UNDERGRADUATE HANDBOOK FOR COMPUTER SCIENCE

Department of Computer Science
University of Washington
114 Sieg Hall, FR-35
Seattle, Washington 98195
(206) 543-1695
Introduction

The Department of Computer Science evolved from the Computer Science Group, a graduate interdisciplinary group that has offered M.S. and Ph.D. degrees since 1967. Since 1975, the department has offered an undergraduate program in which students can pursue a Bachelor of Science degree under either the College of Arts and Sciences or the College of Engineering. Students who wish to graduate through the College of Engineering must be admitted to a major in a regular engineering department as well as to Computer Science and then must complete a double degree.

Computer science is the study of information and algorithms within the context of real and abstract computing devices. Computer scientists are interested in: the representation and storage of information; algorithms to access, display, edit, and transform information; programming and mathematical languages to express algorithms; and hardware and software processors to execute algorithms. These concerns lead both to theoretical investigations of computers, algorithms, and data and to practical developments in computer technology and applications.

The department currently offers undergraduate courses in programming, discrete structures, data structures, machine organization, computer design, operating systems, programming languages, compilers, artificial intelligence, design and analysis of algorithms, and theory of computation. The department also requires its majors to take courses in calculus, linear algebra, differential equations, physics, electronics, and numerical analysis. Slightly different distribution requirements in humanities and social sciences are required for students in the two colleges.

The objective of Computer Science education is to develop professionally competent and broadly educated computer scientists. Undergraduate education is designed to prepare students for professional careers or graduate study; especially important is a foundation that will not become obsolete as technology advances and changes.

The computer field has a broad base of industrial and governmental users, providing many of the jobs suitable for the B.S. graduate. Typical jobs are systems analyst, systems programmer, scientific programmer analyst, technical salesperson, hardware or software specialist. Above this base is a pyramid of producers and developers of computer systems as well as teachers and researchers. Graduate education is appropriate for many of the jobs at these higher levels.

The Faculty

The year the faculty member joined the University is in parentheses.

David R. Dekker, Associate Professor Emeritus of Mathematics and Computer Science (1948). A.B., 1941, California (Berkeley); M.S., 1943, Illinois Institute of Technology; Ph.D., 1948, California (Berkeley). Numerical analysis, curve fitting and numerical solution of differential equations.

Hellmut Golde, Professor of Computer Science and Adjunct Professor of Electrical Engineering (1959). Dipl.-Ing., 1953, Technische Hochschule Munich; M.S., 1955, Ph.D., 1959, Stanford. (On sabbatical for 82-83 academic year.) Programming languages, programming systems, compilers.

Richard E. Ladner, Professor of Computer Science (1971). B.S., 1965, St. Mary's College of California; Ph.D., 1971, California (Berkeley). Theory of computation, computational complexity, theory of concurrent computation, design and analysis of algorithms, data structures, recursive function theory.
Adjunct, Postdoctoral, and Lecturer Appointments

Alistair D. C. Holden, Professor of Electrical Engineering. B.S., 1955, Glasgow; M.E., 1958, Yale; Ph.D., 1964, Washington. Artificial intelligence and applications to speech understanding, vision and computer aided design.

David L. Johnson, Professor of Electrical Engineering. B.S.E.E., 1948, Idaho; Ph.D., 1955, Purdue. Switching theory and logical design, models of learning, concept formation, man-machine interaction.

Victor Klee, Professor of Mathematics. B.A., 1945, Pomona; Ph.D., 1949, California; D.Sc. (Hon.), 1965, Pomona. Linear programming, network optimization, combinatorics, convexity, functional analysis.

Pierre A. MacKay, Professor of Classics, Near Eastern Languages and Literature, and Comparative Literature. B.A., 1954, Yale; M.A., 1959, Ph.D., 1964, California (Berkeley). Multi-lingual text-editing and typesetting, especially Arabic script; graphics; peripheral design.

James S. Meditch, Professor and Chairman of Electrical Engineering. B.S.E.E., 1956, Purdue; S.N., 1957, Massachusetts Institute of Technology; Ph.D., 1961, Purdue. Computer communications networks, telecommunications, and optimization theory.

The Undergraduate Program

Computer Science majors may pursue a B.S. degree through the College of Arts and Sciences or the College of Engineering. To be in Engineering, a student must be admitted as a major to an engineering department as well as to Computer Science and must complete a double degree (225 credits). Those who major only in Computer Science or whose second major is outside of Engineering will be placed in Arts and Sciences.

Admission to the Computer Science Undergrad Program requires the completion of a departmental application (see p. 8). A student typically enters during the sophomore year or at the beginning of the junior year.

Requirements for a Degree of Bachelor of Science

There are four components: (180 credits total):

1. General Education Component (94 credits)
 - For a student in the College of Arts and Sciences:
 - Proficiency requirement: Math 124, 125, 126
 - Humanities from the College distribution list: 20 credits
 - Social Sciences from the College distribution list: 20 credits (Hum & SS lists from A&S Central Advising)
 - Free Electives: 39 credits
 - For a student in the College of Engineering:
 - Math 124, 125, 126
 - Humanities and Social Sciences: 30 credits with at least 10 in each (must be chosen from Coll. of Engr. 1st)
 - Functional Techniques: 10 credits (see list in 114 Sieg)
 - Free Electives: 39 credits

2. Preparatory Component (31 credits)
 - Math 205, 238
 - Physics 121, 122, 123
 - Electronics: choose one from Physics 334, EE 306, EE 310, or EE 355 (only CSci and EE majors may ask for 310 and 335 entry cards).
 - 10 credits of Natural Science, Business, or Engineering

3. Computer Science Core Component (42 credits)
 - CSci 201, 241, 321, 322, 326, 341, 378, 470, Math 464, and 6 credits of CSci 498

4. Computer Science Senior Elective Component (13 credits)
 - A student may satisfy this requirement by taking courses on the Approved Computer Science Senior Electives List (pp. 14-15 of this brochure) or by taking graduate courses in Computer Science. To graduate, a Computer Science major must receive a grade of at least 2.0 in each course in (3) and (4) above.

An Honors Program for Computer Science majors in Arts and Sciences was established in 1997. Students may graduate "with College Honors" by completing both the College honors requirements and the Computer Science Honors requirements or they may graduate "with Distinction" by completing only the departmental honors requirements. A handout describing the Computer Science Honors Program is available in 114 Sieg.

Sample Curricula

The number in parentheses indicates the number of credits; C = General Education Component, F = Preparatory Component, and C = Computer Science Senior Elective Component.

Entering Computer Science at the Sophomore Level:

Freshman Year

Sophomore Year
 - Winter: Math 238 (3), Electronics, see p. 6 for details (3). G/P (9).
 - Spring: G/P (15).

Junior Year

Senior Year
 - Spring: CSci 498 (3), G/C (12).

Entering CSci at the JR. Level (especially for Community Coll. transfers)

Freshman and Sophomore Years (90 credits): Math 124-5-6, 205, 238, Phys 121-2-3, CSci 201 (at U.W. in summer before Soph year), CSci 241 (at U.W. in summer before Junior year), general education credits.

Junior Year
 - Spring: CSci 326 (5), G/P/C (10).

Senior Year
 - Spring: CSci 498 (3), G/C (12).

It is recommended that students augment their computer science major with concentrated work in some application area like Physics, Mathematics, Economics, Accounting, or Electrical Engineering. The reason for this recommendation is that, although computers are worth studying in themselves, they are also used as tools by other disciplines. Knowledge of another discipline will allow Computer Scientists to apply their expertise in computers to that discipline. For students planning to go to graduate school in Computer Science, it is suggested that they take additional courses in mathematics, emphasizing senior level courses in abstract algebra, analysis, logic, or probability and statistics.

Admission Policy

1. Objectives and Justification for an Admission Policy

 Enrollment is limited due to space, faculty, and budgetary limitations. Those applicants who, in the judgment of the faculty, are most
likely to succeed in the program and contribute to the field will be admitted.

2. Pre-Selection Requirements

A student may apply to enter the Computer Science program provided:

a. the following courses or equivalent have been completed:
 Math 124, 125 (plus 126 in Sp'82 for A'82 application);
 Physics 121 (plus 122 and 123 in Sp'82);
 Computer Science 201.

b. the student has completed at least 2.5 credit hours applicable to
 University graduation requirements. (45 credit hours in Sp'82.)

c. the student has an overall University grade point average of at
 least 2.5. (Most students admitted to the department for Autumn
 '82 had at least 3.6 GPAs among the courses listed in a. above.
 Minimum for application will be 3.0 in Sp'83.)

d. the student has been admitted to the University or has completed
 an application to the University through the Office of Admis-
 sions.

3. How and When to Apply

Application to the Computer Science Program requires the completion of a departmental application form, available in 114 Sieg Hall. Any student meeting the preselection requirements (Section 2 above) may apply. Applicants must attach a one-paragraph statement of purpose (about 200 words), describing career goals, and how enrollment in the program would further these goals. This statement should be typewritten, if possible.

Completed applications must be received by the department by: April 15 for Autumn Quarter; October 15 for Winter Quarter; January 15 for Spring Quarter. TRANSCRIPTS ARE ALSO NEEDED BY THE ABOVE DATES. Applicants must supply copies of transcripts from all universities and colleges they have attended. UW STUDENTS MUST ARRANGE FOR THEIR LATEST UW TRANSCRIPTS TO BE SENT FROM THE TRANSCRIPTS OFFICE. Applications that are missing complete transcripts and/or any Pre-Selection Requirements will not be considered. Transfer or postbaccalaureate applicants may request the transfer information letter from 114 Sieg (543-1693).

4. Selection Process

The Computer Science Undergraduate Admissions Committee will meet each quarter during the academic year to select students for admission for the coming quarter. Selection of applicants will be made primarily on the basis of scholastic achievement and potential. In order to meet the objectives stated in Section 1 above, other selection criteria, such as relevant work experience and grades in Computer Science preparatory courses and in all mathematics, science, and engineering courses, will also be considered. Applicants will be notified of their admission or denial by letter 2-3 weeks after the above deadlines. Students who are denied admission may request reconsideration of their application; further information on this procedure can be obtained from the chairman of the admissions committee (make appointments in the main office).

Undergraduate Courses

(Courses subject to change)

CSci 201 Introduction to Computer Science (5) AWSPSu
A rigorous introduction to the theoretical and practical components of computer science: algorithms, programs, data structures, machines, computability, applications, social aspects. Prerequisite: Math 124. Freshmen only for preregistration AWSP, others by permission of instructor after quarter starts.

CSci 241 Programming (3) AWSPSu
Basic algorithms, programming techniques, and basic concepts of the structured high-level language Pascal. Prerequisite: 201 or permission of instructor or dept. advisor. Undergrad only during preregistration in AWSP, others by permission of instructor after quarter starts.

CSci 321 Discrete Structures (3) A
Fundamentals of set theory, graph theory, Boolean algebra, and algebraic structures with applications in computing. Prerequisite: Math 126. CSci majors only.

CSci 322 Introduction to Formal Models in Computer Science (3) W
Finite automata and regular expressions; context free grammars and pushdown automata; nondeterminism; Turing machines and the halting problem. Emphasis on understanding models and their applications and on rigorous use of basic techniques of analysis. Induction proofs, simulation, diagonalization and reduction arguments. Prerequisites: 241 and 321. CSci majors only.

CSci 326 Data Structures (5) Sp
Sequential and linked allocation of linear structures; tables, arrays, stacks, queues; in-core searching and sorting; circular and doubly linked lists; trees and threaded lists; dynamic memory allocation and garbage collection. Prerequisites: 321 and 378. CSci majors only.

CSci 341 Programming Languages (5) W
Designed to make the student reasonably fluent in several radically different languages such as LISP, SNOBOL, APL, ALGOL 60, Pascal, SIMULA 67, and others. Prerequisite: 241. CSci majors only.

CSci 373 Data Structures and Algorithms (3) ASP
Fundamental algorithms and data structures for their implementation. Techniques for solving problems by programming. Sorting, searching, linked lists, binary search trees, balanced trees, hashing. Offered jointly with EE 373. Prerequisites: 241 or 445 or equivalent knowledge of Pascal. For non-CSci majors, no credit if 326 has been taken.

CSci 378 Machine Organization and Assembly Language (5) A
Differences and similarities in machine organization; central processors; fundamentals of machine language and addressing; assembly language programming, including macro; operating system interfaces. Prerequisite: 241. CSci majors only. (EE 371 accepted as a substitute.)
CSCI 401 Introduction to Compiler Construction (3) W
Fundamentals of compilers and interpreters; symbol tables, lexical analysis, syntax analysis, semantic analysis, code generation, and optimization for general purpose programming languages. Offered jointly with EE 401. Prerequisites: 326 plus 378, or EE 371 plus CSCI/EE 373, or instructor's permission.

CSCI 421 Introduction to the Analysis of Algorithms (3)
Analysis of behavior of algorithms. Techniques for design of efficient algorithms. Methods for showing lower bounds on computational complexity. Discussion of particular algorithms for sorting, searching, set-manipulation, arithmetic, graph problems, pattern-matching, and their implementations. Prerequisites: 322 and 326.

CSCI 431 Introduction to Theory of Computation (3) Sp
Models of computation, computable and non-computable functions, space and time complexity, tractable and intractable functions. Prerequisite: 322. (Offered alternate years.)

CSCI 445 Computer Programming Laboratory (1)
For experienced computer programmers who want to learn Pascal quickly. Topics include the syntax and semantics of Pascal along with programming examples. Taught in a concentrated fashion during the first two weeks of the quarter. Several programming assignments will be given to turn in throughout the quarter. Prerequisite: significant programming experience and fluency in a high-level language such as ALGOL, FORTRAN, BASIC, COBOL, or PL/I. Not a substitute for CSCI 241, no credit if 241 has been taken. Cr/no cr only.

CSCI 451 Introduction to Operating Systems (3) W
Principles of multiprogramming systems. Process management, resource management, and file systems. Prerequisite: 326 or CSCI/EE 373 or instructor's permission.

CSCI 470 Computer Design (4) AW
Fundamental design circuits are developed into large logic gate structures. The use of these circuits in the design of central processing units, memories, and peripheral equipment is illustrated. For computer science majors. Prerequisite: 378 or instructor's permission. Entry card required for registration, first priority to CSCI Seniors -- all others must get instructor's permission before requesting the entry card.

CSCI 473 Introduction to Artificial Intelligence (3) Sp
Principles and ideas in Artificial Intelligence; LISP as the basis of precise descriptions of AI processes; theorem proving, problem-solving methods; representation of knowledge in procedures, and in frames; natural language analysis and synthesis, inference and generation from conceptual representations. Prerequisites: 326 and 341, or CSCI/EE 373.

CSCI 498-, 498H- Senior Project (1-6, max. 6; Honors 1-9, max. 9) AWSp
Consists of a report (and perhaps demonstration) describing a development, survey, or small research project completed by the student in an area of specialization. Objectives are: (1) applying and integrating the classroom material from several courses, (2) introducing the professional literature, (3) gaining experience in writing a technical document, and (4) enhancing employability through the evidence of independent work. The project may cover an area in computer science or an application to another field. The work normally extends over more than one quarter. Prerequisite: senior standing. For Computer Science majors only. Entry cards are required.

CSCI 499 Reading and Research (1-24) AWSpSu
Available in special situations for advanced computer science majors to do reading and research in the field. Subject to approval of the undergraduate advisor and a Computer Science faculty member. Usable as a free elective, but not in place of a core course or Computer Science elective. Entry cards are required. Prerequisite: senior standing. Cr/no cr only.

Graduate Courses

CSCI 500 Computers and Society (2) W
Study of the impact of computer technology on present and future societies; computer technology and economics; political, economic, cultural, social, and moral issues. Seminar in frequent guest lecturers and discussion leaders. Each student is required to complete a term project. Cr/no cr only. Prerequisite: graduate standing in computer science or instructor's permission. (Offered alternate years.)

CSCI 501 Compiler Construction (3) Sp

CSCI 502 Advanced Topics in Compiler Construction (3) Aw
Translator-writing systems, incremental compilation. Design of production compilers. Cr/no cr only. Prerequisite: 501. (Offered alternate years.)

CSCI 505 Concepts of Programming Languages (3) Sp
Basic concepts in programming languages, data structures (arrays, records), types, patterns, environments, control, evaluation, application, matching, relation to high-level machines. Prerequisites: CSCI/EE 401 and a working knowledge of Pascal and LISP.

CSCI 506 Formal Semantics (3) W
Basic formalisms in semantics including flowchart schema, recursive schema, fixpoint semantics and the associated induction rules, lambda calculus and other interpretive models. Formal semantics viewed as providing foundations for formal definitions of programming languages, program interpretation, compiler verification, theory of program optimization and other meaning preserving program transformations.
CSci 508 Representation and Handling of Data Structures (3) A
Linear lists (stacks, queues, deques); sequential and linked allocation; circular and doubly linked lists; trees, binary trees, and threaded trees; traversal algorithms; analysis of flow charts; path length of trees; garbage collection; dynamic storage allocation; data management on external media.

CSci 518 Digital Signal Processing (4) Sp
Digital representation of analog signals. Frequency domain and Z-transforms of digital signals and systems. Design of digital systems; IIR and FIR filter design techniques. Fast Fourier Transform algorithms. Sources of error in digital systems. Analysis of noise in digital systems. Offered jointly with EE 518. Prerequisite: knowledge of Fourier analysis techniques, graduate standing or instructor's permission.

CSci 520 Computer Science Seminar (1, max. 9) AWSp
Weekly discussion by students and faculty or visitors on current topics of interest. Offered on credit/no credit basis only.

CSci 521 Design and Analysis of Algorithms I (3) W

CSci 522 Design and Analysis of Algorithms II (3) Sp
Analysis of algorithms more sophisticated than those treated in CSci 521. Design of efficient algorithms for special computing environments such as logical networks and formulas, Turing machines, list-processing machines, and on-line computation. Techniques for proving lower bounds on complexity. Prerequisite: 521.

CSci 531 Formal Languages and Automata (3) A
Formal models in Computer Science including context free grammars, finite automata, regular expressions, Turing machines, and pushdown automata. The fundamental concepts of nondeterminism, undecidability, and syntax and semantics are covered.

CSci 532 Complexity Theory (3) W
Space and Time complexity on various models of computation such as Turing machines, random access machines and list processing machines. Hierarchies based on complexity, time and space bounded reducibility, NP-completeness and other complexity classes, and provably difficult problems.

CSci 533 Computability and Logic (3) Sp
Formal systems that characterize the notion of computation and model the notion of logical reasoning. Computability of recursively enumerable sets, the recursion theorem, and diagonalization methods. Logic includes first order predicate logic, nonstandard models, proof systems, the completeness theorem, and undecidable theories. (Offered alternate years.)

CSci 540 Discrete System Simulation (3) A
Principles of simulation of discrete, event-oriented systems. Model construction, simulation and validation, and relationship to other techniques for system analysis and design. Use of special-purpose simulation languages such as SIMULA and study of functional components and data structures. Prerequisite: programming experience with ALGOL.

CSci 542 Central Processor Architecture (3) Sp
Several central processing units are examined at the gate level. Included are the logic structures of: I/O bus, memory bus, ALU, address modification, control logic, combinatorial and multiphase instructions, access priority, cycle stealing, etc. Prerequisite: 470. (Offered alternate years.)

CSci 543 Analytic Models of Computer Systems (3) W
Emphasizes the use of queuing network models as tools for analyzing computer systems. Topics include useful results from basic queuing theory, selection of performance measures, modeling methodology, data acquisition, computational algorithms for queuing network models, approximation techniques, and decomposability and hierarchical modeling. A realistic case study will be undertaken.

CSci 548 Computer Systems Architecture (3) W
Notations for describing computer systems. Powerful CPUs. Memory organization. Channels and I/O processors. Micro programming. Stack computers. Array and pipelined processors. 470 to be taken concurrently or instructor's permission.

CSci 551 Operating Systems (3) Sp
Operating systems design and construction techniques. Systems programming languages, concurrent programming, design methodologies, protection, deadlock problems, virtual memory allocation, and other topics. Study of the structure of different kinds of operating systems. Prerequisite: 451 or instructor's permission.

CSci 557 Computer Graphics (3) A
CSci 561 Computer Communications and Networks (3) A
Fundamentals of data transmission: coding, message formats, and protocols; job and data management problems; organization of computer networks. A number of networks are studied, and students are expected to prepare a class presentation of a network. Offered on credit/no credit basis only. (Offered alternate years.)

CSci 573 Artificial Intelligence I (3) A
Introduction to the use of the computer in non-numerical problem solving. Survey of theorem proving, symbolic manipulation, pattern recognition, and inductive problem-solving techniques. Computer models of human thought. Prerequisite: 508 and knowledge of LISP or permission.

CSci 574 Artificial Intelligence II (3) W
Continuation of studies of artificial intelligence systems, emphasizing theorem proving, symbolic problem solving, pattern recognition, and natural language data processing. Students are required to do projects. Prerequisite: 573 or permission. (Offered alternate years.)

CSci 590 Special Topics in Computer Science (*) A/Wp
Lectures and discussions of topics of current interest in computer science. May not be offered every quarter; content may vary from one offering to another. Prerequisite: instructor's permission.

CSci 600 Independent Study or Research (*) A/Wp or A/WSp Cr/no cr only.
CSci 700 Master's Thesis (*) A/WSp Cr/no cr only.
CSci 800 Doctoral Dissertation (*) A/WSp Cr/no cr only.

Approved Computer Science Senior Electives
(Schedules subject to change)

All majors must take a minimum of 13 credits from this list, see page 6.

CSci 401 Introduction to Assemblers and Compilers (3) W
CSci 421 Introduction to Analysis of Algorithms (3) A
CSci 431 Introduction to Theory of Computation (3) Sp
CSci 451 Introduction to Operating Systems (3) W
CSci 473 Introduction to Artificial Intelligence (3) Sp

A student may also take graduate courses in Computer Science to satisfy the elective component. See the instructor to determine the background necessary for grad-level courses.

The following courses offered by other departments are acceptable as Computer Science Electives. Check for prerequisites, course entry requirements, and schedules with the department offering the course.

Acct 440 Accounting Systems (3) WSp
EE 417,418 Introductory Communication Theory I,II (4,3) W,Sp
EE 475 Digital Electronics and Microprocessors (4) A/Wp
EE 476 Logical Design of Digital Devices (3) USp
EE 479 Microcomputer System Design (3) USp
Geog 361 Intro to Computer Cartography (3) W
Geog 465 Computer Cartographies (3) Sp
Ling 461,462 Syntax (3,3) A/WSp

Math 402,403,504 Intro to Modern Algebra (3,3) A,W,Sp
Math 405 Introduction to Metamathematics (3) Sp
Math 407,408 Mathematical Optimization Theory (3,3) WSp
Math 465,466 Numerical Analysis II,III (3,3) W,Sp
Phys 434 Application of Computers to Physical Measurement (3) WSu
Psych 473 Computing in Behavioral Sciences (5) Sp
Quantitative Methods 404 Computer Programming for Business (4) A/Wp
Quantitative Science 381 Introduction to Probability and Statistics (5) A/WSp, see Note 1
Stat 341 Elementary Probability (3) A/Wp formerly Math 391 *see Note 1
Stat 342 Elements of Statistics I (3) WS formerly Math 392 *see Note 1
Stat 390 Probability and Statistics in Engineering and Science (4) A/WSp

*Note 1: Either Quantitative Science 381 or Math 391 and 392 or Stat 341 and 342 or Stat 390 may be used as Computer Science Electives. Math 391 and 392 are now offered as Stat 341 and 342 in the Dept. of Statistics.

The University of Washington, as a standing policy, does not discriminate against individuals because of their race, color, religion, age, sex, national origin, handicap, or status as a disabled veteran or Vietnam era veteran. Any discriminatory action can be a cause for disciplinary action. This policy applies to all University programs and facilities including, but not limited to, admissions, educational programs, and employment. Such discrimination is prohibited by Titles VI and VII of the Civil Rights Act of 1964, Title IX of the Education Amendments of 1972, Sections 503 and 504 of the Rehabilitation Act of 1973, Age Discrimination in Employment Act Amendments of 1978, Vietnam Era Veterans' Readjustment Assistance Act of 1974, and other federal and state statutes and regulations. Coordination of the compliance efforts of the University of Washington with respect to all of these laws and regulations is under the direction of the Equal Employment Officer, Dr. Philip W. Cartwright, 140 Administration, AF-18, Seattle, Washington 98195, telephone (206) 543-7630.