Cloud Computing

Ed Lazowska
Bill & Melinda Gates Chair
Paul G. Allen School of Computer Science & Engineering
Personal computing

- Web browser
- Office applications
- Math and science
- Databases and storage
- Email
Cloud email accessed through the browser
Why not office applications too?
Why not everything else?
Consider ...

- Essentially infinite capacity
- You pay for exactly what you use (instantaneous expansion and contraction)
- No capital costs
- 1,000 processors for 1 day costs the same (or less) as 1 processor for 1,000 days (totally revolutionary!)
- 7x24x365 operations support, auxiliary power, redundant network connections, geographical diversity
- Someone else does the backup; someone else handles software updates
- Sharing and collaboration are easy
- It continuously gets faster and less expensive (vs. purchased equipment)
Animoto: EC2 Instance Usage

Credit: Werner Vogels, Amazon.com
• A datacenter has 50-250 containers
• A container has 1,000-2,000 servers
• A server has 2 processors, 2 disks, tons of memory, battery backup
• Processors are chosen for power efficiency, not raw performance
Isn’t this just timesharing?

- Many hundreds of machines are involved in a single Google search request (remember, the web is 400+TB)
 - There are multiple clusters (of thousands of computers each) all over the world
 - DNS routes your search to a nearby cluster
A cluster consists of Google Web Servers, Index Servers, Doc Servers, and various other servers (ads, spell checking, etc.)

These are cheap standalone computers, rack-mounted, connected by commodity networking gear.
y Within the cluster, load-balancing routes your search to a lightly-loaded Google Web Server (GWS), which will coordinate the search and response

y The index is partitioned into “shards.” Each shard indexes a subset of the docs (web pages). Each shard is replicated, and can be searched by multiple computers – “index servers”

y The GWS routes your search to one index server associated with each shard, through another load-balancer

y When the dust has settled, the result is an ID for every doc satisfying your search, rank-ordered by relevance
The docs, too, are partitioned into “shards” - the partitioning is a hash on the doc ID. Each shard contains the full text of a subset of the docs. Each shard can be searched by multiple computers - “doc servers”.

The GWS sends appropriate doc IDs to one doc server associated with each relevant shard.

When the dust has settled, the result is a URL, a title, and a summary for every relevant doc.
Meanwhile, the ad server has done its thing, the spell checker has done its thing, etc.

The GWS builds an HTTP response to your search and ships it off.

Many hundreds of computers have enabled you to search 400+TB of web in ~100 ms.
• Enormous volumes of data
• Extreme parallelism
• The cheapest imaginable components
 • Failures occur all the time
 • You couldn’t afford to prevent this in hardware
• Software makes it
 • Fault-tolerant
 • Highly available
 • Recoverable
 • Consistent
 • Scalable
 • Predictable
 • Secure
The Paxos algorithm is central to building web-scale systems

Paxos went unpublished and unused for a decade!