
Java Recursion

Slides provided by the University of Washington Computer Science & Engineering department.

Adapted from slides by Marty Stepp, Stuart Reges & Allison Obourn.

- recursion: The definition of an operation in terms of itself
- Solving a problem using recursion depends on solving

smaller occurrences of the same problem.
- recursive programming: Writing methods that call

themselves to solve problems recursively
- An equally powerful substitute for iteration (like for-

loops)
- Particularly well-suited for solving certain types of

problems

Recursion

Recursion and cases

- Every recursive algorithm involves at least 2 cases:
- base case: A simple occurrence that can be answered

directly
- recursive case: A more complex occurrence of the

problem that cannot be directly answered, but can
instead be described in terms of smaller occurrences of
the same problem

- Some recursive algorithms have more than one base or
recursive case, but all have at least one of each.

- A crucial part of recursive programming is identifying these
cases.

Recursion in Java
- Consider the following method to print a line of * characters:

 // Prints a line containing the given number of stars.
 // Precondition: n >= 0
 public static void printStars(int n) {
 for (int i = 0; i < n; i++) {
 System.out.print("*");
 }
 System.out.println(); // end the line of output
 }

- Write a recursive version of this method that calls itself.
- Solve the problem without using any loops.
- Hint: your solution should print just one star at a time.

Recursion in Java
- Our recursive solution is split into two cases:

- base case: print 0 stars
- recursive case: print more than 0 stars

- In Java:
 public static void printStars(int n) {
 if (n == 0) {
 // base case; just end the line of output
 System.out.println();
 } else {
 // recursive case; print one zero stars
 System.out.print("*");
 printStars(n - 1);
 }
 }

Recursive tracing
- Consider the following recursive method:

 public static int mystery(int n) {
 if (n < 10) {
 return n;
 } else {
 int a = n / 10;
 int b = n % 10;
 return mystery(a + b);
 }
 }

- What is the result of the following call?
mystery(648)

A recursive trace
mystery(648):

- int a = 648 / 10; // 64
- int b = 648 % 10; // 8
- return mystery(a + b); // mystery(72)

mystery(72):

- int a = 72 / 10; // 7
- int b = 72 % 10; // 2
- return mystery(a + b); // mystery(9)

mystery(9):

- return 9;

Recursive tracing 2
- Consider the following recursive method:

 public static int mystery(int n) {
 if (n < 10) {
 return (10 * n) + n;
 } else {
 int a = mystery(n / 10);
 int b = mystery(n % 10);
 return (100 * a) + b;
 }
 }

- What is the result of the following call?
mystery(348)

A recursive trace 2
mystery(348):

- int a = mystery(34);
- int a = mystery(3);

- return (10 * 3) + 3; // 33
- int b = mystery(4);

- return (10 * 4) + 4; // 44
- return (100 * 33) + 44; // 3344

- int b = mystery(8);
- return (10 * 8) + 8; // 88

- return (100 * 3344) + 88; // 334488

