 at https://courses.cs.washington.edu/courses/cse163/21wi/:

CSE 163 – (1) “More advanced programming concepts than in CSE 141 or CSE 160, including how to write bigger programs with multiple classes and modules.”

ATMS 310 learning goals do include advanced programming but instead emphasize learning an “overview of a modern programming language” and to “comprehend analysis principles of atmospheric science problems”. Our class is not about writing bigger programs and our class's programs use a single class and single module at a time.
CSE 163 – (2) “How to work with different types of data: tabular, text, images, geo-spatial”

ATMS 310 covers tabular, text and geo-spatial data types that are specific to our field. ATMS 310 does not cover image data types, which are too advanced for our course.

CSE 163 (3) “Ecosystem of data science tools including Jupyter Notebook and various data science libraries including scikit image, scikit learn, and Pandas data frames.”

ATMS 310 covers Jupyter Notebook and Pandas tabular data, but does not cover the more advanced topics of scikit image or scikit learn. CSE 163 (4) “Basic concepts related to code complexity, efficiency of different types of data structures, and memory management.”

ATMS 310 does not cover any of the topics listed in (4).

What ATMS 310 covers that is specific to atmospheric sciences and not taught in CSE 163 includes:

Reading and writing NetCDF data files. Regridding 3-dimensional data to a standard map projection and grid. Creating graphics of surface pressure or 500 mbar charts with wind vectors using proper map projections. And, our students will learn Python packages that are developed by atmospheric scientists and used exclusively for atmospheric sciences such as SurfaceDomain, MetPy and Py-ART.

The first supercomputers were constructed for weather prediction, and atmospheric sciences remains a heavy user of the worlds largest computers for weather and climate prediction and billions of measurements that are made each day to support our field. Atmospheric sciences has a deep history in programming and data analysis. Computer programming is about designing and building programs that accomplish a given task. In contrast, computer science, according to Wikipedia, is the “theory of computation and the practice of designing software systems”. These definitions suggest that computer programming can be taught by domain scientists when the goal is to program for a specific task.