Analyzing IMDB Data in Keras

In [1]:
# Imports
import numpy as np
import keras
from keras.datasets import imdb
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation
from keras.preprocessing.text import Tokenizer
import matplotlib.pyplot as plt
%matplotlib inline

np.random.seed(42)
Using TensorFlow backend.

1. Loading the data

This dataset comes preloaded with Keras, so one simple command will get us training and testing data. There is a parameter for how many words we want to look at. We've set it at 1000, but feel free to experiment.

In [3]:
# Loading the data (it's preloaded in Keras)
(x_train, y_train), (x_test, y_test) = imdb.load_data(num_words=1000)

print(x_train.shape)
print(x_test.shape)
(25000,)
(25000,)

2. Examining the data

Notice that the data has been already pre-processed, where all the words have numbers, and the reviews come in as a vector with the words that the review contains. For example, if the word 'the' is the first one in our dictionary, and a review contains the word 'the', then there is a 1 in the corresponding vector.

The output comes as a vector of 1's and 0's, where 1 is a positive sentiment for the review, and 0 is negative.

In [4]:
print(x_train[0])
print(y_train[0])
[1, 14, 22, 16, 43, 530, 973, 2, 2, 65, 458, 2, 66, 2, 4, 173, 36, 256, 5, 25, 100, 43, 838, 112, 50, 670, 2, 9, 35, 480, 284, 5, 150, 4, 172, 112, 167, 2, 336, 385, 39, 4, 172, 2, 2, 17, 546, 38, 13, 447, 4, 192, 50, 16, 6, 147, 2, 19, 14, 22, 4, 2, 2, 469, 4, 22, 71, 87, 12, 16, 43, 530, 38, 76, 15, 13, 2, 4, 22, 17, 515, 17, 12, 16, 626, 18, 2, 5, 62, 386, 12, 8, 316, 8, 106, 5, 4, 2, 2, 16, 480, 66, 2, 33, 4, 130, 12, 16, 38, 619, 5, 25, 124, 51, 36, 135, 48, 25, 2, 33, 6, 22, 12, 215, 28, 77, 52, 5, 14, 407, 16, 82, 2, 8, 4, 107, 117, 2, 15, 256, 4, 2, 7, 2, 5, 723, 36, 71, 43, 530, 476, 26, 400, 317, 46, 7, 4, 2, 2, 13, 104, 88, 4, 381, 15, 297, 98, 32, 2, 56, 26, 141, 6, 194, 2, 18, 4, 226, 22, 21, 134, 476, 26, 480, 5, 144, 30, 2, 18, 51, 36, 28, 224, 92, 25, 104, 4, 226, 65, 16, 38, 2, 88, 12, 16, 283, 5, 16, 2, 113, 103, 32, 15, 16, 2, 19, 178, 32]
1

3. One-hot encoding the output

Here, we'll turn the input vectors into (0,1)-vectors. For example, if the pre-processed vector contains the number 14, then in the processed vector, the 14th entry will be 1.

In [5]:
# One-hot encoding the output into vector mode, each of length 1000
tokenizer = Tokenizer(num_words=1000)
x_train = tokenizer.sequences_to_matrix(x_train, mode='binary')
x_test = tokenizer.sequences_to_matrix(x_test, mode='binary')
print(x_train[0])
[0. 1. 1. 0. 1. 1. 1. 1. 1. 1. 0. 0. 1. 1. 1. 1. 1. 1. 1. 1. 0. 1. 1. 0.
 0. 1. 1. 0. 1. 0. 1. 0. 1. 1. 0. 1. 1. 0. 1. 1. 0. 0. 0. 1. 0. 0. 1. 0.
 1. 0. 1. 1. 1. 0. 0. 0. 1. 0. 0. 0. 0. 0. 1. 0. 0. 1. 1. 0. 0. 0. 0. 1.
 0. 0. 0. 0. 1. 1. 0. 0. 0. 0. 1. 0. 0. 0. 0. 1. 1. 0. 0. 0. 1. 0. 0. 0.
 0. 0. 1. 0. 1. 0. 0. 1. 1. 0. 1. 1. 0. 0. 0. 0. 1. 1. 0. 0. 0. 1. 0. 0.
 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 1. 0. 0. 0. 1. 1. 0. 0. 0. 0. 0. 1. 0. 0.
 1. 0. 0. 1. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.
 0. 0. 0. 0. 1. 1. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 1. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.
 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 1. 0. 0. 0.
 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 1. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0.
 0. 1. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 1.
 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0.
 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.
 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0.
 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.
 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.
 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]

And we'll also one-hot encode the output.

In [6]:
# One-hot encoding the output
num_classes = 2
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)
print(y_train.shape)
print(y_test.shape)
(25000, 2)
(25000, 2)

4. Building the model architecture

Build a model here using sequential. Feel free to experiment with different layers and sizes! Also, experiment adding dropout to reduce overfitting.

In [51]:
# TODO: Build the model architecture
model = Sequential()
model.add(Dense(512, activation='relu', input_dim=1000))
model.add(Dropout(.5))
# model.add(Dense(256, activation='relu'))
# model.add(Dropout(.25))
model.add(Dense(2, activation='softmax'))

# TODO: Compile the model using a loss function and an optimizer.
model.compile(loss = 'categorical_crossentropy', optimizer='rmsprop', metrics=['accuracy'])
model.summary()
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
dense_23 (Dense)             (None, 512)               512512    
_________________________________________________________________
dropout_14 (Dropout)         (None, 512)               0         
_________________________________________________________________
dense_24 (Dense)             (None, 2)                 1026      
=================================================================
Total params: 513,538
Trainable params: 513,538
Non-trainable params: 0
_________________________________________________________________

5. Training the model

Run the model here. Experiment with different batch_size, and number of epochs!

In [52]:
# TODO: Run the model. Feel free to experiment with different batch sizes and number of epochs.
model.fit(x_train, y_train, epochs=10, batch_size=32, verbose=2)
Epoch 1/10
 - 7s - loss: 0.3958 - acc: 0.8275
Epoch 2/10
 - 6s - loss: 0.3323 - acc: 0.8662
Epoch 3/10
 - 6s - loss: 0.3222 - acc: 0.8772
Epoch 4/10
 - 6s - loss: 0.3128 - acc: 0.8826
Epoch 5/10
 - 7s - loss: 0.3083 - acc: 0.8891
Epoch 6/10
 - 7s - loss: 0.2984 - acc: 0.8960
Epoch 7/10
 - 6s - loss: 0.2870 - acc: 0.9020
Epoch 8/10
 - 6s - loss: 0.2768 - acc: 0.9094
Epoch 9/10
 - 6s - loss: 0.2696 - acc: 0.9125
Epoch 10/10
 - 6s - loss: 0.2557 - acc: 0.9206
Out[52]:
<keras.callbacks.History at 0x129a4b06b00>

6. Evaluating the model

This will give you the accuracy of the model, as evaluated on the testing set. Can you get something over 85%?

In [53]:
score = model.evaluate(x_test, y_test)
print("Accuracy: ", score[1])
25000/25000 [==============================] - 1s 58us/step
Accuracy:  0.8562
In [ ]: