Java Recursion

Slides provided by the University of Washington Computer Science & Engineering department.

Adapted from slides by Marty Stepp, Stuart Reges & Allison Obourn.

Recursion

- recursion: The definition of an operation in terms of itself
- Solving a problem using recursion depends on solving
smaller occurrences of the same problem.
- recursive programming: Writing methods that call
themselves to solve problems recursively
- An equally powerful substitute for iteration (like for-
loops)

- Particularly well-suited for solving certain types of
problems

Recursion and cases

Every recursive algorithm involves at least 2 cases:
- base case: A simple occurrence that can be answered
directly
- recursive case: A more complex occurrence of the
problem that cannot be directly answered, but can
instead be described in terms of smaller occurrences of
the same problem
Some recursive algorithms have more than one base or
recursive case, but all have at least one of each.
A crucial part of recursive programming is identifying these
cases.

Recursion in Java

- Consider the following method to print a line of * characters:

// Prints a line containing the given number of stars.
// Precondition: n >= 0
public static void printStars(int n) {

for (int 1 = 0; 1 < n; 1i++) {

System.out.print ("*");
}
System.out.println(); // end the line of output

}
- Write a recursive version of this method that calls itself.

- Solve the problem without using any loops.
- Hint: your solution should print just one star at a time.

Recursion in Java

- Our recursive solution is split into two cases:
- base case: print O stars
- recursive case: print more than O stars

- In Java:
public static void printStars(int n) {
if (n == 0) {

// base case; Jjust end the line of output
System.out.println (),

} else {
// recursive case; print one zero stars
System.out.print ("*");

printStars(n - 1);

Recursive tracing

Consider the following recursive method:

public static int mystery(int n) {
if (n < 10) {
return n;
} else {
int a = n / 10;
int b = n % 10;
return mystery(a + b);

}
What is the result of the following call?

mystery (648)

A recursive trace

mystery (648) :

int a = 648 / 10;
int b = 648 % 10;
return mystery(a + b);

// 64
// 8
// mystery (72)

mystery (72) :

- int a = 72 / 10;
- int b = 72 % 10;

- return mystery(a + b);

mystery (9) :

- return 9;

// 7
// 2
// mystery(9)

Recursive tracing 2

- Consider the following recursive method:
public static int mystery(int n) {

if (n < 10) {
return (10 * n) + n;

} else {
int a = mystery(n / 10);
int b = mystery(n % 10);
return (100 * a) + b;

}
- What is the result of the following call?

mystery (348)

A recursive trace 2

mystery (348) :

- 1int a = mystery(34);

- 1nt a = mystery(3);
- return (10 * 3) + 3; // 33
- 1nt b = mystery(4);
- return (10 * 4) + 4; // 44
- return (100 * 33) + 44; // 3344
- 1nt b = mystery(8);
- return (10 * 8) + 8; // 88

- return (100 * 3344) + 88; // 334488

