Before there was reading there was seeing. *Visible Language* has been concerned with ideas that help define the unique role and properties of visual communication. A basic premise of the journal has been that created visual form is an autonomous system of expression that must be defined and explored on its own terms. Today more than ever people navigate the world and probe life's meaning through visual language. This journal is devoted to enhancing people's experience through the advancement of research and practice of visual communication.

Published tri-annually in April, August, and December

website:
http://visiblelanguagejournal.com

send address changes to:
Mark Hunter
College of Design, Architecture, Art, and Planning
University of Cincinnati
PO Box 210016
Cincinnati, OH 45221-0016

Mike Zender, *Editor*
Dr. Maria dos Santos Lonsdale, *Associate Editor - Typography*
University of Cincinnati, School of Design, *Publisher*
Mark Hunter, *Publication Manager*
Merald Wrolstad, *Founder*
Sharon Poggenpohl, *Editor Emeritus*

© Copyright 2018 by University of Cincinnati
Visible Language
Student Special Issue

the journal of
visual communication
research

Guest Editor:
Maria dos Santos Lonsdale

December 2018
Advisory Board

Naomi Baron – The American University, Washington, D.C.
Michael Bierut – Pentagram, New York, NY
Charles Bigelow – Type designer
Matthew Carter – Carter & Cone Type, Cambridge, MA
Keith Crutcher – Cincinnati, OH
Mary Dyson – University of Reading, UK
Jorge Frascara – University of Alberta, Canada
Ken Friedman – Swinburne University of Technology, Melbourne, Australia
Michael Golec – School of the Art Institute of Chicago, Chicago, IL
Per Mollerup – Swinburne University of Technology, Melbourne, Australia
Sharon Poggenpohl – Estes Park, CO
Lotte Meteyard, Holly Robson, Luke Kendrick, Maitreyee Wairagkar

Informing personal branding through self-assessed handwriting analysis: proposal of a supportive online platform

Laura Bakalika, Catarina Lelis
9 – 29

Informative and decorative pictures in health and safety posters for children

Sara C. Klohn, Alison Black
30 – 51

Two-dimensional vs three-dimensional guide maps: which work best for museum visitors?

Andrew McIlwraith
52 – 73

e Ink versus paper:
exploring the effects of medium and typographic quality on recall and reading speed

Jeanne-Louise Moys, Peter Loveland, Mary C. Dyson
74 – 95

Exploring illustration styles for materials used in visual resources for people with aphasia

Jeanne-Louise Moys, Carmen Martinez-Freile, Rachel McCrindle
96 – 113
Editor’s note:

All the articles for the Student Special Issue went through our standard double-blind peer-review process. The only concession to our normal research publication standards was occasional allowance for fewer research participants than might otherwise be necessary.

We hope to repeat this student special issue at various times in the future as a way to support our mission of advancing communication design research and scholarship.

mz

Garment label design and companion information to communicate fashion sustainability issues to young consumers:

Ana Perez, Maria dos Santos Lonsdale

114 — 139

Designing on Ntaria Country:

telling stories with new tools

Nicola St John

140 — 161

How can the principles and practices of information design help us produce useful live art documentation?

a unique user-centered, experience-design challenge

Rosanna Traina

162 — 183

Spaces that Speak:

Exploring Creative Opportunities in the Communication Design of Conversational Spaces

Nina Lysbakken

184 — 207
Visible Language is happy to present a Student Special Issue that includes articles on student research into Typographic and Graphic design involving user-centered research methods. The importance of focusing on user-centered approaches emerges from a need identified through years of experience as a lecturer, researcher and design practitioner. Design solutions that are driven merely by opinion and intuition, without having involved the target user throughout the different stages of the design process, nor having been tested and developed through several stages of iteration and re-design, might be prone to failure. Design that is developed for the user and with the user stands a greater chance of high and long-term impact.

The objective of the Student Special Issue was to support early career scholars by giving them an opportunity to experience the publication process, and to encourage supervisors/tutors to be involved in the publication process with joint authorship where appropriate.

In this Student Special Issue we have included a wide range of research themes that show the potential of the field of Typographic and Graphic Design to produce novel user-centered design and research solutions that are directly applicable to real life contexts. These include research on: the interrelation between handwriting and personal branding; children’s engagement with health and safety posters; the effectiveness of two-dimensional versus three-dimensional museum guide maps; the appropriateness of different styles of illustration for visual resources used in combination with assistive technologies for people with aphasia; the effects of reading from paper versus an eInk display on recall and reading speed; the potential of garment label design and companion information to communicate fashion sustainability issues to young consumers; the application of digital drawing within remote Indigenous contexts; the documenting of live art by locating and empowering the document user.

The publication of this Student Special Issue would not have been possible without the support of Mary Dyson (Department of Typography & Graphic Communication at the University of Reading, UK), the hard work of a strong body of reviewers from various parts of the world, and the patience and skill of Mike Zender, editor of Visible Language, in making sure the layout and images were a good representation of the research and design outputs.

Maria dos Santos Lonsdale, Guest Editor
eInk versus paper:
exploring the effects of medium and typographic quality on recall and reading speed

Jeanne-Louise Moys
Peter Loveland
Mary C. Dyson

This study compares the effects of reading from paper and an eInk display on recall and reading speed alongside the effects of changes in typographic quality (fluent and disfluent conditions). Both medium and typographic quality were between-subject variables resulting in four groups of participants. Each participant was timed while they read one text. They then completed a general questionnaire before answering multiple-choice questions evaluating their recall of the content they had read. Comparable reading speeds for paper and eInk were recorded and these were slower for disfluent conditions. Improved typographic quality significantly enhanced recall on eInk, whereas for paper participants who read the disfluent condition recalled more. These findings suggest that typographic quality has a significant effect on reading, which is also influenced by the medium. Although recall was better in the disfluent paper condition, some caution should be observed in translating this into recommendations that would result in more effortful reading.

Keywords:
eInk
paper
recall
text layout
typography
1 Introduction

In an age where new kinds of consumer display are rapidly emerging in the marketplace and being adopted in educational contexts, a number of studies consider the suitability of particular displays and the visual presentation of materials for learning. The majority of research investigations to date, including many recent studies (e.g. Mangen et al., 2013; Mangen and Kuiken, 2014; Sackstein et al. 2015; Köpper et al., 2016), have focused on backlit liquid crystal display (LCD) screens, using computers and handheld devices like the Apple iPad. Relatively few studies compare paper-based reading with reading on electronic ink (eInk) devices, such as the Amazon Kindle, Sony Reader, Barnes and Noble Nook and Kobo eReaders.

This is possibly because eInk is still a relatively new form of display technology or ‘electronic paper display’ (EPD). However, eInk is a potentially more affordable form of display in comparison to LCD devices (both in terms of upfront and running costs). eInk displays may also be less likely to replicate the detrimental effects related to reading fatigue that are associated with backlit displays (Siegenthaler et al., 2011; Jabr, 2013; Flood, 2014; Köpper et al. 2016). In addition, from a typographic perspective, eInk merits particular investigation because it is reputed to have a display quality comparable to printed texts (Mitra, 2011; Felici, 2012). Its digital display works by utilising millions of microcapsules, all of which contain positively charged ‘white’ particles, and negatively charged ‘black’ particles. If each of these microcapsules is considered as a pixel, type and images can be rendered on a screen whilst, ostensibly, bearing a strong resemblance to the appearance of ink on paper.

Our study seeks to contribute to the emerging body of research that examines reading on eInk displays. In particular, we compare the effectiveness of reading and recalling information in expository texts on eInk and paper in relation to fluent and disfluent conditions of typographic quality. From a psychological perspective, fluency refers to the subjective experience of relative ease with which stimuli are cognitively processed. Although fluency refers to the processing of material, rather than the material itself, we use the terms fluent and disfluent conditions consistent with Diemand-Yauman et al. (2011).

2 Background and rationale

A substantial body of research compares learning from digital displays and paper. Reviews (e.g. Dillon, 1992; Noyes and Garland, 2003; Jabr, 2013; Köpper et al., 2016) suggest that findings are sometimes inconclusive but generally show a tendency towards poorer performance in relation to reading from screen than paper (e.g. Dillon, 1992; Nielsen, 2010; Jabr, 2013; Mangen et al., 2013). Studies also highlight that learners prefer reading printed textbooks to reading on screen (e.g. Shepperd et al., 2008; Woody et al. 2010; Ackerman and Goldsmith, 2011; Gibson and Gibb, 2011) and that this preference also applies to younger generations, often referred to as ‘digital natives’ (see: Mangen, 2017). However, an increasing number of studies are establishing either less marked differences between learning from paper and learning from screen (e.g. Noyes and Garland, 2003; Rockinson-Szapkiw et al., 2013) or reporting a significant improvement in learning from screen (e.g. Shepperd et al., 2008; Siegenthaler et al., 2011).

Relatively few studies specifically examine learning from eInk displays versus learning from paper. To date, a range of measures, variables and methodologies have been used so findings are not straightforward to compare.

Siegenthaler et al. (2011) compared reading behavior (measured through eye-tracking measurements of fixations and saccades) and reading performance (measured through reading speed and page turns) across five kinds of eInk display and one printed book. They also recorded participants’ preferences for reading on each device. They concluded that reading behavior from eReaders and print is similar. However, they recorded significantly longer fixations for printed texts. This suggests that eReaders may provide better legibility because the longer fixations in the paper condition suggest that participants had greater difficulty ‘extracting visual and/or linguistic information’ (Siegenthaler et al., 2011, p. 272).

In contrast, Mangen et al. (forthcoming, see also Flood, 2014; Mangen, 2017) found that participants performed better in comprehension and mental reconstruction tasks when reading a novel on paper than on a Kindle: recalling the plot and answering questions more accurately about the sequence and chronology of the narrative.

This finding could be related to particular affordances of printed and digital texts. For example, in a qualitative study of university student reading and study behavior using eReaders, Campbell, et al. (2013) found that the lack of spatial and kinesthetic clues – such as page numbers, headers and physical weight on eReaders – prevented cognitive maps from being created by students. Similarly, in a qualitative study of long-term academic use, Thayer et al. (2011) noted that students using eReaders took longer to locate information than they would when using printed resources. They also found that eReaders did not support scanning and responsive reading strategies well.

The interplay between particular genres, typographic structure and the reading strategies users are likely to engage with for specific devices is important to consider. Daniel and Willingham (2012, pp. 1581–1582) note that many current e-books (regardless of device) have a ‘narrative structure’, whereas electronic textbooks are likely to have a ‘hierarchical structure’. Participants in both the Siegenthaler et al. (2011) and Mangen et al. (forth-
coming) studies read extracts from novels, which are likely to be read as linear texts.

In another study using narrative content, Nielsen (2010) compared reading speeds between content displayed on a Kindle eInk screen, an iPad’s LCD screen and traditional paper. The results showed the Kindle content was read significantly (p<0.01) slower than content read on paper, whereas the iPad content was only marginally (p=0.06) slower than reading from paper. Slower reading from screen compared to paper has been a fairly common finding with older technologies (Dyson and Haselgrove, 2001), although recent studies are measuring increased reading speeds for iPad compared to paper (e.g. Sackstein et al., 2015).

Sackstein et al. (2015, p. 2) suggest that studies examining the effectiveness of reading from different displays should consider reading as both a ‘text-based’ and ‘knowledge-based’ process. Accordingly, they incorporate both reading speed and comprehension as measures in their study. While Sackstein et al. did not establish a relationship between reading speed and comprehension, in relation to expository texts and the findings for the specific eInk studies discussed in this paper, it seems appropriate to measure both reading speed and either comprehension or recall accuracy.

An important factor to consider in relation to learning is the relative fluency/disfluency of different displays (Alter, 2013). A growing number of recent studies have compared whether the fluent and disfluent conditions influence learning (e.g. Diemand-Yauman et al., 2011; Kühl et al., 2014) and particular perceptual judgments (e.g. Alter and Oppenheimer, 2009; Manley, et al. 2015). For example, Diemand-Yauman et al. (2011) have considered how fluent and disfluent typographic conditions influenced participants’ recall from paper. They suggest that making typography harder to read results in increased levels of cognitive engagement, which in turn enables better recall of information. The disfluency manipulation would be described by typographers as making the text less legible. In relation to perceptual judgments, Song and Schwarz (2008a) have also found that fluency can influence the assumptions learners make about how easy or difficult a task is and their associated motivations.

Many fluency studies have used changes in typeface or weight – often loosely referred to in research as ‘font manipulation’ (Alter and Oppenheimer, 2009, p. 222) – as an indicator of fluent and disfluent conditions (e.g. Oppenheimer and Frank, 2008; Song and Schwarz, 2008a; 2008b; Diemand-Yauman et al., 2011; Manley, et al. 2015). Changing the font is regarded as an easy way to manipulate fluency (Alter and Oppenheimer, 2009). However, it is possible that the distinctiveness of some ‘disfluent’ typefaces may be a confound in some of these studies (Rummet, et al. 2016).

In contrast, and taking on board criticisms of fluency research using typographic variables (e.g. Black, 2011; Luna, 2011), our study keeps the typeface consistent and instead manipulates a defined set of typesetting attributes (including character spacing, line length and alignment) as an indicator of fluent (legible) and disfluent (less legible) conditions. Typographic practitioners consider spacing to be one of the most essential factors that affects the legibility of how a text is typeset and argue the importance of considering the relationships between typographic attributes such as size, line length and interline spacing (‘leading’) in relation to legibility (e.g. Schriver, 1997; Baines and Haslam, 2005; Brinborhurst, 2016).

There is also a substantial body of research that shows how typesetting attributes influence ease of reading and comprehension (e.g. Dyson, 2004, 2005; Dyson and Haselgrove, 2001; Yi et al., 2011; Lonsdale, 2014). More specifically, research has found that tighter than standard character spacing reduces reading speed (Chung, 2002; Yu, Cheung, Legge and Chung, 2007). This is referred to as ‘crowding’ where adjacent letters jumble the appearance and make letters less visible. The number of characters per line affects the legibility of print. Lonsdale (2014) notes that there is general agreement from both a number of studies and practitioners that lines should not exceed about 70 characters per line. Research exploring line length on older screen technologies has produced mixed results but a line length of around 55 characters seems to optimize reading speed and comprehension (Dyson, 2005). The few studies which have looked at text alignment, justified versus unjustified (ragged right) text setting, have not found differences in reading speed for proficient readers. However, justified setting may introduce inconsistent spacing between words (‘y-ers’) which may be aesthetically less pleasing (Dowding, 1966; Larson, et al., 2006). These typesetting attributes might therefore be considered an appropriate means of manipulating fluency, creating different levels of text legibility.

Another factor that is regarded as a key consideration in fluency research is familiarity (Alter and Oppenheimer, 2008; Song and Schwarz, 2010). Accordingly, our study also considers whether the participants’ preferences and prior experience with eInk displays may affect fluency and hence recall.

3 Methods

3.1 Objectives

The primary objectives of our study are to compare (1) the effectiveness of reading from eInk and paper in relation to reading speed and recall and (2) the effect of typographic quality on reading speed and recall for each of these mediums. In addition, our study considers participants’ preferences and prior experience with eInk displays to contextualise the findings.
3.2 Research design

3.2.1 Participants

At the outset of the study, two preliminary studies with 11 participants were conducted to inform decisions about the material design. Forty volunteers participated in the main study. All participants had English as their first language to minimize the effects of variations in language familiarity (cf. Yi et al., 2011).

3.2.2 Preliminary studies

The content selected for the study comprised four expository texts (i.e. suitable for textbook content) that provide an introductory overview of a topic and accompanying questions.

In the first preliminary study, a multiple-choice questionnaire covering questions on the factual content of the extract was used to establish which of these sample texts could be considered reasonably equivalent, and therefore used in the study. Extract A was discarded as it received a considerably higher percentage of correct answers than the other sample texts. Participants performed most consistently across Extracts B and D so these were adopted for the comparative tests in the main study. Extract C was adopted as the material for the user preference task in the main study. The three extracts were between 600 and 645 words in length and based on Jeremy Bentham (Everett, 1969); The Times newspaper (Encyclopaedia Britannica, 1998); Crystal Palace and the Great Exhibition (Hobhouse, 2002). The texts were written to ensure consistency of style and complexity.

The second preliminary study examined user preferences in order to specify an appropriate (‘comfortable’) type size that could be used for the eInk display materials. Participants were shown a sample of text on a Kindle in four different type sizes (sizes 2–5) selected from the eight Kindle preset sizes defined by the sample device using a normative range of sizes for reading continuous text (see Figure 1). Participants were instructed to hold the device at a comfortable reading distance and indicate their preferred sample size. The most frequently chosen option (size 4 – which can be considered reasonably equivalent to 14pt) was adopted for the eInk display materials developed for the study.

Both paper and digital materials were used for the main study. An Amazon Kindle was used for the digital displays in the study because it is the device participants were most likely to be familiar with. The Kindle Voyage, the most recent model at the time the testing was carried out, was chosen based on its screen resolution of 300dpi – equivalent in rendering quality to that of the laser printed type on the paper materials. The paper text sample was printed on a laser printer at 300dpi on standard 80gsm paper.

Both conditions were presented using standard, ‘everyday’ document formats that would realistically conform to participants’ expectations for that particular medium. The paper samples were presented on an A4 sheet of paper – the UK standard for single-sheet documents and learning handouts. The Kindle has a six-inch screen. However, trimming the paper samples to this size for the paper-based samples could seem unconventional as this size would be much smaller than the majority of printed textbooks and educational handouts that the participants would be accustomed to. Participants were not permitted to adjust the display settings on the digital displays.

All content was typeset in Caecilia (specifically PMN Caecilia for paper and the optimized digital version of Caecilia for Kindle). This typeface is natively supported on the Kindle and so is optimised for the display device. It also renders well in print and has a good legibility due to its moderately large x-height and low contrast in stroke thickness. Using a single typeface at a normative body text size for each medium ensured that typeface and size were systematically controlled in relation to legibility.

It was considered extremely important to not simply have the exact same typographic treatments across the mediums. This would have caused both of the mediums to have sub-optimal typography and so would have been an unnecessary compromise. Suitable typography for each of the specific mediums was therefore used to create a fluent condition for each medium, which was then manipulated in reasonably equivalent ways to create the disfluent conditions. This approach has a precedent in legibility research: Poulton (1967) left the decision to a typographic designer to determine the optimal setting when deciding what size of lower case letters to compare with capitals.

The fluent settings for paper were determined first. Drawing on typographic guidance for normative or ‘good’ typography from Baines and Haslam (2005), fluent materials were typeset as left-aligned with no adjustments to the default character spacing. The body text was set at 9.5pt on 13pt leading. A column measure of 350pt ensured that the average number of characters per line was within the recommended average (~70 characters). The texts were edited to ensure that they fitted on a single page.

For the digital fluent condition, the text was also left-aligned.
with no adjustments to character spacing. Drawing on our preliminary findings, the text was typeset at size 4 with the leading at 130% (a slight adjustment of the default settings). As users would expect to scroll when reading a Kindle, we allowed for this to happen. Forcing the text to fit on a single screen would have substantially compromised legibility and/or reduced the amount of text the participants could read for the recall task. The average number of characters per line was 45.

Materials in the disfluent condition were justified (to create inconsistencies in word spacing), typeset with reduced (‘tighter’) character spacing (paper: -0.120 em; eInk: -0.162 em) and increased (‘looser’) interline spacing (paper: 22.75pt; eInk: 230%). For the character spacing, em spacing was used to achieve proportionate adjustments for the different typesizes and then adjusted for optical equivalence. The disfluent materials were also presented with smaller margins and therefore a substantially longer line length (paper: between 100 and 120 characters per line; eInk: approximately 80 characters per line – the maximum we could increase without substantially compromising legibility through reducing the character spacing or needing to reduce the character spacing further in the paper condition).

The samples were created in HTML and CSS, and then formatted to the ACZ3 file type. This file type is native to the Kindle and allows for slightly more control in relation to interline spacing and character spacing. This was important to ensure that as far as possible the Kindle did not automatically overwrite the specifications applied to the disfluent condition. For example, it was impossible to substantially reduce the interline spacing for the disfluent condition as the Kindle had a particular range of acceptable measures it would use.

Figures 2–5 show the fluent and disfluent conditions for eInk and paper using one of the extracts (A brief history of The Times). Four variations of each of the two extracts (B/D) were developed so that the combination of content (Extract B/D), device (digital/paper) and typographic quality (fluent/disfluent) could be balanced across the study. The conditions for paper in both fluent and disfluent conditions were also applied to Extract C – to create an alternate set of materials which could be used to ask participants about their preferences.

3.3.4 Procedure – main study

The main study used a between-subject design such that each participant read and answered factual questions in only one condition. There were three stages. In stage 1, participants were shown and asked to read one of the sample variants (e.g. paper/eInk and fluent/disfluent) at their comfortable/natural pace. Their reading time was recorded (rather than restricted – cf. Diemand et al., 2011) to provide two measures of the potential effects of disfluency and provide richer data on the effectiveness of reading. In stage
2, following Noyes and Garland (2003) who recommend a delay between reading and testing of recall, participants were asked to complete a short questionnaire. The questionnaire asked participants to indicate:

- How much previous experience they had with an eInk screen (such as a Kindle or similar device) in relation to four options (None / Very Occasionally / Fairly Frequently / Regularly)
- Their preferences (A / B) using a paired comparison procedure which paired together each of the four variations of the Extract C so that every possible combination was shown (six pairs). The order of presentation was randomized across the study to minimize interference from order effects. After indicating their paired preferences, participants were asked to state if they felt they had a preference for either eInk or paper.

In stage 3, participants completed a questionnaire with 10 multiple-choice factual questions based on the text they had read in stage 1. Participants were not permitted to view the original material whilst answering the questions. No time limit was specified, allowing participants to take as long as they needed to recall the content and fill out the question paper.

Results

Table 1 summarises the average reading times in seconds (stage 1) and accuracy of recall (number of correct answers in stage 3) for each condition with SDs in parentheses.

<table>
<thead>
<tr>
<th></th>
<th>Fluent</th>
<th>Disfluent</th>
<th>Fluent + disfluent</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Reading times (secs)</td>
<td>Accuracy of recall</td>
<td>Reading times</td>
</tr>
<tr>
<td>eInk</td>
<td>192.40 (23.76)</td>
<td>7.30 (0.67)</td>
<td>212.80 (25.46)</td>
</tr>
<tr>
<td>Paper</td>
<td>180.30 (27.98)</td>
<td>3.90 (1.29)</td>
<td>200.80 (32.82)</td>
</tr>
<tr>
<td>eInk + paper</td>
<td>186.35 (26.02)</td>
<td>5.60 (2.01)</td>
<td>206.80 (29.24)</td>
</tr>
</tbody>
</table>

A two-way analysis of variance of reading times found a main effect of typographic quality with faster times for fluent material ($F(1,36) = 5.44, p = 0.025$). This was consistent across eInk and paper (Figure 6). There is no main effect of medium ($F(1,36) = 1.89, p = 0.178$): reading times were similar for eInk and paper.

For accuracy of recall, there were no main effects but we found a significant interaction between medium and typographic quality: $F(1,36) = 38.51, p<0.001$. Figure 7 illustrates that recall is better for fluent material when reading an eInk display but this effect is reversed when reading from paper. Although disfluent material was read more slowly from both eInk and paper, recall was affected in different ways.

In stage 2, 65% of participants reported having either ‘Never’ (18) or ‘Very Occasionally’ (8) used an eInk device. As shown in Table 2, there was no clear correlation between age and prior experience with eInk – although it may be that this is related to the relatively small number of participants and some unevenness in the age groups represented.
eInk versus paper: Visible Language

Table 2

Table 3 compares eInk experience with recall, combining the four options on the questionnaire into two to increase the number of participants in each cell. As participants having prior experience with eInk are spread unevenly across the four conditions, it is difficult to draw any reliable conclusions concerning the relationship between experience and recall across the two mediums. However, participants who were reading the eInk fluent material seemed not to be affected by their experience (or lack thereof) with an eInk screen. Whereas the previous (reported) experience with an eInk screen of those who had to read the eInk disfluent material, may have had an influence. With harder-to-read material, lack of experience was detrimental compared with more experience. Interestingly, reported experience with eInk seemed to have a similar effect on reading from paper, although the high level of recall for the paper disfluent condition with more frequent experience with eInk is based on only one participant.

Table 3

Table 4

The paired comparison data (Table 4) shows that participants selected examples in the fluent condition more frequently than those in the disfluent condition (eInk 98:26; paper 84:32). This suggests that participants prefer good typography regardless of medium. Although the difference in the ratios in the two mediums is small, eInk does have a greater disparity between fluent and disfluent. This hints at the perception of a slightly greater difference in typographic quality on eInk.

When questioned directly on preference, 15 participants expressed a preference for eInk, 12 for paper and 13 indicated no preference. In comparison to other studies of preference (e.g. Gibson and Gibb, 2011; Shepperd et al., 2008), it is perhaps surprising that eInk was preferred more times than paper, but this might reflect participant’s familiarity with eInk.

Table 5 compares the number of participants expressing preferences according to their experience of eInk. As might be expected, those who are more familiar with eInk are also more likely to express a preference for this medium.

Table 5

Discussion and implications

Similar to the findings from Diemand et al.’s (2011) study, higher recall was recorded for the disfluent paper condition. When reading from paper, the greater effort in the disfluent condition (together with a slower reading speed) may have facilitated recall. However, the same effect was not observed for eInk, with disfluent typography decreasing the accuracy of recall. Despite taking longer to read the eInk disfluent typography examples, participants were not able to recall as much as those who read the fluent condition. There are a number of possible explanations for these discrepant results for paper and eInk. For example:

- Participants may have considered the Kindle device to have more novelty and therefore shown a different level of motivation towards the task
- Different levels of confidence related to participants’ relative familiarity with the device may have influenced the way they engaged with the task
- Participants may have different expectations of typographic quality for paper and eInk devices
- Digital and printed texts may have different affordances (Campbell, et al., 2013; Thayer et al., 2011)
Possible better legibility of eInk fluent condition based on paired comparisons data and Siegenthaler et al., (2011, p. 272).

By aiming to optimize the layout for each medium, different typographic presentations were used which may have resulted in varying levels of legibility between paper and eInk (particularly where very tight character spacing may reduce legibility). However, these differences might have been greater if no account were taken of the medium. Although eInk more closely resembles paper than older technologies, print legibility results do not necessarily transfer to screen (Dyson, 2005). The reading speed results across paper and eInk suggest that there may be a similar difference between the fluent and disfluent condition in the levels of legibility on paper and eInk, taking reading speed as a measure of legibility. As participants were not restricted in their reading times (unlike in Diemand et al., 2011), there is the potential for participants to trade off speed of reading and accuracy of recall.

With eInk, the reduction in the amount recalled in the disfluent condition, even when this is read slower, may be due to too much effort going into processing the text (i.e. exceeding the additional cognitive load that is supposed to help), at the expense of learning or understanding or memorizing the content. The less legible text reduced reading speed and was recalled less accurately, so there was no trade-off. This explanation of too great a load seems plausible when considering the likely interplay between recall and familiarity (Table 3). This reinforces the importance of considering issues of conventionality and familiarity when comparing paper and digital displays. It is important to ensure that the results are not distorted by a user’s relative familiarity with the device used for testing or their perceived level of confidence or motivation to engage with the materials being tested in a particular condition (cf. Alter and Oppenheimer, 2008; Song and Schwarz, 2010). The overall results for paper are consistent with a trade-off as faster reading of the fluent, more legible text, was at the expense of accurate recall. In this case, greater familiarity with paper may have encouraged less engagement.

The different pattern of results for paper and eInk has been found in a study looking at mathematics problems rather than reading continuous texts (Sidi et al., 2016). This study obtained results that mirror our own: i.e. they found no differences in performance between screen and print but did observe differences between the typographic conditions. In particular, Sidi et al. found that on screen the problems set in the less legible or less fluent typographic condition resulted in better performance. On paper, they found the reverse: a higher success rate in solving the problems when the font is legible. Our study and the Sidi et al. study therefore both have results in different directions for screen and paper but with the mathematical problems, the results for paper are in line with what we would predict from legibility research. Although Sidi et al.'s study does not explain what is mediating these results, it does indicate that the characteristics of the material (e.g. the medium) can influence the results. This argues for much more subtlety in exploring the precise conditions under which legible texts may appear to disadvantage recall or comprehension.

The better recall with more fluent or legible eInk materials provides strong grounds to extend research into the impact of typographic presentation on reading and learning. This result confirms typographers’ practice in prioritizing legibility and designing material to support, rather than hinder, ease of reading. Building on research that suggests a reduction in comprehension at faster reading speeds (e.g. Poulton, 1958; Dyson and Haselgrove, 2001) and other aspects of typographic presentation that can aid or hinder reading (e.g. Yi et al., 2011), it is important to consider how typographic presentation can contribute to slowing readers down without adding to cognitive load to the extent that this has a detrimental effect on learning. The difficulty with disfluent material also questions whether it is advisable to require readers to put more effort into deciphering text of poor typographic quality, even if recall is improved when reading from paper. Any positive effect may be offset by greater fatigue or irritation and we do not yet know whether reading for extended periods of time also shows gains for disfluent conditions. Given the higher recall for fluent eInk material, we should question the implications of recommending reducing the typographic quality of paper documents.

Engaging with learning materials requires a range of engagement strategies, particularly as instructional texts usually include a variety of different forms of text and images (continuous text, lists, tables, numerical data, graphs, illustrations, etc.). Currently, commercially available eReaders do not have colour displays. As well as restricting the display of images, this also limits the way in which structural and other visual cues are signaled to support reading. Accordingly, typographic presentation may play a particular role in helping readers determine the structure and organization of information, decide how to engage with information and also enable the ways in which they locate information. This is particularly important in relation to materiality and the absence of physical cues in comparison to printed books (Loveless and Southall, 1983; Waller, 1986; Dillon, 1992; Van der Weel, 2011; Campbell et al., 2013; Flood, 2014; Mangen and Kuiken, 2014; Mangen, 2017). As Mangen (2017) has argued, there is considerable scope for research that explores the ergonomic affordances of digital devices. Furthermore, we would add, that ways in which typographic presentation can support reading processes through navigation and structural cues should be investigated more fully. These issues are particularly important to consider further as new user interfaces and navigational styles are being developed for eReaders (see: Kozlowski, 2012).

The results show that changes between paper and eInk, combined with varying the level of typographic fluency, does affect...
learning-related tasks like recall. The results of this study suggest that eInk can be beneficial to recall particularly when paired with good typographic presentation and if users have prior experience of the medium.

Overall, the study provides some grounds to consider that eInk readers could be an appropriate alternative platform to consider for educational use, particularly when information is displayed at a good standard of typographic quality. It also raises some interesting considerations for the design and control of typographic test materials through engaging with how norms for ‘good and bad’ typography may translate across different mediums rather than reproducing equivalent measures that may not be appropriate for all outputs.

Acknowledgements

The research conducted in this study was conducted as part of an undergraduate dissertation at the University of Reading. The study had ethical approval from the University.

References

Song, H., and Schwarz, N. (2010). If it’s easy to read, it’s easy to do, pretty, good, and true. The Psychologist, 23(2), 108–111.

Waller, R. (1986). What electronic books will have to be better than. Information Design Journal, 5(1), 72–75.

Author
Peter Loveland is a graduate of the Department of Typography & Graphic Communication at the University of Reading (UK). He now works as a software designer for IBM. This paper is based on his undergraduate dissertation research conducted at the University of Reading, which was supervised by Dr. Mary Dyson and has been developed for publication with Dr. Jeanne-Louise Moys.