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ABSTRACT 

The purpose of this project was to provide a preliminary understanding of challenges 

and opportunities for forecast-informed reservoir operations (FIRO) along the Truckee River 

by 1) quantifying relationships between atmospheric river water vapor transport (AR IVT) 

above the Truckee River basin and observed reservoir storage changes and 2) assessing 

streamflow forecast skill. Reservoir storage changes linearly with AR IVT, with some storms 

classified as “Extreme”, according to the Atmospheric River (AR) Scale, resulting in storage 

changes of >1/3 total capacity at three of six reservoirs during 1980-2017. Of the annual peak 

flows that occurred during ARs, all occurred during storms classified on the AR scale as 

“Moderate” or greater. Based on available (2015-2020) deterministic and ensemble 

streamflow forecast data, considerable improvement in accuracy is observed starting at a  

7-day lead. During high-flow events, ensemble forecasts exhibit a bias toward 

underprediction and under-dispersion. For these events deterministic forecasts show superior 

accuracy relative to the ensemble median but, on average, still under-forecast flows by  

15 percent and 35 percent, at 1- and 4-day leads, respectively. Results presented here are a 

first step in assessing AR-reservoir relationships and forecast skill for the Truckee River 

Basin. Understanding the relative contributions of storm characteristics and antecedent 

conditions to streamflow responses and to uncertainties and biases of hydrologic forecasts are 

important next steps.  
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INTRODUCTION 

Reservoir operations in the Truckee River basin were designed based on the historical 

flow regime to achieve a balance between maximizing water supply and delivery for a diversity 

of water uses, while also minimizing flood risks. Over the past few decades, and especially the 

past few years, current operational rules as codified in the USACE Water Control Manual have 

proven constraining under extreme precipitation variability and warmer temperatures, which 

have shifted runoff to earlier in the season when reservoirs cannot accommodate or capture these 

flows because storage space is allocated to minimize flood risks (US. Department of Interior, 

2019). Moreover, climate change projections consistently indicate warming temperatures that 

will significantly affect rain-snow ratios, likely resulting in a transition to more consistently 

earlier runoff regimes that current infrastructure and operational rules were not designed for. 

Earlier capture of streamflow in reservoirs has the potential to increase water supplies (Sterle et 

al., 2020), but this may come at the cost of increased flood risks. A forecast-informed reservoir 

operations strategy (FIRO) has the potential to mitigate against these risks, but its effectiveness 

is, in part, contingent on the ability to reliably forecast flood events, in particular. In the Truckee 

River basin, both water supply and floods are strongly linked to wintertime atmospheric rivers 

(Figure 1) but despite improvements in forecasting these events at long lead times, the timing 

and amount of spillover precipitation onto the lee side of the Sierra Nevada remains a key 

uncertainty. In addition, storm runoff volumes in the Truckee basin are highly sensitive to rain-

snow elevation, which is also difficult to forecast. Finally, antecedent snowpack and soil 

conditions have the potential to modulate runoff volumes but factors controlling the strength of 

these modulations are incompletely understood and monitored.  

 

 

Figure 1. Atmospheric Rivers and Truckee River floods. The majority of annual peak flows during 

1948-2022 occurred during atmospheric river events. All flood flows occurred during 

atmospheric rivers in the Oct-Feb time period, as did the majority of flows above Action 

stage. Peak flow values are based on USGS data. AR occurrences prior to 1980 are based 

on Gershunov et al., 2017. Flood categories are based on stage-discharge relationships 

used by National Weather Service, current as of May 2023. 

https://water.weather.gov/ahps2/hydrograph.php?wfo=rev&gage=trrn2&hydro_type=2
https://water.weather.gov/ahps2/hydrograph.php?wfo=rev&gage=trrn2&hydro_type=2
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There are two objectives of this study. The first is to assess linkages between ARs and 

reservoir storage to better understand the conditions under which AR-driven flooding occurs in 

the Truckee River basin. The second is to conduct an assessment of streamflow forecast skill in 

the Truckee River over a 5-year period (2015-2019) to provide a preliminary understanding of 

potential forecast-related challenges and opportunities for FIRO.  

METHODS 

STUDY AREA 

The Truckee River originates at 2700 m elevation on the eastern slope of the Sierra 

Nevada Mountain range and flows 195 km northeastward through the cities of Reno and Sparks 

to its eventual terminus at Pyramid Lake (Figure 2). A large proportion of streamflow originates 

in the winter from snowpack and precipitation in the upper 25 percent of the basin in California, 

while the majority of water demand occurs within the lower part of the basin in the state of 

Nevada (U.S. Bureau of Reclamation (USBR), 2016). The Truckee River is a highly managed 

system that includes three dammed natural lakes that serve as water supply reservoirs (Lake 

Tahoe, Donner Lake, and Independence Lake) and four additional flood control reservoirs 

(Stampede, Boca, Prosser Creek, and Martis Creek) with fixed-date operations in accordance 

with U.S. Army Corps of Engineers flood control criteria. Diverse uses of Truckee River water 

supplies include municipal, industrial, agricultural, and environmental instream flows. 

 

 

Figure 2. Truckee River Basin Study Area 
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METHODS 

Reservoir Storage and Atmospheric River Relationships 

To assess relationships between reservoir storage and ARs, a chronology of multi-day 

AR events from 1980 – 2017 at the 39.5 N and 120 W latitude and longitude grid cell (roughly 

centered on Verdi, NV) were identified using the Rutz AR detection algorithm (Rutz et al., 2015) 

on the Modern-Era Retrospective Analysis for Research and Applications, Version 2 dataset 

(MERRA-2; Gelaro & Coauthors, 2017) and methods described in Albano et al., 2020. A total of 

185 events were identified. A subset of 27 events were selected based on a storm total integrated 

water vapor transport (IVT) threshold of IVT > 4 x 107 kg/m, which equates to a ‘moderate’ AR 

event with an average IVT of ~500 kg/m/s over a duration of 24 hours (Ralph et al., 2019). 

Storm total IVT is used because it provides a measure of both the magnitude and duration of the 

AR event (Ralph et al., 2019), it tends to scale linearly with precipitation (Rutz et al., 2014), and 

because IVT can be more predictably forecasted than precipitation at week or longer lead times 

(Lavers et al., 2016). The difference between reservoir storage at the start and end of each event 

was calculated based on USGS streamflow gage data to assess change in reservoir storage 

associated with each event and these changes were compared to storm total IVT to determine the 

relationship. Causes for differences in flood amounts were further investigated using long-term 

SNOpack TELemetry (SNOTEL) weather station data. 

Assessment of Wintertime Streamflow Forecast Skill 

To assess streamflow forecast skill, readily available forecast data were compared to 

observed flows for winter months (Oct-Apr) for water years 2015-2020. Forecast data from the 

National Weather Service California-Nevada River Forecast Center (CNRFC) were compiled for 

the 12 sites shown in Table 1. Two types of forecast data were used, including 1) the 6-hour 

deterministic forecast, which predicts streamflow out to 5 day lead times (only available for a 

subset of sites – see Table 1), and 2)  the short-range hourly Hydrologic Ensemble Forecast 

System (HEFS; https://cnrfc.noaa.gov/documentation/hefsAtCnrfc.pdf ) streamflow predictions 

from the California-Nevada River Forecast Center (CNRFC; 

https://www.cnrfc.noaa.gov/ensembleHourlyProductCSV.php; accessed May 2020), which 

include hourly streamflow forecasts with lead times up to 30 days. Both sets of forecasts are 

produced using a coupling of the Sacramento Soil Moisture Accounting Model (SAC-SMA; 

Burnash et al., 1973) and the Snow Accumulation and Ablation Model (SNOW-17;Anderson 

1973) model and are initiated with the same initial model states. The ensemble forecasts, HEFS, 

provide an uncertainty range based on 60 or more individual forecasts with differing future 

conditions. At the longest lead times, the ensemble forecasts are based on historical climatology. 

At shorter lead times, they integrate and weight information from other RFC forecasts and 

forecast products such as the Global Ensemble Forecast System (GEFS). More specifically, 

uncertainty and skill from the deterministic RFC quantitative precipitation forecasts are used for 

1- to 3-day lead times and the GEFS mean precipitation uncertainty is used thereafter. Forecast 

data were aggregated from hourly/six-hourly time steps to daily averages. Prior to doing so, the 

time conversion from GMT to Pacific Time Zone was applied to ensure that forecast data 

coincided as closely as possible with daily streamflow and reservoir storage change observations.  

https://cnrfc.noaa.gov/documentation/hefsAtCnrfc.pdf
https://www.cnrfc.noaa.gov/ensembleHourlyProductCSV.php
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Table 1. List of California-Nevada River Forecast Center (CNRFC) points assessed (see Figure 2). 

Highlighted rows indicate focal points for which results are presented in this report. Sites 

indicated by * are those for which deterministic forecasts were available. 

CNRFC Code CNRFC Site Name CNRFC Data Type 

BCAC1F Little Truckee - Boca Dam, Natural Flow Reservoir Inflow 

DNRC1I Donner Lake Reservoir Inflow 

*FARC1F Truckee – Farad, Natural Flow Forecast Point 

ILAC1I Independence Lake Reservoir Inflow 

MTSC1I Martis Creek Reservoir Inflow 

*PSRC1 Prosser Creek - Prosser Creek Dam Reservoir Inflow 

SCRN2 Steamboat Creek - Steamboat Other Point 

SGNC1 Sagehen Creek - Truckee Other Point 

*STPC1F Little Truckee - Stampede Dam, Natural Flow Reservoir Inflow 

TAHC1 Lake Tahoe Reservoir Inflow 

TRCC1 Truckee near Truckee Forecast Point 

TRRN2 Truckee at Reno Forecast Point 

 

Observational data of reservoir storage change and outflow were obtained for eight sites 

from the CNRFC. These are the same data that are used to calibrate the streamflow forecast 

model and originate from the Truckee River Operating Agreement information system monthly 

Water Master Reports (https://www.troa.net/reports/mwmr/ ; viewed May 15, 2020), which 

incorporate modeled estimates of reservoir evaporation. Reservoir inflows were calculated as 

change in storage plus outflow based on equations found here: 

http://www.troa.net/tis/details.html#160040 (viewed May 15, 2020). Daily flow data for the 

other four sites: Steamboat Creek (10349300), Sagehen Creek (10343500), Truckee near 

Truckee (10338000), and Truckee at Reno (10348000) were obtained from the USGS NWIS 

system. 

Several metrics of forecast skill were calculated based on comparisons of the forecast and 

observed daily and aggregated multi-day (e.g., 3-day volumes, centered on the forecast lead 

time) flow data. Because FIRO viability may rely most heavily on forecast skill during AR days 

when the highest flows occur, data were subset into 3 groups in order to assess differences in 

forecast skill among non-AR days, AR days when daily flows were in the top 10 percentile based 

on the 1980-2019 time period, and other AR days when flows were not in the top 10 percent. For 

each of the three subsets, metrics of forecast accuracy and multiplicative bias (see below) were 

calculated for both the deterministic and the ensemble median forecasts at multiple lead times. In 

addition, a rank histogram analysis was completed for the three subsets to qualitatively assess the 

reliability of the forecast ensemble at varying lead times. To further explore forecast skill for 

storm and non-storm flows, hit rates, false alarm rates, the Critical Stress Index and frequency 

bias were calculated for 3-day flows greater than the 1980-2019 90th percentile (i.e., top 10% 

flow events) and less than the 50th percentile (i.e., non-storm flows). All metrics were calculated 

using the Verification package in R (Gilleland, 2015) and are described below. Additional 

information on these and other potential metrics is available at 

https://www.cawcr.gov.au/projects/verification/ (viewed October 29, 2020) 

https://www.troa.net/reports/mwmr/
http://www.troa.net/tis/details.html#160040
https://www.cawcr.gov.au/projects/verification/
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Coefficient of determination (R2) between observed and forecasted flow - the proportion 

of variance in observed 3-day flow volumes that is explained by forecasted flow. This was 

calculated for the three subsets of days - > top 10 percent Flow AR days, other AR days, non-AR 

days.  

Multiplicative bias (M.Bias) between observed and forecasted 3-day flow volumes – the 

ratio of average forecast magnitude to average observed magnitude. M.Bias > 1 indicates 

forecasted flow magnitudes are greater than observed, M.Bias=1 indicates no bias, M.Bias < 1 

indicates forecasted flow magnitudes are less than observed. This was calculated for the three 

subsets of days - top 10 percent Flow AR days, other AR days, non-AR days.  

Rank histograms of observed 3-day flows relative to ensemble members – visualizes the 

frequencies with which observed 3-day flows fall at a given rank relative to a 59-member 

forecast ensemble. A uniform distribution of frequencies (flat histogram) indicates good forecast 

reliability. Higher frequencies at low ranks (right skew) indicate an overprediction bias, while 

higher frequencies at high ranks (left skew) indicate an underprediction bias. A U-shaped 

distribution indicates that the forecast ensemble is under-dispersed, while a hump-shaped 

distribution indicates overdispersion. Rank histograms were developed for top 10 percent Flow 

AR and Other AR days. 

Hit rate for flows > 90th percentile and < 50th percentile- the proportion of 3-day flow 

occurrences greater than the 90th percentile or less than the 50th percentile that were correctly 

forecasted to be greater than the 90th percentile. Ranges from 0 (no skill) to 1 (perfect skill). 

False alarm rate for flows > 90th percentile and < 50th percentile - the proportion of  

3-day flow occurrences less than the 90th percentile that were incorrectly forecasted to be greater 

than the 90th percentile. Ranges from 0 (perfect skill) to 1 (no skill). 

Critical Success Index (CSI) for flows > 90th percentile and < 50th percentile – the 

proportion of 3-day flow occurrences greater than the 90th percentile or less than the 50th 

percentile that were correctly forecasted (this metric is similar to the hit rate but includes a 

penalty based on the false alarm rate). Ranges from 0 (no skill) to 1 (perfect skill). 

Frequency Bias (F.Bias) for flows > 90th percentile and < 50th percentile – the ratio of 

the frequency of forecasted flows greater than the 90th percentile or less than the 50th percentile 

to the observed frequency. F.Bias > 1 indicates over-forecast, F.Bias=1 indicates no bias, F.Bias 

< 1 indicates under-forecast. 

For the sake of efficiency, results are presented here for only a subset of sites (See Table 

2), which were selected to represent a range of contributing area sizes and elevation distributions 

(Figure 2), including a large flow volume, high elevation site (Tahoe), a small flow volume high 

elevation site (Sagehen Creek), two flood control sites (Prosser and Stampede), and a 

downstream ‘integrator’ site (Truckee River at Farad) where flows are an important determinant 

of operational decisions and water rights distributions for the entire Truckee and Carson River 

systems. 
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RESULTS AND DISCUSSION 

Reservoir Storage and Atmospheric River Relationships 

The relationships between AR storm total IVT and reservoir storage changes are 

generally linear, with each reservoir having a different IVT threshold at which storage increases 

by 1/3 capacity (Figure 3). Three of six reservoirs analyzed exceeded this threshold at least once, 

including Donner, Prosser, and Boca. In these cases, the thresholds based on the linear regression 

were 11, 12.5, and 19 x 107 kg/m, respectively.  Several outlier AR events, for which little 

storage change occurred despite large IVT amounts appeared to be due to relatively lower 

precipitation efficiencies (i.e., Precipitation: IVT; Figure 4 – orange shaded box), which could be 

driven by a number of different factors related to rain shadowing, the vertical distributions of 

wind and water vapor within the AR, or the approach angle of the AR, which affects the amount 

of uplift and consequently precipitation production (Dettinger et al., 2019). These outliers also 

occurred during the early season (October 2016 and November 1996) when soils tend to be drier, 

which can also reduce runoff efficiencies. 

 

 

Figure 3. Linear relationships between storm total IVT and changes in reservoir storage in six 

reservoirs along the Truckee River for the 27 largest IVT storms between 1980 and 

2017. Circled points indicate outlier storms with smaller changes in storage than 

expected given IVT amounts. Vertical lines indicate the IVT threshold at which change 

in storage is greater than or equal to 1/3 of the storage capacity. Note that this threshold 

is not reached in Independence, Stampede, and Tahoe. See Figure 2 for locations. 
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Figure 4. Precipitation in relation to AR storm-total IVT (a) and Precipitation (blue bars) and 

storm duration (orange dots) in relation to AR storm-total IVT (b). Low precipitation 

efficiency outlier storms highlighted in Figure 3 are indicated by purple points (a) and 

text (b). Black points (a) and text and gray shading (b) indicates water years in which 

annual peak flows resulted from AR storms. Red points (a) and text (b) indicates those 

AR storms that resulted in exceedance of flood stage at the Truckee at Reno gage. 
 

Of the 27 storms, four of these resulted in annual peak flows at the Truckee at Reno 

stream gage that were near flood stage, including storms occurring on 2/17/1986, 1/2/1997, 

12/31/2005, and 1/9/2017 (Table 2, Figure 4). Other storms which resulted in annual peak flows 

that did not cause flooding occurred in 1982, 2014, and 2015 (Figure 4). Overall, no storms with 

less than 6.59 x 107 kg/m storm total IVT caused an exceedance in flood stage at the Truckee at 

Reno gage. The linear least squares regression R2 between storm total IVT and precipitation was 

0.6, indicating a strong linear relationship (Figure 4a), and storms that produced annual peak 

flows tended to have larger precipitation amounts than expected based on this relationship.  
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Table 2. Annual peak flood volumes for four AR-induced flooding events and antecedent 

reservoir conditions.  

 Peak Flood 

Volume - 

Truckee @ 

Reno (cfs) 

Reservoir % of Maximum Capacity 1- week prior to AR Event 

Event Date Tahoe Donner Prosser Independence Stampede Boca 

1/9/2017 12,800 36 57 30 80 50 36 

2/17/1986 14,400 76    54 57 

12/31/2005 16,400 49 55 40 90 80 60 

1/2/1997 18,200 90 44 32 84 90 47 

 

Assessment of one-week prior reservoir conditions for the four flood-stage storms indicate 

greater flood volumes are associated with greater antecedent reservoir storage volumes (as % of 

maximum capacity) in Tahoe and Stampede – the largest reservoirs, but no relation is observed 

for other reservoirs (Table 2). Assessment of snowpack conditions three days prior to each event 

also indicate relations with flood volumes, with decreases in snow-water equivalent (SWE) 

observed at some or most SNOTEL stations prior to the two largest flow events (12/31/2005 and 

1/2/1997), indicating snowmelt contributions to runoff in these cases and mostly increases in 

SWE observed for the other two smaller flood events (Figure 5). 

Assessment of Winter Streamflow Forecast Skill 

Based on the coefficient of determination (R2 values) between observed and forecasted  

3-day flows (Figure 6, Table 3), forecast skill clearly improves as a function of shorter lead 

times.  This is especially the case for the top 10 percent (i.e., > 90th percentile) flow AR days 

where there is rapid improvement from virtually no skill at an 8-day lead time to an among-site 

average of 60 percent of the variation in the observed flows explained by the ensemble median 

forecast flow at a 1-day lead time. For the top 10 percent flow AR days, the deterministic 

forecast is consistently more skillful, explaining an among-site average of 75 percent variation 

between forecast and observed at a 1-day lead time. The poorer skill of the ensemble forecasts 

relative to the deterministic forecasts is due in part to the blending and weighting of short-range 

forecasts from the RFC and GEFS with climatology. Blending with climatology effectively and 

systematically dilutes the forecast magnitudes of large storms, particularly at longer lead times. 

Non-AR and Other AR days consistently have higher skill relative to the top 10 percent flow AR 

days and the deterministic and ensemble median forecast skills are more similar to each other in 

these cases.  

The multiplicative bias of the forecasts indicates underprediction of flow volumes during 

top 10 percent flow AR days (Table 3, Figure 7), with 3-day flow volumes averaging 30 percent 

greater than the ensemble median and 15 percent greater than the deterministic at a 1-day lead 

time. Forecasts are less biased on Non-AR and Other AR days and have a greater tendency 

toward overprediction than underprediction (Table 3). These biases are further illustrated by rank 

histograms, which provide an indication of how the magnitudes of observed flows compare to 

individual ensemble members. For the top 10 percent flow AR days at 1-day lead time, the  
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Figure 5. Change in snow water equivalent (SWE) 3 days prior to flood peaks for each of four 

flood-producing AR events. Warm colored dots indicate decreases in SWE during the 

storm event and blue dots indicate increases. 
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Figure 6. Average and range of R2 values between forecast and observed 3-day flow volumes as a 

function of forecast lead time for the ensemble median (5-sites) and deterministic (3-sites).  

 

 
Figure 7. Scatter plots of observed and forecasted 3-day flow volumes and best-fit linear regression 

lines for top 10% AR days for the deterministic (black dashed line) and ensemble median 

(colored dashed line) forecasts at a 1-day lead time. The gray line indicates the 1:1 line 

indicating perfect correspondence between forecasted and observed. In all cases, both best 

fit lines fall above the 1:1 line, indicating an underprediction bias. The deterministic best-fit 

line tends to fall closer to the 1:1 line, indicating less bias and higher accuracy. 
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Table 3. R2 between forecast and observed 3-day flow volumes at 1- and 4-day lead times for the 

ensemble median and deterministic forecasts at select sites and for subsets of AR days 

with 90th percentile or greater flow magnitudes, other AR days, and non-AR days. Green 

to red color ramps indicate high to low skill, respectively. The orange to blue color ramp 

indicates bias toward under- and over-forecasting flow magnitudes, respectively. 

  
R2 Multiplicative Bias 

 
Average 

Daily 

Flow 

(cfs) 

>90%tile 

AR Days 

Other AR 

Days 

Non-AR 

Days 

>90%tile 

AR Days 

Other AR 

Days 

Non-AR 

Days 

 Deterministic Deterministic 

Site 
1-

Day 

4-

Day 

1-

Day 

4-

Day 

1-

Day 

4-

Day 

1-

Day 

4-

Day 

1-

Day 

4-

Day 

1-

Day 

4-

Day 

Truckee-

Farad 
506 0.82 0.45 0.78 0.75 0.93 0.88 0.89 0.65 1.14 1.12 1.06 1.02 

Prosser 

Res. 
76 0.69 0.27 0.83 0.61 0.91 0.84 0.80 0.61 0.96 0.92 1.00 0.93 

Stampede 

Res. 
138 0.77 0.51 0.53 0.27 0.78 0.72 0.85 0.66 1.10 1.08 1.05 1.02 

 
 Ensemble Median Ensemble Median 

 

 1 

Day 

4-

Day 

1-

Day 

4-

Day 

1-

Day 

4-

Day 

1-

Day 

4-

Day 

1-

Day 

4-

Day 

1-

Day 

4-

Day 

Truckee- 

Farad 
506 0.62 0.20 0.85 0.58 0.92 0.84 0.68 0.47 1.12 1.09 1.03 0.94 

Prosser 

Res. 
76 0.55 0.14 0.78 0.52 0.90 0.81 0.70 0.46 0.97 0.90 0.96 0.85 

Stampede 

Res. 
138 0.63 0.30 0.43 0.26 0.77 0.67 0.75 0.54 0.97 0.99 0.99 0.98 

Sagehen 

Creek 
9.5 0.69 0.40 0.70 0.61 0.75 0.73 0.70 0.50 1.10 1.08 1.01 0.94 

Lake 

Tahoe 
156 0.53 0.17 0.71 0.47 0.93 0.77 0.70 0.42   1.07 0.96 

 

histograms are left skewed (Figure 8), meaning that the observed flows frequently rank higher 

than most ensemble members, which indicates underprediction bias. This bias increases at longer 

lead times (Figure 9) when the forecast is more heavily influenced by climatology. In the case of 

Other AR days (and non-AR days – not shown), the U-shape of the rank histograms is due to the 

observed flows more frequently ranking among the highest or lowest ensemble members, 

indicating that the ensemble is under-dispersed. For some sites (e.g., Sagehen, Tahoe, Truckee-

Farad), this under-dispersion tendency lessens at longer lead time. 

Binary metrics of forecast skill for the top 10 percent flow AR days indicate that about 

90 percent of the times a top 10 percent flow occurs, it is forecasted to be in the top 10 percent 

(hit rate) at a 1-day lead time in the case of the deterministic forecasts. In the case of the 

ensemble median, the hit rate is closer to 80 percent, on average across sites (Table 4, Figure 10). 

For longer lead times forecasted in the ensemble, hit rates start to improve at 8- to 11-day lead 

times, depending on the site, but are still unreliable with some sites only reaching a 50 percent 

hit rate at 4-6 days lead times (Figure 10). Hit rates tend to be lower in the upper basin sites  
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Figure 8. Rank histograms for top 10% flow and other AR days at a 1-day lead time for select 

sites. The bar heights indicate the frequency with which the observed 3-day flow falls at 

a given rank relative to the 59 ensemble members. A flat histogram would indicate 

perfect forecast reliability. The upward slope of the histograms from left to right for 

most sites on the top 10% flow AR days indicates that the observed flow tends to be 

higher than most ensemble members (i.e., the ensemble is biased toward 

underprediction). The U-shape of the histograms for some sites indicate under-

dispersion - meaning that the observed flows frequently fall outside of the ensemble 

range. This is more commonly the case for the lower flow AR days. 
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Figure 9. Rank histograms for top 10% flow and other AR days at longer five- and ten- day lead 

times for select sites. Relative to Figure 8 (1-day lead time), the underprediction bias 

increases (higher bar heights on the right) at longer lead times, especially for top 10% 

flow days but the under-dispersion of Other AR days tends to decrease (becomes less U-

shaped). See Figure 8 for additional explanation. 

 

(Tahoe, Prosser) and higher in the lower basin sites (Sagehen, Stampede, Truckee-Farad). False 

alarm rates are low across the board, indicating that when a top 10 percent flow is forecasted, it 

rarely turns out not to be one. The CSI integrates both hit rates and false alarm rates and given 

the uniformly low false alarm rates it mirrors the hit rate with improved –but still relatively poor 

- forecast skill observed at lead times of 8-11 days (Figure 11). Finally, the frequency bias – the 

ratio of the frequencies of top 10 percent flows observed to those predicted indicate the superior 

forecast skill of the deterministic model relative to the ensemble median at short lead times, with 

underprediction bias of the ensemble median increasing somewhat linearly at increasing lead times 

for most sites (Figure 12). 
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Table 4. Tabulation of forecast skill metrics at 1- and 4-day lead times for flows greater than the 

1980-2019 90th percentile. Green to red color ramps indicate high to low skill, 

respectively. The green to blue color ramp indicates bias toward under- and over-

forecasting the frequency of 90th percentile events, respectively. 

 
Hit Rate  

(Q> 90 

percentile) 

False Alarm 

Rate (Q> 90 

percentile) 

Critical 

Success Index 

(Q> 90 

percentile) 

Frequency Bias 

(Q> 90 

percentile) 

  Deterministic 

 Site 1-Day 4-Day 1-Day 4-Day 1-Day 4-Day 1-Day 4-Day 

Truckee at Farad 0.90 0.80 0.03 0.03 0.79 0.69 1.03 0.95 

Prosser Reservoir 0.87 0.76 0.01 0.02 0.81 0.67 0.95 0.90 

Stampede Reservoir 0.90 0.81 0.03 0.03 0.79 0.68 1.04 0.98 

  Ensemble Median 

  1-Day 4-Day 1-Day 4-Day 1-Day 4-Day 1-Day 4-Day 

Truckee at Farad 0.81 0.69 0.02 0.02 0.74 0.62 0.91 0.80 

Prosser Reservoir 0.82 0.55 0.01 0.01 0.76 0.52 0.90 0.59 

Stampede Reservoir 0.88 0.76 0.01 0.02 0.83 0.67 0.93 0.91 

Sagehen Creek 0.85 0.72 0.03 0.03 0.74 0.63 1.00 0.87 

Lake Tahoe 0.65 0.39 0.03 0.02 0.56 0.35 0.81 0.48 

 

 

 

 

Figure 10. Forecast hit rates at varying lead times. Hit rates for > 90th percentile flows are low at 

long lead times but clearly improve starting at 8- to 11- day lead times, with the 

deterministic forecast exhibiting higher skill than the ensemble median. In contrast, hit 

rates for < 50th percentile flows are consistently high, change very gradually with lead 

time, and the deterministic and ensemble median have similar skill. 
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Figure 11. Forecast critical success index (CSI) at varying lead times. CSI values follow similar 

patterns to the hit rates shown in Figure 10 given that false alarm rates are consistently 

low and thus have little influence on the CSI. 

 

 

 

 

Figure 12. Frequency bias as a function of lead time. Frequency bias for > 90th percentile flows is 

low (close to 1) with a tendency toward underprediction by the ensemble median and 

overprediction by the deterministic forecasts at short lead times. At longer lead times, 

frequency bias of the ensemble median increases. For < 50th percentile flows, frequency 

bias stays relatively small and consistent from short to long lead times and over vs. 

underprediction bias tends to vary by site rather than by forecast type. 
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Binary metrics of forecast skill for low flow conditions (< 50th percentile; Table 5) show 

several patterns that differ from the top 10 percent flows. First, hit rates are consistently higher 

and do not vary as much with lead time (Figure 10), suggesting a greater ability to predict low-

flow events at long lead times relative to high flows. Second, at short lead times, the 

deterministic and ensemble median show relatively similar hit rates and CSI scores, which points 

to the ensemble median having less (underprediction) bias at low flows relative to high flows, as 

indicated by other results in this study. Third, the frequency biases for < 50th percentile flows 

stay relatively small and consistent from short to long lead times and tendencies toward over vs. 

underprediction bias tends to vary by site (Figure 12) rather than by forecast type, as is the case 

for the top 10 percent flows. 

The forecast metric results described above provide an abstract view of forecast skill over 

the 5-year study period. Several large AR storms during the winter of 2017 provided an 

opportunity to take a closer look at how well the forecast ensembles captured the associated large 

flow events and the circumstances under which forecast skill varies. Figure 13 enables 

comparisons of observed, deterministic forecast, and ensemble forecast median and range for  

1-, 3- and 5-day lead times for the Truckee River at Farad -the most downstream site in this 

study. These plots show that most flood peaks were captured in the ensemble range at 1- to 5-day 

lead times. Observed flows most often fall outside the ensemble range on the rising and falling 

limbs of the hydrograph and during non-AR periods when the ensemble range is narrow (i.e., due 

to lack of precipitation and absence of hydrologic uncertainty in the forecast). 

 
Table 5. Tabulation of forecast skill metrics at 1- and 4-day lead times for flows less than the 

1980-2019 50th percentile. Green to red color ramps indicate high to low skill, 

respectively. The green to blue color ramp indicates bias toward under- and over-

forecasting the frequency of < 50th percentile events, respectively. 

 
Hit Rate  

(Q< 50 

percentile) 

False Alarm  

Rate (Q<50 

percentile) 

Critical Stress 

Index (Q<50 

percentile) 

Frequency Bias 

(Q<50 

percentile) 

  Deterministic 

 Site 1-Day 4-Day 1-Day 4-Day 1-Day 4-Day 1-Day 4-Day 

Truckee at Farad 0.84 0.84 0.01 0.02 0.82 0.80 0.87 0.89 

Prosser Reservoir 0.92 0.90 0.12 0.15 0.82 0.78 1.04 1.05 

Stampede Reservoir 0.82 0.81 0.07 0.09 0.70 0.67 1.00 1.03 

  Ensemble Median 

  1-Day 4-Day 1-Day 4-Day 1-Day 4-Day 1-Day 4-Day 

Truckee at Farad 0.83 0.78 0.02 0.04 0.79 0.72 0.87 0.85 

Prosser Reservoir 0.92 0.89 0.13 0.18 0.80 0.75 1.06 1.09 

Stampede Reservoir 0.82 0.81 0.07 0.08 0.70 0.67 0.99 1.03 

Sagehen Creek 0.92 0.88 0.11 0.14 0.82 0.76 1.04 1.02 

Lake Tahoe 0.68 0.60 0.09 0.08 0.62 0.55 0.79 0.68 
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Figure 13. Time series comparisons of observed (black line) and predicted 1-, 3-, and 5- day flow 

accumulations at corresponding lead times at the Truckee River at Farad gage during 

winter 2017, when multiple large AR events occurred in the Truckee River Basin. Most 

observed flood peaks were captured within the ensemble range but observed flows were 

sometimes outside the ensemble within the rising and falling limbs of the hydrographs. 
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CONCLUSIONS 

Quantifying forecast skill is a key component to assessing the viability of FIRO. In this 

study, a preliminary analysis of streamflow forecast skill is conducted using 5 years of readily 

available deterministic and ensemble forecast data. Taken together, the results described above 

indicate that AR-driven streamflow and flood potential are clearly detectable in the forecast 

ensembles at 7-day plus lead times but there is an overall tendency for the ensembles to under-

forecast flow volumes, even at short lead times, for high flow events that occur during ARs. 

Under high flow conditions, deterministic forecasts show superior accuracy and less 

multiplicative bias relative to the ensemble median, but still under-forecast the highest flow 

events by 15 percent, on average, at a 1-day lead time and 35 percent, on average, at a 4-day lead 

time (Table 2). Under low-flow conditions, forecast skill is more similar between the 

deterministic and ensemble median and forecasts tend to have higher accuracy and less 

underprediction bias. Importantly, low flow conditions tended to have higher skill at longer lead 

times for most of the metrics assessed, indicating that dry periods are better forecasted at long 

lead times than large storm events. The ability to forecast prolonged dry periods has the potential 

to be as valuable for FIRO as forecasting large flow events, depending on the FIRO strategy 

employed, as accurate forecasting of these periods can indicate potential to retain water supplies 

within reservoirs (Jasperse et al., 2020). 

Differences in data, analytical approaches, and time periods analyzed and the fact that 

FIRO assessments are still relatively rare make it challenging to make direct comparisons of the 

results presented above to other studies. The recently completed Lake Mendocino FIRO Final 

Viability Assessment (Jasperse et al., 2020; Weihs et al., 2019) reports deterministic forecast 

skill for 24-hour inflows to Lake Mendocino  as ranging from R2 of 0.9 at a one-day lead time to 

over 0.5 at a five day lead time, but their analysis is ‘dominated by many days with no rain and 

stable inflows’. These results are on-par with the non-AR day results reported here but how 

results for higher flow conditions from this study would compare is unknown. The Lake 

Mendocino Final Viability Assessment also assessed forecast ensemble reliability for inflows, 

albeit with a slightly different approach afforded by the use of a multi-decadal timeseries of 

ensemble hindcasts, which were not available at the time the Truckee Basin study described here 

was conducted. From a qualitative standpoint, the Lake Mendocino study highlighted issues such 

as underprediction biases and under-dispersion of the ensemble, which are both issues identified 

in the forecast reliability assessment conducted here. However, the Lake Mendocino study 

indicates under-dispersion of the ensemble in association with the highest flow volumes and 

underprediction bias for lower flow volumes which is the opposite of what was observed here 

(i.e., in the Truckee, high flows are underpredicted and under-dispersion of the ensemble occurs 

at low flows). The reasons for these differences in unknown but merit further study. 

RECOMMENDATIONS 

The results presented here represent a first step in assessing forecast skill for the Truckee 

River Basin in relation to FIRO and many avenues of research still need to be pursued. Important 

next steps include 1) evaluation of deterministic and ensemble quantitative precipitation 

forecasts to understand the relative role these play in streamflow forecast skill and uncertainty,  
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2) expanding analyses of forecast skill to include more years, ideally using multi-decadal 

hindcast data, 3) understanding the relative contributions of precipitation forecast uncertainty, 

storm characteristics, and antecedent snow and soils conditions to uncertainties and biases of 

hydrologic forecasts, 4) contextualizing analyses and results in terms relevant to the FIRO 

strategies being considered and to the physical and operational constraints of the Truckee River 

system, and 5) assessing similarities and differences between forecast skill in the Truckee River 

basin and other places where FIRO studies have previously been conducted. The code and 

workflows developed as part of this project provide the opportunity to readily address many of 

these tasks. 
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