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Abstract

We survey the method of interlacing polynomials, the heart of the recent solution to the Kadison-Singer
problem as well as breakthrough results in spectral graph theory. We will focus on four specific prob-
lems that build on each other, and discuss their connections with each other. Algorithms for constructing
promised solutions are also discussed. Finally, we will mention some applications of these breakthroughs
to spectral graph theory, and approximation algorithms, and discuss current open questions and directions
for future work.
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1 Introduction and Organization

The method of interlacing polynomials is a new technique for proving the existence of (and constructing)
objects whose naturally associated polynomial has bounded roots; for matrices, these are the characteristic
polynomials. Polynomials with interlacing roots provided some of the intuition behind improved results
on problems such as graph sparsification [27]; they were also a key component in the recent positive res-
olution to the Kadison-Singer problem [35], as well as breakthroughs in constructing Ramanujan graphs
[34], [36], [42] which are very important objects in spectral graph theory with numerous applications.

The goal of this survey is to:

1. discuss the method of interlacing polynomials, intuition why it is so powerful, and how it was applied
to the Kadison-Singer problem and other related problems

2. discuss other root-bounding methods that work in conjunction with interlacing polynomials to pro-
duce improved guarantees

3. give some applications of the problems that were solved using these methods

We aim for the majority of this survey to be self-contained, beyond assumed knowledge of linear algebra
and calculus. We will attempt to skip as few steps as possible in proofs for the first three applications we’ll
study.

2 Preliminaries

2.1 Some Notation

1. We will let R[x1, . . . ,xn] be the set of polynomials in the variables x1, . . . ,xn with real coefficients. Sim-
ilarly, we will let C[z1, . . . , zn] be the set of polynomials in the variables z1, . . . , zn with complex coeffi-
cients.

2. For a matrix A ∈ Rn×m, one can view it as a linear operator from Rm to Rn. For this, we write ||A||2
to be the operator norm of A defined by supx∈Rm ||Ax||2. We also write ||A||F for its Frobenius norm,

defined by
√∑n

i=1
∑m
j=1A

2
ij .

3. For a matrix A ∈ Cn×n, A∗ will denote its conjugate transpose (i.e. its adjoint when viewed as an
operator on Cn). When A has all real entries, we’ll use A> for its transpose (again, its adjoint when
viewed as an operator on Rn).

4. For a matrix A ∈ Cn×n, we’ll use both the notation χA(x) and χ[A](x) for its characteristic polynomial
det(xI −A). Oftentimes, we’ll use the first notation when the expression for A is small and easy to
write down; we’ll usually reserve the second for more complicated expressions for A.

5. For a Hermitian matrix A ∈ Cn×n (or symmetric matrix A ∈ Rn×n), we will write λmax(A) and λmin(A)
for its largest and smallest eigenvalues, respectively. For a real-rooted polynomial, we will use
maxroot(p) to denote its maximum root.

6. For a vector v ∈ Cn, we let diag(v) ∈ Cn×n is a diagonal matrix D with Dii = vi for 1 ≤ i ≤ n.

7. We will use O for “Big-O” notation, and O(n) for the orthogonal group of n×n matrices.

8. We will use Sn for the set of permutations on n letters. We will also abuse notation and have this also
be the set of n×n permutation matrices.

9. For a matrix A ∈ Cn×m, Ai,j and A(i, j) will be used interchangeably, both to denote the entry with row
index i and column index j.
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2.2 Linear Algebra

2.2.1 Eigenvalues and Eigenvectors

Theorem 1 (Spectral Theorem). If A ∈ Cn×n is Hermitian, then A has all real eigenvalues λ1, . . . ,λn with a
corresponding orthonormal basis u1, . . . ,un of Cn such that A =

∑n
i=1λiuiu

∗
i .

Theorem 2 (Courant-Fischer). For a Hermitian matrix A ∈ Cn×n with eigenvalues λ1 ≥ · · · ≥ λn, we have the
following identities.

λk = min
x1⊥···⊥xn−k+1

min
x,0,||x||2=1

{x∗Ax : x ∈ span{x1, . . . ,xn−k+1}} (1)

= max
x1⊥⊥̇,xk

min
x,0,||x||2=1

{x∗Ax : x ∈ span{x1, . . . ,xk}} (2)

Lemma 1. If A ∈ Cn×n is Hermitian, with eigendecomposition
∑n
i=1λiuiu

∗
i , then Ak =

∑n
i=1λ

k
i uiu

∗
i for all k ∈ N.

Definition 1 (Moore-Penrose Pseudoinverse). If A ∈ Cn×n is Hermitian, we can diagonalize it as A =∑k
i=1λiuiu

∗
i , where λ1, . . . ,λk are the nonzero real eigenvalues of A, and u1, . . . ,uk is a set of orthonormal

eigenvectors. Define the Moore-Penrose Pseudoinverse of A by

A† =
k∑
i=1

1
λi
uiu
∗
i

Then ker(A) = ker(A†) clearly and

AA† = A†A =
k∑
i=1

uiu
∗
i

is an orthonormal projection onto im(A) = ker(A)⊥ = span{u1, . . . ,uk} (and is the identity on this subspace).
Note that if k = n, then A† = A−1.

Definition 2 (Mutually Diagonalizable). IfH⊂ Cn×n is a set of Hermitian matrices, then they are mutually
diagonalizable if there exists an invertible square matrix V ∈ Cn×n such that for every A ∈ H, there exists a
real diagonal matrix D ∈ Rn×n with A = VDV ∗.

Lemma 2. If A,B ∈ Cn×n Hermitian are mutually diagonalizable, then AB = BA, i.e. they commute.

Lemma 3. Let A ∈ Cn×n be a Hermitian matrix and let b ∈ R be such that bI −A is invertible (i.e. b is not an
eigenvalue ofA). Let u1, . . . ,un be the orthonormal eigenvectors ofA. Then, {(bI−A)k : k ∈ Z}∪{

∑
i∈S uiu

∗
i : S ⊂ [n]}

is mutually diagonalizable.

2.2.2 Trace and Determinant Properties

Lemma 4 (Trace Properties). 1. If A,B ∈ Cn×n and a,b ∈ C, then tr(aA+ bB) = a tr(A) + b tr(B) (linearity)

2. If A ∈ Cn×k and B ∈ Ck×n, then

tr(AB) = tr(BA) (3)

and

A ·B =
n∑
i=1

k∑
j=1

AijBji = tr(AB)

3. If A ∈ Cn×n and λ1, . . . ,λn are its eigenvalues, then

tr(A) =
n∑
i=1

λi
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Corollary 1. If A ∈ Cd×d is positive semidefinite, then tr(A) ≥ 0.

Corollary 2. Let v1, . . . , vm ∈ Cn satisfy
∑m
i=1 viv

∗
i = I . Then tr(M) =

∑m
i=1 v

∗Mv.

Corollary 3. Let A ∈ Rn×n be a symmetric matrix and P ,Q be the orthogonal projections on im(A),ker(A),
respectively. Let B ∈ Rn×n be arbitrary. Then,

tr
[
B>(bI −A)kB

]
= tr

[
B>P (bI −A)kP B

]
+ tr

[
B>Q(bI −A)kQB

]
for every k ∈ Z, since A,P ,Q, (bI −A)k are mutually diagonalizable.

Lemma 5 (Determinant Properties). For A,B ∈ Cn×n, and eigenvalues λ1, . . . ,λn of A

1. det(AB) = det(A)det(B)

2. det(A) = det(A∗)

3. det(A) =
∏n
i=1λi

2.2.3 Other Useful Formulas

Theorem 3 (Jacobi Formula). If f : C→ Cd×d , where f (t) is invertible in some open interval I , then

∂t det(f (t)) = det(f (t)) · tr
(
f (t)−1 ·∂tf (t)

)
in I .

Corollary 4. Let A,B ∈ Cd×d where A is invertible. Then ∂t det(A + tB) = det(A + tB) · tr((A + tB)−1B). In
particular, [∂t det(A+ tB)]t=0 = det(A) tr(A−1B)

Lemma 6 (Matrix Determinant Lemma). Let A ∈ Cn×n be invertible, and u,v ∈ Cn. Then

det(A+uv∗) = (1 + v∗A−1u)det(A)

Lemma 7 (Sherman-Morrison Formula). Let A ∈ Rn×n be invertible, and u,v ∈ Rn. Then A+ uv∗ is invertible
if and only if 1 + v∗A−1u , 0. Furthermore, if A+uv∗ is invertible, then it has inverse

(A+uv∗)−1 = A−1 − A
−1uv∗A−1

1 + v∗A−1u

2.3 A Very Quick Primer on Spectral Graph Theory

We will only work with undirected graphs in this survey.

Definition 3 (Adjacency Matrix). Let G = (V = [n],E) be a graph with |E| = m. The adjacency matrix AG
of G is the symmetric n × n matrix with entries AG(i, j) = 1 if and only if (i, j) ∈ E. If G is a multigraph,
then AG(i, j) is the number of edges between i and j. If G is a weighted graph with weights w : E→ R, then
AG(i, j) = w(i, j).

Definition 4 (Laplacian Matrix). Let G = (V = [n],E) be a graph with |E| =m. Let di be the degree of i ∈ V ,
defined by di = |{(i, j) : j ∈ V }| (or, if G is weighted with w : E→ R, di =

∑
j∈V w(i, j)). Let DG = diag({di}ni=1)

be the degree matrix of G. We define the Laplacian matrix LG by LG =DG −AG.

One can alternatively construct LG as follows: First, orient the edges of G arbitrarily (as in for every edge
e = (u,v) ∈ E, arbitrarily set u or v to be the “head” of e and the other vertex to be the “tail” of e). Then,
define the signed edge-vertex incidence matrix of G B ∈ Rm×n as the matrix with entries

B(e,v) =


1 if v is the head of e
−1 if v is the tail of e
0 otherwise

Then, set LG = B>WB, where W ∈ Rm×m has W (e,e) = w(e) for all e ∈ E.
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Remark 1. If w assigns nonnegative weight to every edge, associated with the Laplacian is a nice quadratic
form, which can easily be derived using the definition (identity) LG = B>WB: for a weighted graph G =
(V ,E,w), for all x ∈ Rn,

xT LGx = x>B>WBx =
∣∣∣∣∣∣W 1/2Bx

∣∣∣∣∣∣2
2

=
∑

(i,j)∈E
w(i, j)(xi − xj )2 ≥ 0

In particular, LG is positive semidefinite when the edge weights are nonnegative.

The idea behind spectral graph theory is to analyze the properties of graphs through linear algebraic
techniques. For example, through the eigenvalues of AG and LG, we can learn about connectivity, bipartite-
ness, etc. Here are some example results.

Theorem 4. Let λ1 ≤ · · · ≤ λn be the eigenvalues of LG. Then, λk = 0 if and only if G has at least k connected
components.

Theorem 5. Let λ1 ≤ · · · ≤ λn be the eigenvalues of AG. Then G is bipartite if and only if {λ1, . . . ,λn} is symmetric
about 0.
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3 Small-Scale Interlacing

We begin with interlacing in its most basic form. We will motivate why this is a nice property for a set of
real-rooted polynomials to have.

Definition 5 (Interlacing Polynomials). A degree-(d − 1) polynomial q ∈ R[x] with all real roots α1 ≤ · · · ≤
αd−1 interlaces a degree-d polynomial p ∈ R[x] with all real roots β1 ≤ · · · ≤ βd if β1 ≤ α1 ≤ β2 ≤ · · · ≤
αd−1 ≤ βd ; if q ∈ R[x] is a degree-d polynomial with all real roots α1 ≤ · · · ≤ αd , then q(x) interlaces p(x) if
α1 ≤ β1 ≤ · · · ≤ αd ≤ βd .

We say a finite set {pi}n1 ⊂ R[x] of degree-d real-rooted polynomials have a common interlacing if there
is a degree-(d − 1) (or, equivalently, degree-d) real-rooted polynomial q ∈ R[x] that interlaces each pi .

Remark 2. It’s not hard to see that if p(x) =
∏n
i=1(x −λi) and q(x) =

∏n
i=1(x −µi) have a common interlacing,

where λ1 ≤ · · · ≤ λn and µ1 ≤ · · · ≤ µn, then it follows that for any nonempty S ⊂ [n],
∏
i∈S (x − λi) and∏

i∈S (x −µi) also have a common interlacing.

We now state a crucial theorem that is the motivation for using interlacing.

Theorem 6. Let p1, . . . ,pn ∈ R[z] be a set of real-rooted degree-d polynomials with positive leading coefficient and
let p∅ =

∑n
i=1pi . If {pi}n1 have a common interlacing, then

1. p∅ is real-rooted

2. for every 1 ≤ k ≤ d, there exists 1 ≤ i ≤ n such that λk(pi) ≤ λk(p∅)

where λk(p) denotes the kth smallest root of p.

Example 1. Interlacing is a particularly special because in general, adding (or averaging) real-rooted poly-
nomials does not produce anything useful; the sum (or average) of real-rooted polynomials might not even
be real-rooted, as demonstrated by the p1(x) = (x − 1)2 and p2(x) = (x+ 1)2, for which (p1 + p2)(x) = 2x2 + 2.

However, if we had, say, p1(x) = x(x − 2) and p2(x) = (x − 1)(x − 4), then p1,p2 have a common interlac-
ing, and (p1 + p2)(x) = 2x2 − 6x+ 4 = 2(x − 2)(x − 1) and maxroot(p2) ≤maxroot(p1 + p2).

An interesting observation is that if {pi}n1 has a common interlacing, then so does {µipi}n1, for any choice
of constants µ1, . . . ,µn ∈ C. Hence, if we form a probability distribution D over {pi}n1, assigning probability
µi ≥ 0 to pi , then this theorem states there is a µipi (and hence, a pi) whose maximum root is upper bounded
by

∑n
i=1µipi = Ep∼D[p]. Thus, to prove that there is a pi whose maximum root is upper bounded by some

quantity α, it suffices to bound the maximum root of Ep∼D[p] by α, which can be much easier, as we will
see in the applications below.

Proof Sketch of Theorem 6. For real-rootedness, observe that the roots of p∅ are the same as those of Ei∼unif([n])[pi] =
p∅/n. Since p1, . . . ,pn have a common interlacing, by Theorem 7 (see below), p∅/n is real-rooted. Hence, so
is p∅. This proves the first guarantee.

For the second guarantee, by Remark 2, it suffices to show that there exists 1 ≤ i ≤ n such that maxroot(pi) ≤
maxroot(p∅), and then go by induction on the degree d. Let g be a degree-(d − 1) common interlacing for
p1, . . . ,pn.

Since the pi have positive leading coefficient, there exists xi such that pi(x) > 0 for all x > xi , for all 1 ≤ i ≤ n;
this also shows that p∅(x) > 0 for all sufficiently large x. Furthermore, since every pi has exactly one root
that is at least λd−1(g), namely λd(pi), we have pi(λd−1(g)) ≤ 0 for all 1 ≤ i ≤ n. Thus, p∅(λd−1(g)) ≤ 0. Since
p∅(x) > 0 for all sufficiently large x, the largest root λd(p∅) of p∅ is at least λd−1(g).

Now, since p∅(λd(p∅)) ≥ 0, there exists 1 ≤ i ≤ n such that pi(λd(p∅)) ≥ 0. Since pi has at most one root
that is at least λd−1(g), λd(pi) ∈ [λd−1(g),λd(p∅)]. In particular, λd(pi) ≤ λd(p∅).
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So, how does one show that a set of polynomials has a common interlacing? The following result is
a particularly useful characterization for when a common interlacing exists. It reduces the problem of
showing the existence of common interlacings into the problem of showing certain polynomials are real-
rooted. Throughout, whenever we need to prove the existence of common interlacings, we will apply this
lemma. This greatly simplifies our work, because then, we can apply techniques such as those from the
theory of real stable polynomials. We will discuss these techniques in greater depth later. We will not need
this for our first two applications.

Theorem 7 (Theorem 2.1 of [9]). Let p1, . . . ,pn ∈ R[z] be degree-d polynomials with positive leading coefficient.
Then {pi}n1 have a common interlacing if and only if

∑n
i=1λipi is real-rooted for all λi satisfying

∑n
i=1λi = 1, that

is, all convex combinations of {pi}n1 are real-rooted.

We now turn to an important example of when we know interlacing occurs. This will be particularly
useful for our first two applications.

Theorem 8 (Cauchy Interlacing Theorem). Let A ∈ Rn×n be symmetric and v ∈ Rn. Then χA(x) interlaces
χA+vv>(x).

Proof. By the Matrix Determinant Lemma (Lemma 6),

det(xI −A− vv>) = (1− v>(xI −A)−1v)det(xI −A)

The claim is trivial if v = 0 so assume otherwise. Let λ1, . . . ,λn be the eigenvalues of A, and u1, . . . ,un be or-
thonormal eigenvectors corresponding to λ1, . . . ,λn. Observe that A =

∑n
i=1λiuiu

>
i , and by orthonormality

of u1, . . . ,un, I =
∑n
i=1uiu

>
i . Thus, xI −A =

∑n
i=1(x −λi)uiu>i so we may write

(xI −A)−1 =
n∑
i=1

1
x −λi

uiu
>
i

Hence,

1− v>(xI −A)−1v = 1−
n∑
i=1

1
x −λi

v>uiu
>
i v = 1−

n∑
i=1

|〈ui ,v〉|2

x −λi

Putting these together, we have

χA+vv>(x) = χA(x) ·

1−
n∑
i=1

|〈ui ,v〉|2

x −λi


Let µ be an eigenvalue of A + vv>. Assume without loss of generality that the set of indices i for which
〈ui ,v〉 , 0 is precisely [k], for some k (note, we can guarantee that k ≥ 1 since if 〈ui ,v〉 = 0 for all 1 ≤ i ≤ n,
by linear independence of u1, . . . ,un, v = 0). We have two cases:

1. χA(µ) = 0, i.e. µ is also an eigenvalue of A. This occurs when µ is an eigenvalue of A corresponding to
an eigenvector that is orthogonal to v.

2. f (µ) def=
∑k
i=1 |〈ui ,v〉|2/(µ−λi) = 1. This is a real rational function that blows up when µ is approaches

λi , for any 1 ≤ i ≤ k. More concretely, for every 1 ≤ i ≤ k,

lim
x→λ−i

f (x) = −∞ lim
x→λ+

i

f (x) = +∞

where limx→λ−i is the limit as x approaches λi from the left (and similarly, for limx→λ+
i
). We also

have λx→∞f (x) = limx→−∞ f (x) = 0. Observe that f (x) is continuous and injective on each of the
open intervals (λi ,λi+1) for all 0 ≤ i ≤ k (where for convenience, we define λ0 = −∞ and λk+1 = ∞);
furthermore, f is a bijection from (λi ,λi+1) to R for 1 ≤ i < k, and a bijection from (λk ,λk+1) to R>0. By
the Intermediate Value Theorem, for each 1 ≤ i ≤ k, there exists precisely one value of µ in (λi ,λi+1)
for which f (µ) = 1.

Combining these two cases, we have interlacing.

8



4 Warm-Up I: The Column Subset Selection Problem

Problem 1 (Column Subset Selection). For a given matrix A ∈ Rn×m, is there is a subset of columns S ⊂ [m]
such that the submatrix B ∈ Rn×|S | formed by those columns satisfies “certain linear algebraic properties”, and if
so, can it be found efficiently?

This is a general problem, where “certain linear algebraic properties” can be anything, but are usually
ones useful in computation and analysis, such as condition number, rank, etc., with many applications in
numerical linear algebra and functional analysis. In this section, we will be considering “well-invertibility”,
which means whether or not the matrix A ∈ Rn×m has a column submatrix A[n],S ∈ Rn×|S |, for some S ⊂ [m],
such that

1. A[n],S is injective, so that it is invertible on a subspace of Rm.

2. A−1
[n],S has singular values bounded away from 0.

Well-invertible matrices are desirable because they are robust to additive noise, and algorithms that are
sensitive to floating point precision remain “numerically stable” when run on these types of matrices. The
main question we will answer is: How large can |S | be for there to exist a well-invertible submatrix with |S |
columns?

4.1 Bourgain-Tzafriri Restricted Invertibility

We begin with a celebrated result of Bourgain-Tzafriri [6].

Theorem 9 (Theorem 1.2 from [6]). There exist universal constants 0 < c,C < 1 such that for all linear operators
T : Rn→ Rn satisfying ||T ei ||2 = 1, for all 1 ≤ i ≤ n, there exists a subset S ⊂ [n] with cardinality |S | ≥ bcn/ ||T ||22c
such that

||T v||22 ≥ C ||v||
2
2

for all v ∈ span{ei : i ∈ S}. That is, for every linear operator T : Rn→ Rn satisfying ||T ei ||2 = 1 for all 1 ≤ i ≤ n,
there exists an S ⊂ [n] of size Ω(n/ ||T ||22) such that the operator norm of T as a linear operator from span{ei : i ∈ S}
is Ω(1).

This fact has been known since the 1990s. Here, we will prove a more general and more powerful
version. This next result will also make more clear the connection between the stable rank and the existence
of well-invertible column submatrices.

Theorem 10 (Theorem 2 from [30]). Let v1, . . . , vm ∈ Rn satisfies
∑m
i=1 viv

>
i = I . Let 0 < ε < 1 be arbitrary and

let T : Rn→ Rn be a linear operator. Then, there exists S ⊂ [m] such that all of the following hold:

1. {T vi}i∈S is a linearly independent set, that is, T is invertible on the subspace span{vi : i ∈ S} of Rm.

2. |S | = bε2 ||T ||2F / ||T ||
2
2c

3. The |S |th largest eigenvalue of
∑
i∈S (T vi)(T vi)> is greater than (1− ε)2 · ||T ||2F /m.

λ|S |

∑
i∈S

(T vi)(T vi)
>

 > (1− ε)2 ||T ||2F
m

The original restricted invertibility of Bourgain-Tzafriri follows as an immediately corollary. Let’s see
how.

Proof of Theorem 9. Fix an arbitrary 0 < ε < 1, and let c = c(ε) = ε2 and C = C(ε) = (1− ε)2. Let {vi}m1 = {ei}n1
(so m = n). We must show that there exists a subset S ⊂ [n] with cardinality |S | ≥ cn/ ||T ||22 such that
||T v||22 ≥ C ||v||

2
2 for all v ∈ span{ei : i ∈ S}.

9



Observe that since ||T ei ||22 = 1 for all 1 ≤ i ≤ n,

||T ||2F =
n∑
i=1

||T ei ||22 = n

so that

bε2 ||T ||2F / ||T ||
2
2c = bcn/ ||T ||22c and

(1− ε)2 ||T ||2F
m

= (1− ε)2 = C(ε)

Hence, applying Theorem 10 immediately yields a subset S ⊂ [n] with cardinality |S | ≥ bcn/ ||T ||22c such that
{T ei}i∈S is linearly independent. Finally, observe that for all v ∈ span{ei : i ∈ S}, we have

||T v||22 ≥ λ|S |

∑
i∈S

(T vi)(T vi)
>

 > C(ε)

where PU is the orthogonal projection onto the |S |-dimensional subspaceU = span{ei : i ∈ S}. This completes
the proof.

Note that Theorem 10 also implies another simpler form of restricted invertibility proven in [33] using
slightly more advanced machinery. We will not discuss that proof here; instead, we will observe that it
follows immediately from Theorem 10.

Theorem 11 (Theorem 3.1 from [33]). Suppose v1, . . . , vm ∈ Rn are vectors with
∑m
i=1 viv

>
i = I . Then for every

k < n, there is a subset S ⊂ [m] with |S | = k and satisfying

λk

∑
i∈S

viv
>
i

 ≥
1−

√
k
n

2

· n
m

Proof. Let T = I and set ε =
√
k/n. Note that ||T ||2F = n since T has n nonzero entries, all equal to 1, and

||T ||2 = 1 since ||T v||2 = ||Iv||2 = ||v||2 for all v ∈ Rn. Theorem 10 shows there is a set S ⊂ [m] such that

|S | = bε2 ||T ||2F / ||T ||
2
2c = b

√
k/n

2 ·nc = k, {vi}i∈S is a linearly independent set, and〈
v,

∑
i∈S

viv
>
i

v〉 >
1−

√
k
n

2

· n
m
· ||v||22

for all v ∈ span{vi : i ∈ S}. Since {vi}i∈S is a linearly independent set, dimspan{vi : i ∈ S} = |S | = k so that by
Theorem 10

λk

∑
i∈S

viv
>
i

 ≥
1−

√
k
n

2

· n
m

as desired.

4.2 A Single Univariate Barrier with Interlacing

We will build up S iteratively. At the start of step j:

1. S will contain j indices.

2. We will also have an operator A(j) =
∑
i∈Sj (T vi)(T vi)

>, where Sj is the state of S at step j

10



We will begin with S = ∅ and A(0) = 0. We must show that at the end of every step 0 ≤ j < t, for t =
bε2 ||T ||2F / ||T ||

2c total iterations, there is a “good” i ∈ [m] \ Sj to add to Sj , i.e. a “good” vector vi for which
we can perform a rank-1 update to A(j) with vi . We will measure this “goodness” by a potential function;
this potential will guide this process throughout. For a b ∈ R, define the potential function w.r.t. b by

Φb(A) =
m∑
i=1

(T vi)
>(A− bI)−1(T vi) =

m∑
i=1

v>i (T >(A− bI)−1T )vi

for all A ∈ Rn×n. Note that since
∑m
i=1 viv

>
i = I , by Corollary 2, we may also compactly express Φb(A) as

Φb(A) = tr
[
T >(A− bI)−1T

]
We will show that if the Φb(A(j)) is sufficiently small, then there will be a “good” vector vi to add. Since each
rank-1 update can shift some eigenvalues of A(j), in order to keep adding vectors, we will also need to shift
the barrier appropriately at each step so as to keep the value of the potential sufficiently small. Specifically,
at iteration j, we will have a value bj for which Φbj (A

(j)) is sufficiently small. This will be made precise in

Lemma 9. The invariant we will maintain is: at the end of step j (after j vectors have been added), A(j) has
exactly j nonzero eigenvalues, which are all strictly greater than bj .

Thus, to satisfy the third guarantee of Theorem 10, it suffices to lower bound bt for t = bε2 ||T ||2F / ||T ||
2c.

The challenge is showing this process can be done without shifting the barriers too much; if we shift the
barrier too much, the lower bound on λ|S |

(∑
i∈S viv

>
i

)
at the end will not be interesting.

An interpretation of the parameter b in the potential function definition is that it serves as a “barrier”
for the eigenvalues of the A(j); for the purposes of our proof, this “barrier” will separate the nonzero (in
particular, positive) eigenvalues of A(j) from the zero eigenvalues.

We will now make this discussion formal. Specifically, we prove the two lemmas. The first is a supporting
claim. The second is the core of the argument; it will tell us when we can update A(j) and how much we are
allowed to move our barrier.

Lemma 8 (Lemma 3 from [30]). Suppose A � 0 has k nonzero eigenvalues, which are all strictly greater than
b > 0. If w , 0 and w>(A−bI)−1w < −1, then A+ww> has k+1 nonzero eigenvalues, which are all strictly greater
than b.

Lemma 9 (Lemma 4 from [30]). Suppose A � 0 and bold ∈ R; let Q be the orthonormal projection onto kerA. If
all of the following hold

(1) has k nonzero eigenvalues, which are all strictly greater than bold

(2) Φbold
(A) ≤ −m− (||T ||22 /δ)

(3) 0 < δ < b ≤ δ ||QT ||2F / ||T ||
2
2

w.r.t. b, then there exists an i ∈ [m] such that:

1. A+ (T vi)(T vi)> has k + 1 nonzero eigenvalues, which are all strictly greater than bnew = bold − δ

2. Φbnew
(A+ (T vi)(T vi)>) ≤ Φbold

(A).

First, let us see how these two lemmas combined allow us to prove Theorem 10. Notice that in the
previous lemma, guarantee 1 tells us how to shift the barrier, and guarantee 2 ensures that if Φbj (A

(j)) is

sufficiently small, then so is Φbj+1
(A(j+1)). This naturally leads to an inductive argument; we just need to

choose the initial barrier value b0 and the “step size” δ > 0 of the barrier at each iteration.
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Proof of Theorem 10. Initialize this iterative process with A(0) = 0 and

b0 =
(1− ε) ||T ||2F

m

and step size

δ =
(1− ε) ||T ||22

εm

Let 0 < ε < 1. Note that we may assume that ε2 ||T ||2F / ||T ||
2
2 ≥ 1 since the theorem is trivially true otherwise.

Our goal is to inductively prove that A(j) satisfies all conditions (1), (2) and (3) of Lemma 9 w.r.t. bj ,
for all steps 0 ≤ j ≤ t − 1, where t = bε2 ||T ||2F / ||T ||

2
2c, so that at least t vectors are added through this entire

process.

For the base case j = 0, note that A(0) = 0 trivially has 0 nonzero eigenvalues, satisfying (1); as a result,
we also have Q(0) = PkerA(0) = I . Furthermore, since A(0) = 0, we have by definition of the potential that

Φb0
(A(0)) = tr

[
T >(A(0) − b0I)

−1T
]

= − 1
b0

tr
[
T >T

]
= −
||T ||2F
b0

= − m
1− ε

= −m− εm
1− ε

= −m−
||T ||22
δ

so that (2) is satisfied as well. Finally, since ε < 1 and ε2 ||T ||2F / ||T ||
2
2 ≥ 1, we have ||T ||2F / ||T ||

2
2 ≥ 1/ε2 > 1/ε.

Thus,

δ =
(1− ε) ||T ||22

m
· 1
ε
<

(1− ε) ||T ||22
m

·
||T ||2F
||T ||22

= b0

and

b0 =
(1− ε) ||T ||2F

m
=

(1− ε) ||T ||22
m

·
||T ||2F
||T ||22

<
(1− ε) ||T ||22

εm
·
||T ||2F
||T ||22

= δ ·
||T ||2F
||T ||22

= δ ·

∣∣∣∣∣∣Q(0)T
∣∣∣∣∣∣2
F

||T ||22

using the fact that Q(0) = I . This verifies (3) and we have the base case for the induction.

Suppose (1), (2) and (3) are all satisfied up to some 0 ≤ j < t−1. Since A(j) satisfies (1), (2) and (3) w.r.t. bj , by
Lemma 9, we may choose 1 ≤ i ≤m such thatA(j+1) = A(j)+(T vi)(T vi)> has exactly k+1 nonzero eigenvalues,
all of which are strictly greater than bj+1 = bj − δ, and Φbj+1

(A(j+1)) ≤ Φbj (A
(j)). Note Lemma 9 immediately

tells us that A(j+1) satisfies (1); (2) also comes immediately since Φbj+1
(A(j+1)) ≤ Φbj (A

(j)) ≤ −m − (||T ||22 /δ),
where in the last inequality, we use the induction hypothesis. For (3), observe that

δ < bk = b0 − kδ ⇐⇒ δ(k + 1) < b0 ⇐⇒ k <
b0

δ
− 1 =

ε ||T ||2F
||T ||22

− 1 <⇐= k ≤
⌊
ε2 ||T ||2F
||T ||22

⌋
− 1 = t − 1

Since j < t − 1 =⇒ j + 1 ≤ t − 1, we have δ < bj+1, giving the left half of (3). Finally, observe that∣∣∣∣∣∣Q(j+1)T
∣∣∣∣∣∣2
F
≥

∣∣∣∣∣∣Q(j)T
∣∣∣∣∣∣2
F
− ||T ||22

so that

bj ≤ δ

∣∣∣∣∣∣Q(j)T
∣∣∣∣∣∣2
F

||T ||22
⇐⇒ bj+1 ≤ δ

∣∣∣∣∣∣Q(j)T
∣∣∣∣∣∣2
F

||T ||22
− δ ≤ δ

∣∣∣∣∣∣Q(j+1)T
∣∣∣∣∣∣2
F

+ ||T ||22
||T ||22

− δ = δ

∣∣∣∣∣∣Q(j+1)T
∣∣∣∣∣∣2
F

||T ||22
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This verifies that the right half of (3) holds for A(j+1) w.r.t. bj+1. This completes the induction.

Finally, after adding a total of t vectors, our barrier now sits at

b0 − tδ ≥
(1− ε) ||T ||2F

m
− ε2 ||T ||

2
F

||T ||22
·

(1− ε) ||T ||22
εm

=
(1− ε) ||T ||2F

m
−
ε(1− ε) ||T ||2F

m
=

(1− ε)2 ||T ||2F
m

Since all t nonzero eigenvalues of A(t) are strictly greater than bt = b0 − tδ, we have the desired bound.
Note that we also get the linear independence of {T vi}i∈S for free, since A(t) has exactly t = |S | nonzero
eigenvalues. This proves the theorem.

Now, it remains to prove the two lemmas.

Proof of Lemma 8. Let 0 < b < λ1 ≤ · · · ≤ λk be the nonzero eigenvalues of A. Let µ1 ≤ · · · ≤ µk+1 be the
k + 1 largest eigenvalues of A+ww>. By the Cauchy Interlacing Theorem (Theorem 8), we have that these
eigenvalues interlace.

µ1 ≤ λ1 ≤ · · · ≤ λk ≤ µk+1

Now, the Sherman-Morrison formula (Lemma 7) shows that

tr[(A+ww> − bI)−1]− tr[(A− bI)−1] = tr
[
(A− bI)−1 − (A− bI)−1ww>(A− bI)−1

1 +w>(A− bI)−1w

]
− tr[(A− bI)−1]

= − 1
1 +w>(A− bI)−1w

tr[(A− bI)−1ww>(A− bI)−1]

=
w>(A− bI)−2w

1 +w>(A− bI)−1w

where we use linearity of trace, the equality tr(AB) = tr(BA) (Lemma 4), as well as invertibility of A − bI
(which follows from the fact that all eigenvalues of A are either zero or strictly greater than b); note this
last quantity is positive, since (A − bI)−2 = ((A − bI)−1)2 being positive semidefinite and w , 0 implies the
numerator is positive, and the assumption that w>(A− bI)−1w < −1 implies the denominator is negative.

Now,

tr[(A− bI)−1] =
k∑
i=1

1
λi − b

+
n∑

i=k+1

1
0− b

= −n− k
b

+
k∑
i=1

1
λi − b

and

tr[(A+ww> − bI)−1] =
k+1∑
i=1

1
µi − b

+
n∑

i=k+2

1
0− b

= −n− k − 1
b

+
k+1∑
i=1

1
µi − b

Combining these, we have

0 < tr[(A+ww> − bI)−1]− tr[(A− bI)−1] =
1

µk+1 − b
+

1
b

+
k∑
i=1

(
1

µi − b
− 1
λi − b

)
≤ 1
µk+1 − b

+
1
b

where we use the fact that 1
µi−b
≤ 1
λi−b

, which follows from interlacing. Finally, since

0 <
1

µk+1 − b
+

1
b

=
b

b(µk+1 − b)
+

µk+1 − b
b(µk+1 − b)

=
µk+1

b(µk+1 − b)

and µk+1 > 0, we must have µk+1 > b.
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Proof of Lemma 9. Our goal is to prove that by moving the barrier by an amount δ > 0 that is not too large
and not too small, we can add a vector without increasing the value of the potential function. First, let us
write out the potential function of the matrix after the update w.r.t. bnew in terms of the potential function
of the matrix prior to the update w.r.t. bnew. Again, we use the Sherman-Morrison formula (Lemma 7).

Φbnew
(A+ww>) = tr

[
T >(A+ww> − bnewI)

−1T
]

= tr
[
T >(A− bnewI)

−1T
]
−

tr
[
T >(A− bnewI)−1ww>(A− bnew)−1T

]
1 +w>(A− bnewI)−1w

= Φbnew
(A)− w

>(A− bnewI)−1T T >(A− bnewI)−1w

1 +w>(A− bnewI)−1w

Again, our goal to ensure there exists a nonzerow ∈ {T vi}mi=1 such that the above is upper bounded by Φb(A),
the potential function evaluated at the previous matrix w.r.t. the previous barrier value.

Now, the set of nonzero vectors w satisfying both

Φbnew
(A)− w

>(A− bnewI)−1T T >(A− bnewI)−1w

1 +w>(A− bnewI)−1w
≤ Φb(A) and w>(A− bnewI)

−1w < −1

are precisely those for which

w>(A− bnewI)
−1T T >(A− bnewI)

−1w ≤ (Φb(A)−Φb−δ(A)) · (−1) · (1 +w>(A− bnewI)
−1w)

by applying the second inequality to the first.

Now, to show that there exists a w ∈ {T vi}mi=1 satisfying this, it suffices to show that the sum over {T vi}mi=1 of
the left-hand side is less than or equal to the sum over {T vi}mi=1 of the right-hand side.

m∑
i=1

v>i T
>(A− bnewI)

−1T T >(A− bnewI)
−1T vi ≤ (Φb(A)−Φb−δ(A)) ·

m∑
i=1

(−1) · (1 + v>i T
>(A− bnewI)

−1T vi)

By Corollary 2, we can rewrite both sides of the above inequality as

tr
[
T >(A− bnewI)

−1T T >(A− bnewI)
−1T

]
≤ (Φb(A)−Φbnew

(A)) · (−1) ·
(
m+ tr

[
T >(A− bnewI)

−1T
])

= (Φb(A)−Φbnew
(A)) · (−m−Φbnew

(A))

For this, it suffices to prove the following tighter bound.

tr
[
T >(A− bnewI)

−1T T >(A− bnewI)
−1T

]
≤ (Φb(A)−Φbnew

(A)) ·
(
||T ||22
δ

+ (Φb(A)−Φbnew
(A))

)
since Φb(A) ≤ −m− (||T ||22 /δ) implies

Φb−δ(A) = Φb(A)− (Φb(A)−Φbnew
(A)) ≤ −m−

||T ||22
δ
− (Φb(A)−Φb−δ(A))

Towards this, we first make the observation that since T T > � ||T ||22 I ,

T >(A− bnewI)
−1T T >(A− bnewI)

−1T � ||T ||22 · T
>(A− bnewI)

−2T

and so by Corollary 1 we can bound the trace as

tr
[
T >(A− bnewI)

−1T T >(A− bnewI)
−1T

]
≤ ||T ||22 tr

[
T >(A− bnewI)

−2T
]
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Thus, to prove the lemma, it suffices to show that

||T ||22 tr
[
T >(A− bnewI)

−2T
]
≤ (Φb(A)−Φbnew

(A)) ·
(
||T ||22
δ

+ (Φb(A)−Φbnew
(A))

)
Now, decompose I into P +Q, where P ,Q are the orthogonal projections (i.e. satisfying P 2 = P = P > and
Q2 =Q =Q>) onto im(A) and ker(A), respectively. Since P ,Q,A, (A−bnew)−1 and (A−bnewI)−2 are mutually
diagonalizable by Lemma 3, we may decompose our potential function into

Φb(A) = ΦP
b (A) +Φ

Q
b (A), where ΦP

b (A) def= tr
[
T >P (A− boldI)

−1P T
]
,ΦQ

b (A) def= tr
[
T >Q(A− boldI)

−1QT
]

and the trace above into

tr
[
T >(A− bnewI)

−2T
]

= tr
[
T >P (A− bnewI)

−2P T
]
+ tr

[
T >Q(A− bnewI)

−2QT
]

using Corollary 3. Will then proceed by bounding each of the two terms on the right-hand side separately.

Let’s consider the term corresponding to P first. Now, x>(A − boldI)−1x ≥ 0 for all x ∈ im(A) since the
eigenvectors of (A − boldI)−1 corresponding to the k nonnegative eigenvalues of (A − boldI)−1 (which exist
since A has exactly k nonzero eigenvalues, all larger than b) span im(A). Since P is the projection onto
im(A) and P = P >, P x = P >x ∈ im(A) so that x>P (A− boldI)−1P x = (P x)>(A− boldI)−1(P x) ≥ 0 for all x ∈ Rn.
Thus, P (A − boldI)−1P � 0. By the same reasoning, since 0 < bnew < b, P (A − bnewI)−1P � 0. As a result, we
have

δP (A− bnewI)
−1P � P (A− boldI)

−1P − P (A− bnewI)
−1P

which immediately implies

tr
[
T >P (A− bnewI)

−2P T
]
≤ 1
δ

tr
[
T >

[
P (A− boldI)

−1P − P (A− bnewI)
−1P

]
T
]

=
1
δ

tr
[
T >P (A− boldI)

−1P T
]
− tr

[
T >P (A− bnewI)

−1P T
]

=
1
δ

(
ΦP
b (A)−ΦP

bnew
(A)

)
Now, let’s turn to the term corresponding to Q. First, we make the following trace computations:

tr
[
T >Q(A− bnewI)

−2QT
]

=
||QT ||2F
b2

new

and

Φ
Q
b (A)−ΦQ

bnew
(A) = tr

[
T >Q

(
(A− boldI)

−1 − (A− bnewI)
−1

)
QT

]
= δ
||QT ||2F
bbnew

This is where we will use the assumption that b ≤ δ ||QT ||2F / ||T ||
2
2 ⇐⇒ ||T ||22 ≤ δ ||QT ||

2
F /b. Combining this

with our trace computations, we have

||T ||22 tr
[
T >Q(A− bnewI)

−2QT
]
≤

(
Φ
Q
b (A)−ΦQ

bnew
(A)

)( ||T ||22
δ

+
(
Φ
Q
b (A)−ΦQ

bnew
(A)

))
This immediately implies

||T ||22 tr
[
T >Q(A− bnewI)

−2QT
]
≤ (Φb(A)−Φb−δ(A))

(
||T ||22
δ

+ (Φb(A)−Φb−δ(A))
)
− (Φb(A)−Φb−δ(A)) ·

||T ||22
δ

Combining with the bound

tr
[
T >P (A− bnewI)

−2P T
]
≤ 1
δ

(
ΦP
b (A)−ΦP

bnew
(A)

)
we obtained earlier for the term corresponding to P , we have

||T ||22 tr
[
T >(A− bnewI)

−2T
]
≤ (Φb(A)−Φbnew

(A)) ·
(
||T ||22
δ

+ (Φb(A)−Φbnew
(A))

)
proving the lemma.
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4.3 An Algorithm

The original proof of the restricted invertibility was nonconstructive. It did not naturally give an algorithm
to find such a well-invertible column submatrix. Tropp [23] gave the first randomized polynomial time
algorithm to compute such a submatrix.

Theorem 12 (Theorem 5.7 from [23]). There exists an algorithm such that given a matrix A ∈ Rm×n satisfying
||Ai ||2 = 1, for all columns Ai of A, produces a S ⊂ [m] such that |S | ≥ c ||A||2F / ||A||

2
2 and κ(AS ) ≤

√
3, where c > 0

is an absolute constant. Furthermore, this algorithm runs in Õ(|S |2m+ |S |3.5) time.

The core of the algorithm given in [23] is based on repeatedly sampling a uniformly random subset σ
of [m] and then solving a convex program over the probability simplex (to compute something known as a
Grothendieck factorization) to obtain a subset of σ as a candidate solution. We refer the reader to [23] for
details.

The proof of Theorem 10 suggests a completely different algorithm that is much simpler to understand
and analyze. It also has the added benefit of being completely deterministic, and runs in O(mn3)-time.

Algorithm 1

Input: vectors v1, . . . , vm ∈ Rn satisfying
∑m
i=1 viv

>
i = I ; a linear operator T : Rn → Rn provided as a square

matrix in Rn×n; 0 < ε < 1
Output: a set S of indices satisfying the guarantees of Theorem 10

1: compute and cache ||T ||2F and ||T ||22
2: compute and cache T vi for all 1 ≤ i ≤m
3: compute and cache outer product (T vi)(T vi)> for all 1 ≤ i ≤m
4: initialize S = ∅, b0 = (1− ε) ||T ||2F /m, δ = (1− ε) ||T ||22 /εm, A(0) = 0
5: while True do
6: bj+1← bj − δ
7: if bj+1 > (1− ε)2 · ||T ||2F /m then
8: return S
9: end if

10: compute (A− bj+1I)−1

11: for i = 1, . . . ,m do
12: compute eigenvalues of A(j) + (T vi)(T vi)>

13: compute Φbj+1
(A(j) + (T vi)(T vi)>)

14: if λj+1(A(j) + (T vi)(T vi)>) > bj+1 && Φbj+1
(A(j) + (T vi)(T vi)>) ≤ Φbj (A

(j)) then

15: A(j+1)← A(j) + (T vi)(T vi)>

16: S← S ∪ {i}
17: break out of for-loop
18: end if
19: end for
20: if A(j+1) is not created (no good update remaining) then
21: return S
22: end if
23: end while
24: return S
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5 Warm-Up II: Spectral Graph Sparsification

5.1 Prior Work

Problem 2 (Graph Sparsification). Suppose we are given an undirected weighted graph G = (V ,E,w), where
w : E→ R≥0. Does G have a (re)weighted subgraph H = (V ,Ẽ, w̃) such that H is sparse, having ,say, Õ(n) edges,
but still approximates G in some sense that we are interested in?

Graph sparsification naturally finds applications in big data. Large graphs are pervasive in machine
learning, social network analysis, etc. in today’s world. In most cases, these graphs cannot be stored in
the memory of a single or a small number of computers and so we need new techniques to handling these
graphs efficiently. Without preprocessing, such as sparsification, scaling up our algorithms will be difficult.

One metric for “approximation” considered in the late 90s in a work of Benczur-Karger was cut size. They
proved the following result, which immediately led to

1. an Õ(n2/ε2)-time algorithm for computing a (1 + ε)-approximation to the value of the minimum s-t
cut of an undirected graph (Corollary 1.3 from [12])

2. an Õ(n2/ε2)-time algorithm for computing an O(logn)-approximation to the sparsest cut (Corollary
1.5 from [12])

Theorem 13 (Theorem 1.2 from [12]). Let G = (V ,E,w) be an undirected weighted graph, and ε > 0. There
exists an O(m log3n) algorithm that, with high probability, produces a subgraph H = (V ,Ẽ, w̃) such that:

1. |Ẽ| ≤ O(n logn/ε2), i.e. H is sparse.

2. (1− ε) · |EG(S,S)| ≤ |EH (S,S)| ≤ (1 + ε) · |EG(S,S)| for all cuts (S,S).

We will concern ourselves with a stronger form of approximation, namely that of spectral sparsification. We
say that H = (V ,Ẽ, w̃) is a (1± ε)-spectral sparsifier of G if

(1− ε) ·LG � LH � (1 + ε) ·LG

that is,

(1− ε) · x>LGx ≤ x>LHx ≤ (1 + ε) · x>LGx

for all x ∈ Rn. This is a stronger form of approximation than cut sparsification in the sense that a (1 ± ε)-
spectral sparsifier is also a (1± ε)-cut sparsifier, since H is a cut sparsifier if

(1− ε) · x>LGx ≤ x>LHx ≤ (1 + ε) · x>LGx

holds only for all x ∈ {0,1}n = {1S : S ⊂ V }. This notion of sparsification was first used in a work of Spielman-
Teng [18], who used it to produce nearly linear-time solvers for certain types of linear systems. They were
formally introduced by Spielman-Teng in 2008 [22], where they gave an algorithm that produces a spectral
sparsifier with O(n logc n) edges, for some (large) absolute constant c.

Soon after, Spielman-Srivastava made a significant improvement to previous works based off of sampling
edges with probability proportional to their effective resistances, and then applying dimensionality reduc-
tion and matrix concentration.

Theorem 14 (Theorem 1 from [21]). There exists a Õ(m/ε2)-time algorithm such that, given an undirected
weighted graphG = (V ,E,w), with probability at least 1/2, returns a (1±ε)-spectral sparsifier ofGwithO(n logn/ε2)
edges.

Below, we will give a fully deterministic algorithm that produces a (1 + ε)-spectral sparsifier in O(n/ε2)
edges in time O(mn3/ε2). While this is significantly slower, the algorithm is fully deterministic, and the
techniques used are of theoretical interest in themselves.
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5.2 “Twice Ramanujan” Sparsifiers

The main result of this section is as follows. The constant (d + 1 + 2
√
d)/(d + 1− 2

√
d) is what motivates the

name “twice Ramanujan”; in the special case when the graph is an unweighted complete graph, it says we
can spectrally approximate at least this well with a weighted graph that has at most twice as many edges
as a Ramanujan graph (see Definition 11 below).

Theorem 15 (Theorem 1.1 from [27]). For every d > 1 and every undirected weighted graph G = (V ,E,w) with
n = |V |,m = |E|, there is a weighted subgraph H = (V ,Ẽ, w̃) with |Ẽ| = dd · (n− 1)e that satisfies

LG � LH �
(
d + 1 + 2

√
d

d + 1− 2
√
d

)
·LG

An immeidate corollary is the fact that we can obtain (1 + ε)-spectral sparsifiers.

Corollary 5. For every ε > 0 and every undirected weighted graph G = (V ,E,w) with n = |V |,m = |E|, there is a
weighted subgraph H = (V ,Ẽ, w̃) with |Ẽ| ≤ O(n/ε2) that satisfies

LG � LH � (1 + ε) ·LG

that is, there is a (1 + ε)-approximate spectral sparsifier of G with O(n/ε2) edges.

Proof. Observe that

d + 1 + 2
√
d

d + 1− 2
√
d

=
(d + 1− 2

√
d) + 4

√
d

d + 1− 2
√
d

= 1 +
4
√
d

d + 1− 2
√
d
≤ 1 +

c
√
d

for some constant c > 0. Let ε > 0 and G = (V ,E,w) be an undirected weighted graph. Choose d = dc2/ε2e so
that
√
d ≥
√
c2/ε2 = c/ε =⇒ c/

√
d ≤ ε, which implies

1 ≤ d + 1 + 2
√
d

d + 1− 2
√
d
≤ 1 +

c
√
d
≤ 1 + ε

Theorem 15 shows that there is a weighted subgraph H = (V ,Ẽ, w̃) with |Ẽ| = dd · (n−1)e ≤ O(n/ε2) such that

LG � LH �
(
d + 1 + 2

√
d

d + 1− 2
√
d

)
·LG � (1 + ε) ·LG

The core of the proof lies in a purely linear algebraic statement very similar to Theorem 10 on restricted
invertibility.

Theorem 16 (Theorem 3.1 from [27]). Let d > 1, and v1, . . . , vm ∈ Rn satisfy
∑m
i=1 viv

>
i = I . Then, there is a

subset S ⊂ [m] with |S | ≤ dn and nonzero scalars si > 0, for all i ∈ S, such that

I �
∑
i∈S

siviv
>
i �

(
d + 1 + 2

√
d

d + 1− 2
√
d

)
· I

Let’s first see how Theorem 15 follows from this fact.

Proof of Theorem 15. Let G = (V ,E,w) be an undirected weighted graph on n vertices with m edges; order
the edges of G and label them by indices i ∈ [m]. We will assume G is connected: if G is disconnected, we
can apply the same argument to the connected components of G. Let LG = B>WB be the Laplacian of G.
We will restrict our attention to im(LG) = span{1}⊥ � Rn−1 and let d > 1 be arbitrary. Consider the columns
v1, . . . , vm of V = (L†G)1/2B>W 1/2 ∈ Rn×m. Note that

m∑
i=1

viv
>
i = VV > = (L†G)1/2B>W 1/2(W 1/2)>B

(
(L†G)1/2

)>
= (L†G)1/2B>WB(L†G)1/2 = (L+

G)1/2L1/2
G L1/2

G (L†G)1/2 = Iim(LG)
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Theorem 16 furnishes a subset S ⊂ [m] of size at most d(n− 1) and scalars si ≥ 0 with si > 0 for all i ∈ S and
si = 0 for all i < S, such that

Iim(LG) �
m∑
i=1

siviv
>
i = V SV > � κ · Iim(LG)

where for convenience, we set S = diag(s1, . . . , sm) ∈ Rm×m, and κ = (d + 1 + 2
√
d)/(d + 1 − 2

√
d). Let LH =

B>W 1/2SW 1/2B be the Laplacian of a reweighted subgraph H with edge weights w̃i = wisi for all i ∈ E.
Since at most d(n−1) indices i have si > 0, H has edge set Ẽ = {i ∈ E : si > 0}, which is of size at most d(n−1).
It remains to verify that H is a κ-approximate spectral sparsifier of G. For this, observe that

Iim(LG) � V SV > � κ · Iim(LG) ⇐⇒ Iim(LG) � (L†G)1/2B>W 1/2SW 1/2B(L†G)1/2 � κ · Iim(LG)

⇐⇒ Iim(LG) � (L†G)1/2LH (L†G)1/2 � κ · Iim(LG)

⇐⇒ y>y ≤ y>(L†G)1/2LH (L†G)1/2y ≤ κ · y>y, ∀y ∈ im(LG) = im(L1/2
G )

⇐⇒ x>(L1/2
G )>(L1/2

G )x ≤ x>(L1/2
G )(L†G)1/2LH (L†G)1/2(L1/2

G )x ≤ κ · x>(L1/2
G )>(L1/2

G )x

∀x ∈ ker(LG)⊥ = span{1}⊥

⇐⇒ x>LGx ≤ x>LHx ≤ x>LGx, ∀x ⊥ 1
⇐⇒ LG � LH � κ ·LG

5.3 Intuition with Interlacing

Before we dive into the details of the proof, here is a heuristic calculation that tells us why we might be able
to prove a result like Theorem 16.

Suppose we have some symmetric matrix A ∈ Rn×n with real eigenvalues λ1, . . . ,λn and orthonormal eigen-
vectors u1, . . . ,un. choose a uniformly random vector v from {vi}m1 . Then, in expectation,

E[|〈v,uj〉|2] =
1
m

m∑
i=1

u>j viv
>
i uj =

1
m
u>j

 m∑
i=1

viv
>
i

uj =

∣∣∣∣∣∣uj ∣∣∣∣∣∣2
m

=
1
m

In particular, making a uniformly random rank-one update, in expectation, shifts all eigenvalues upward
around the same amount of 1/m. Thus, after updating A over many iterations, we’d expect the condition
number λmax(A)/λmin(A) to remain bounded; the largest and smallest eigenvalues won’t drift too much.

It turns out that this averaging intuition does work in the following sense: if we explicitly compute the
expected characteristic polynomial of A+ vv>, using the same argument as in the Cauchy Interlacing The-
orem (Theorem 8), we have

E[χA+vv>(x)] = E

χA(x)

1−
n∑
j=1

|〈v,uj |2

x −λj


 = χA(x)

1−
n∑
j=1

E[|〈v,uj〉|2]

x −λj

 = χA(x)

1− 1
m

n∑
j=1

1
x −λj


Expanding out this last expression and applying the differentiation product rule,

n∏
i=1

(x −λi)−
1
m

n∑
j=1

∏
k,j

(x −λk) = χA(x)− 1
m
χ′A(x)

Thus, starting with A = 0 and adding averages iteratively, after k rounds, we get

χA(k)(x) =
(
1− 1

m
· d
dx

)k
χA(0)(x) =

(
1− 1

m
· d
dx

)k
xn

19



This last expression is a well-known object: the set of such polynomials of that form, for k ≥ 0 forms a
family of orthogonal polynomials known as the Laguerre polynomials. It’s roots are very-well studied and
it is known that after k = dn rounds (see Theorem 4.4 from [10]), we will have

λmax(A(k))

λmin(A(k))
=
d + 1 + 2

√
d

d + 1− 2
√
d

This is precisely the bound we hope for. This would be ideal also because it would lead to unweighted spec-
tral sparsifiers, since at every step, we add the same amount of every vector vi .

The main problem with this argument of course is that we are not allowed to add averages of vectors.
We actually need to choose a single vector from {vi}mi=1 at each step. This is why we need the weights si and
also why the argument is much more complicated.

5.4 Two Univariate Barriers

Our goal now is to prove Theorem 16. As in restricted invertibility, build up S and the constants si it-
eratively. The argument will inductive, except now, we will employ both a “lower” barrier as well as an
“upper” barrier. We need both because now, we are trying to guarantee both a lower bound as well as an
upper bound on the eigenvalues of

∑
i∈S siviv

>
i . One can visualize the lower barrier as repelling all of the

eigenvalues of
∑
i∈S siviv

>
i upwards (which naturally happens as we make more rank-one updates), while

the upper barrier keeps the top eigenvalue of
∑
i∈S siviv

>
i close the smallest eigenvalue.

For a symmetric matrix A ∈ Rn×n with eigenvalues λ1 ≤ · · · ≤ λn, and “barrier” values `,u ∈ R (with ` ≤ u),
we define the lower barrier w.r.t. ` of A by

Φ`(A) def= tr[(A− `I)−1] =
n∑
i=1

1
λi − `

and the upper barrier w.r.t. u of A by

Φu(A) def= tr[(uI −A)−1] =
n∑
i=1

1
u −λi

Let’s first analyze each barrier separately. We prove the following two lemmas on their movement.

Lemma 10 (Shifting Upper Barrier; Lemma 3.3 from [27]). Let A ∈ Rn×n be symmetric and let v ∈ Rn be any
vector. Let uold > 0 satisfy λmax(A) < uold, and unew = uold + δu for some δu > 0. Let s > 0. If

UA(v) def=
v>(unewI −A)−2v

Φuold(A)−Φunew(A)
+ v>(unewI −A)−1v ≤ 1

s

then

Φunew(A+ svv>) ≤ Φu(A) and λmax(A+ svv>) < unew

Proof. First, we apply the Sherman-Morrison Formula (Lemma 7) to express the potential of the updated
matrix w.r.t. the new barrier in terms of the potential of the old matrix w.r.t. the old and new barrier values.

Φunew(A+ svv>) = tr
[(
unewI −A− svv>

)−1
]

= tr
[
(unewI −A)−1 +

s(unewI −A)−1vv>(unewI −A)−1

1− sv>(unewI −A)−1v

]

= tr
[
(unewI −A)−1

]
+
s tr

[
(unewI −A)−1vv>(unewI −A)−1

]
1− sv>(unewI −A)−1v

= Φunew(A) +
v>(unewI −A)−2v

(1/s)− v>(unewI −A)−1v

= Φuold(A)− (Φuold(A)−Φunew(A)) +
v>(unewI −A)−2v

(1/t)− v>(unewI −A)−1v
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Note since 1/s ≥ UA(v) > v>(unewI −A)−1v by assumption, the denominator of the last term is finite. Thus,
to prove that Φunew(A+ svv>) ≤ Φu(A), it suffices to prove

− (Φuold(A)−Φunew(A)) +
v>(unewI −A)−2v

(1/t)− v>(unewI −A)−1v
≤ 0

Rearranging, this is precisely UA(v) ≤ 1/s, which is what we assumed. This gives the first guarantee.

For the second guarantee, observe that Φunew(A+svv>) is finite for every s > 0. Now, if λmax(A+svv>) ≥ unew,
then there exists some 0 < s̃ ≤ s such that λmax(A + s̃vv>) = unew, which would lead to Φunew(A + s̃vv>), a
contradiction. Thus, we have λmax(A+ svv>) < unew as well.

Lemma 11 (Shifting Lower Barrier; Lemma 3.4 from [27]). Let A ∈ Rn×n be symmetric and let v ∈ Rn be any
vector. Let `old > 0 satisfy λmin(A) > `old, δ` > 0 satisfy Φ`(A) ≤ 1/δ`, and `new = `old + δ`. Let s > 0. If

LA(v) def=
v>(A− `newI)−2v

Φ`new
(A)−Φ`old

(A)
− v>(A− `newI)

−1v ≥ 1
s
> 0

then

Φ`new
(A+ svv>) ≤ Φ`old

(A) and λmin(A+ svv>) > `new

Proof. Observe that since λmin(A) > `old, all eigenvalues of A are strictly larger than `old. Hence, 1
λi−`old

> 0

for all 1 ≤ i ≤ n. Combining this with Φ`old
(A) =

∑n
i=1

1
λi−`old

≤ 1/δ` shows that 1
λmin(A)−`old

< 1/δ`. Rearrang-
ing shows λmin(A) > `old + δ` = `new. Hence, for every s > 0, λmin(A+ svv>) > λmin(A) > `new. The intuition
here is that Φ`old

(A) being bounded implies the eigenvalues of A are a “safe” distance away from `old, the
previous barrier value. This proves the second guarantee.

As above, for the first guarantee, we begin by applying the Sherman-Morrison Formula (Lemma 7) to
express the potential of the updated matrix w.r.t. the new barrier in terms of the potential of the old matrix
w.r.t. the old and new barrier values.

Φ`new
(A+ svv>) = tr

[(
A+ svv> − `newI

)−1
]

= tr
[
(A− `newI)

−1 − s(A− `newI)−1vv>(A− `newI)−1

1 + sv>(A− `newI)−1v

]

= tr
[
(A− `newI)

−1
]
−
s tr

[
(A− `newI)−1vv>(A− `newI)−1

]
1 + sv>(A− `newI)−1v

= Φ`new
(A)− v>(A− `newI)−2v

(1/s) + v>(A− `newI)−1v

= Φ`old
(A) +

(
Φ`new

(A)−Φ`old
(A)

)
− v>(A− `newI)−2v

(1/s) + v>(A− `newI)−1v

Thus, to prove Φ`new
(A+ svv>) ≤ Φ`old

(A), it suffices to show

(
Φ`new

(A)−Φ`old
(A)

)
− v>(A− `newI)−2v

(1/s) + v>(A− `newI)−1v
≤ 0

Rearranging, we have LA(v) ≥ 1/s, which is what we assumed.

Now, we are almost ready for movement of both barriers. Before we dive in, we need one final technical
lemma.

Lemma 12 (Claim 3.6 from [27]). Suppose λmin(A) > `old, 0 ≤ Φ`old
(A) ≤ ε` and 1

δ`
− ε` ≥ 0. Then∑n

i=1(λi − `new)−2

δ`
∑n
i=1(λi − `new)−1(λi − `old)−1 −Φ`new

(A) ≥ 1
δ`
−Φ`old

(A)
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Proof. Observe that since 1
δ`
− ε` ≥ 0, δ` ≤ 1/ε`. Furthermore, since 1

λmin(A)−`old
<
∑n
i=1

1
λi−`old

= Φ`old
(A) ≤ ε`,

we have λmin(A) − `old > 1/ε`. Putting these together, we see that λmin(A) − `old > δ` =⇒ λmin(A) > `new.
Thus, every term of

∑n
i=1(λi − `new)−1 is strictly positive.

Now, rearranging the desired result gives

n∑
i=1

(λi − `new)−2 ≥
(

1
δ`

+Φ`new
(A)−Φ`old

(A)
)δ` n∑

i=1

(λi − `new)−1(λi − `old)−1


=

 1
δ`

+ δ`
n∑
i=1

(λi − `new)−1(λi − `old)−1


δ` n∑

i=1

(λi − `new)−1(λi − `old)−1


=

n∑
i=1

(λi − `new)−1(λi − `old)−1 +

δ` n∑
i=1

(λi − `new)−1(λi − `old)−1

2

Moving the first term of the right-hand side to the left-hand side, we equivalently have

δ`

n∑
i=1

(λi − `new)−2(λi − `old)−1 ≥

δ` n∑
i=1

(λi − `new)−1(λi − `old)−1

2

Thus, it suffices to prove this identity. Now, let x,y ∈ Rn be the vectors with entries xi = (λi − `old)−1/2 and
yi = (λi − `new)−1(λi − `old)−1/2 respectively. Then, the right hand side becomes δ2

` |〈x,y〉|
2. Applying the

Cauchy-Schwarz Inequality and the fact that 1
δ`
− ε` ≥ 0 =⇒ 1 ≥ δ`ε`, we have

δ2
` |〈x,y〉|

2 ≤ δ2
` ||x||

2
2

∣∣∣∣∣∣y∣∣∣∣∣∣2
2

= δ`

 n∑
i=1

(λi − `old)−1


δ` n∑

i=1

(λi − `new)−2(λi − `old)−1


= δ`Φ`old

(A)

δ` n∑
i=1

(λi − `new)−2(λi − `old)−1


≤ (δ`ε`)

δ` n∑
i=1

(λi − `new)−2(λi − `old)−1


≤ δ`

n∑
i=1

(λi − `new)−2(λi − `old)−1

This is the desired bound and the lemma is proved.

Lemma 13 (Shifting Both Barriers; Lemma 3.5 from [27]). Let A ∈ Rn×n be symmetric. Let uold, `old > 0 satisfy
λmax(A) < uold and λmin(A) > `old. Let εu ,ε` ,δu ,δ` > 0 satisfy Φuold(A) ≤ εu , Φ`old

(A) ≤ ε`, and

0 ≤ 1
δu

+ εu ≤
1
δ`
− ε`

Set unew = uold + δu and `new = `old + δ`. Then, there exists an 1 ≤ i ≤m and a s > 0 such that

1. UA(vi) ≤ 1/s ≤ LA(vi)

2. λmax(A+ sviv
>
i ) < unew

3. λmin(A+ sviv
>
i ) > `new

4. Φunew(A+ sviv
>
i ) ≤ εu

5. Φ`new
(A+ sviv

>
i ) ≤ ε`
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where UA(v),LA(v) are defined as in Lemma 10 and Lemma 11.

Proof. We will first show that
∑m
i=1LA(vi) ≥

∑m
i=1UA(vi). First, we write out the right-hand side and apply

Corollary 2 with the fact that
∑m
i=1 viv

>
i = I .

m∑
i=1

UA(vi) =

∑m
i=1 v

>
i (unewI −A)−2vi

Φuold(A)−Φunew(A)
+

m∑
i=1

v>i (unewI −A)−1vi

=
tr

[
(unewI −A)−2

]
Φuold(A)−Φunew(A)

+ tr
[
(unewI −A)−1

]
=

∑n
i=1(unew −λi)2∑n

i=1 ((uold −λi)−1 − (unew −λi)−1)
+Φunew(A)

=
∑n
i=1(unew −λi)2

δu
∑n
i=1(uold −λi)−1(unew −λi)−1 +Φunew(A)

Since unew > uold, we have the denominator of the first term is larger than the numerator of the first term.
Hence, we can upper bound the above as

1
δu

+Φunew(A) ≤ 1
δu

+Φuold(A) ≤ 1
δu

+ εu

Now, we write out
∑m
i=1LA(vi). Using almost exactly the same manipulations, we have

m∑
i=1

LA(vi) =

∑m
i=1 v

>
i (A− `newI)−2vi

Φ`new
(A)−Φ`old

(A)
−

m∑
i=1

v>i (A− `newI)
−1vi

=
tr

[
(A− `newI)−2

]
Φ`new

(A)−Φ`old
(A)
− tr

[
(A− `newI)

−1
]

=
∑n
i=1(λi − `new)−2∑n

i=1 ((λi − `new)−1 − (λi − `old)−1)
−Φ`new

(A)

=
∑n
i=1(λi − `new)−2

δ`
∑n
i=1(λi − `new)−1(λi − `old)−1 −Φ`new

(A)

Note, we cannot use a similar argument as when we proved an upper bound on
∑m
i=1UA(vi) to prove a

lower bound for
∑m
i=1LA(vi), since now, both the lower barrier as well as the eigenvalues of A have shifted

upwards. The denominator of the first term above, after removing δ`, is still larger than the numerator, so
we cannot lower bound the above expression by 1

δ`
−Φ`new

(A). Fortunately, by Lemma 12, we can still lower
bound it by

1
δ`
−Φ`old

(A) ≥ 1
δ`
− ε`

Thus, we have the following desired chain of inequalities:

m∑
i=1

UA(vi) ≤
1
δu

+ εu ≤
1
δ`
− ε` ≤

m∑
i=1

LA(vi)

This shows that there exists 1 ≤ i ≤ m such that UA(vi) ≤ LA(vi), since otherwise, we’d have
∑m
i=1UA(vi) >∑m

i=1LA(vi), a contradiction. Since LA(vi) ≥ UA(vi) > 0, we also have that there exists s > 0 such that
UA(vi) ≤ 1/s ≤ LA(vi) (for example, one can use continuity of 1/x with the Intermediate Value Theorem).
Furthermore, for this choice of 1 ≤ i ≤m and s > 0, we have:

1. λmax(A + sviv
>
i ) < unew and Φunew(A + sviv

>
i ) ≤ Φuold(A) ≤ εu by Lemma 10, since UA(vi) ≤ 1/s and

λmax(A) < uold
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2. λmin(A + sviv
>
i ) > `new and Φ`new

(A + sviv
>
i ) ≤ Φ`old

(A) ≤ ε` by Lemma 11, since LA(vi) ≥ 1/s and
λmin(A) > `old

This completes the proof.

With the ability to shift both barriers and reason about the resulting potential function values, eigen-
values, and barrier values, we are ready to prove the main theorem.

Proof of Theorem 16. We will inductively build a sequence of matrices A(t) given by
∑
i∈St siviv

>
i , where St is

the state of S after round t; we will also keep track of upper and lower barrier values ut , `t . Specifically, we
will prove that for each of 0 ≤ t < dn steps:

(1) λmax(A(t)) < ut

(2) λmin(A(t)) > `t

(3) Φut (A(t)) ≤ εu

(4) Φ`t (A
(t)) ≤ ε`

We still need to choose our step size constants δu ,δ` > 0, our potential upper bounds εu ,ε` > 0 and our
initial barrier values u0, `0 so that the requirements of Lemma 13 are satisfied. For this, we will take

δ` = 1 δu =

√
d + 1
√
d − 1

ε` =
1
√
d

εu =

√
d − 1

d +
√
d

`0 =
−n
ε`

u0 =
n
εu

It is easy to check that

1
δu

+ εu =
1
δ`
− ε`

Initially, we have λmax(A(0)) = 0 < u0, λmin(A(0)) = 0 > `0, and

Φu0(A(0)) = tr
[
(u0I)

−1
]

=
tr[I]
u0

= εu

Φ`0
(A(0)) = tr

[
(−`0I)

−1
]

=
tr[I]
−`0

= ε`

If we assume (1), (2), (3), and (4) all hold up to some t ≥ 0, then by Lemma 13, there exists some 1 ≤ i ≤m
and si > 0 such that A(t+1) = A(t) + siviv

>
i satisfy (1), (2), (3), and (4). This completes the induction.

Since we run at most dn iterations of this process, we obtain a set S ⊂ [m] of size at most dn. It remains to
reason about the eigenvalues of A(dn) =

∑
i∈S siviv

>
i . For this, using (1) and (2), we have

d + 1− 2
√
d = `0 + dnδ` = `dn < λmin(A(dn)) ≤ λmax(A(dn)) < udn = u0 + dnδu = d + 1 + 2

√
d

and so

(d + 1− 2
√
d) · I �

∑
i∈S

siviv
>
i � (d + 1 + 2

√
d) · I

Dividing by d + 1− 2
√
d and replacing each nonzero si with si /(d + 1− 2

√
d) proves the theorem.

5.5 An Algorithm

Just as in restricted invertibility, the barrier argument naturally lends itself to an algorithm for construct-
ing spectral sparsifiers. The algorithm has the advantage of being fully deterministic, and also improves
upon the sparsity of the subgraph produced. The only down-side is that it is slow, taking O(dn3m)-time to
compute a (d + 1 + 2

√
d)/(d + 1− 2

√
d)-spectral sparsifier. To produce a (1± ε)-spectral sparsifier, one needs

to set d ≈ 1/ε2. Hence, this algorithm requires O(n3m/ε2) time to compute a (1± ε)-spectral sparsifier.
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Algorithm 2

Input: weighted graph G = (V ,E,w); d > 1
Output: a (d + 1 + 2

√
d)/(d + 1− 2

√
d)-spectral sparsifier H = (V ,Ẽ, w̃) with Ẽ ⊂ E

1: set δ` = 1, δu = (
√
d + 1)/(

√
d − 1), ε` = 1/

√
d, εu = (

√
d − 1)/(d +

√
d), `0 = −n/ε` and u0 = n/εu

2: initialize A = 0
3: initialize sparsifier H with vertex set V , Ẽ = ∅, w̃(e) = 0 for all e ∈ E
4: compute B ∈ Rm×n, W ∈ Rm×m and LG = B>WB from G
5: compute eigendecomposition of LG and then compute (L†G)1/2

6: compute V = (L†G)1/2B>W 1/2; let v1, . . . , vm be the columns of V
7: for round t = 0, . . . ,dn− 1 do
8: set ut+1 = ut + δu , `t+1 = `t + δ`
9: compute (utI −A)−1, (A− `tI)−1, (ut+1I −A)−1, (A− `t+1I)−1, (ut+1I −A)−2, (A− `t+1I)−2

10: take traces to obtain Φut+1(A), Φut (A), Φ`t+1
(A), Φ`t (A)

11: for i = 1, . . . ,m do
12: compute UA(vi), LA(vi)
13: if UA(vi) ≤ LA(vi) then
14: choose si > 0 such that UA(vi) ≤ 1/si ≤ LA(vi) (for example, one can take si = 1/LA(vi))
15: update A← A+ siviv

>
i

16: Ẽ← Ẽ ∪ {i}
17: set w̃(i) = w(i)si
18: break out of inner for-loop
19: end if
20: end for
21: end for
22: downweight all weights w̃ by a multiplicative factor of 1/(d + 1− 2

√
d)

23: return H = (V ,Ẽ, w̃)
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6 Interlacing Families

Now, let’s return to interlacing polynomials. In the previous two sections, we mainly just needed the
Cauchy Interlacing Theorem so that we could reason about the eigenvalues of matrices after applying rank-
one perturbations. In the following applications, we’ll need these earlier results and more.

Suppose we have a “large” set of polynomials. It may be too restrictive to demand that this set has a
common interlacing. However, we still want to obtain the same guarantees as in Theorem 6, i.e. ensure
there is a polynomial in the set that has its maximum root upper bounded by the maximum root of the
average.

If we know that certain sets of sums of these polynomials have common interlacings, it turns out we can
still make this guarantee; the trick is to inductively apply Theorem 6 on the “layers” of sums of these
polynomials. The intuition is that each “layer” progressively reveals more and more information about the
largest root of the total sum. We formalize this as follows.

Definition 6 (Interlacing Families). Let S1, . . . ,Sm be finite sets. For each (s1, . . . , sm) ∈
∏m
i=1Si , associate a

real-rooted degree-n polynomial ps1,...,sm with positive leading coefficient. For every 1 ≤ k < m and partial
assignment in the first k coordinates (s1, . . . , sk) ∈

∏
i∈[k]Si , define

ps1,...,sk =
∑

(sk+1,...,sm)∈Sk+1×···×Sm

ps1,...,sm

For k = 0, define

p∅ =
∑

(s1,...,sm)∈S1×···×Sm

ps1,...,sm

The polynomials {ps1,...,sm } form an interlacing family if for all k = 0, . . . ,m− 1 and all (s1, . . . , sk) ∈
∏
i∈[k]Si ,

the polynomials {ps1,...,sk ,t}t∈Sk+1
have a common interlacing.

Here, “layer k” is {ps1,...,sk }. By increasing k incrementally and fixing more and more elements in the
partial assignment (s1, . . . , sk), we get closer and closer to a/the desired polynomial in the original family
{ps1,...,sm }. With this in mind, we see the definition lends itself naturally to using induction.

Theorem 17. Let S1, . . . ,Sm be finite sets and let {ps1,...,sm }(s1,...,sm)∈
∏
i∈[m] Si be an interlacing family of polynomials.

Then, for every k ∈ [m], there exists (s1, . . . , sk) ∈
∏
i∈[k]Si such that the largest root of ps1,...,sk is upper bounded by

the largest root of p∅.

Proof. For the induction basis, observe that

p∅ =
∑

(s1,...,sm)∈S1×···×Sm

ps1,...,sm =
∑
s1∈S1

∑
(s2,...,sm)∈S2×···×Sm

ps1,...,sm =
∑
t∈S1

pt

Since {pt}t∈S1
have a common interlacing, there exists s1 such that the largest root of ps1 is at most the largest

root of p∅ by Theorem 6.

Now, assume that there exists (s1, . . . , sk) ∈ S1 × · · · × Sk such that the largest root of ps1,...,sk is at most the
largest root of p∅, for some k ≥ 1. The following is a similar observation to the one made in the base case.

ps1,...,sk =
∑

(sk+1,...,sm)∈Sk+1×···×Sm

ps1,...,sm =
∑

sk+1∈Sk+1

∑
(sk+2,...,sm)∈Sk+2×···×Sm

ps1,...,sm =
∑
t∈Sk+1

ps1,...,sk ,t

Since {ps1,...,sk ,t}t∈Sk+1
has a common interlacing, there exists sk+1 such that the largest root of ps1,...,sk+1

is
at most the largest root of ps1,...,sk by Lemma 4, which is at most the largest root of p∅ by the inductive
hypothesis.
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As a special case, we have the following corollary, which extends the applicability of interlacing.

Corollary 6. For an interlacing family P = {ps1,...,sm }(s1,...,sm)∈
∏
i∈[m] Si , there exists p ∈ P such that the largest root

of p is at most the largest root of p∅ =
∑
q∈P q.

The real power of interlacing comes when we incorporate a probabilistic perspective.

Corollary 7. Let D1, . . . ,Dm be independent probability distributions with Di supported on Si , for all 1 ≤ i ≤m.
Let P = {ps1,...,sm } be an interlacing family. Then, there exists (s1, . . . , sm) ∈ S1 × · · · × Sm such that

maxroot(ps1,...,sm ) ≤maxroot
(
E(s1,...,sm)∼D1×···×Dm [ps1,...,sm ]

)
where D1 × · · · ×Dm is the product distribution on S1 × · · · × Sm.

Proof. Let pi,si = Ps∼Di [s = si] be the probability of seeing si under Di . Since the D1, . . . ,Dm are independent,

Ps∼D1×···×Dm [s = (s1, . . . , sm)] =
m∏
i=1

pi,si

Now, since for any nonzero scalar c ∈ R and univariate polynomial p ∈ R[x], the roots of c · p are precisely
the roots of p. In particular, 

 m∏
i=1

pi,si

ps1,...,sm


forms an interlacing family. By Corollary 6, there exists (s1, . . . , sm) ∈ S1 × · · · × Sm such that

maxroot(ps1,...,sm ) = maxroot


 m∏
i=1

pi,si

ps1,...,sm
 ≤maxroot

 ∑
s̃1∈S1,..., ˜sm∈Sm

 m∏
i=1

pi,s̃i

ps̃1,..., ˜sm


= maxroot

(
E(s1,...,sm)∼D1×···×Dm [ps1,...,sm ]

)

The interlacing families proof technique generally follows the following structure:

1. show that the collection of polynomials of interest forms an interlacing family

2. prove a bound on the maximum root of their average (over some probability distribution of interest)

In view of Corollary 7, one can see that this proof technique has the flavor of a probabilistic method. Recall
that if f is a function (random variable) from a probability space Ω = (X,µ) to, say, R, then Px∼µ[f (x) ≤ b]
shows that there exists x ∈ X with f (x) ≤ b. One can view that the given distributions D1, . . . ,Dm form a
probability space over X = {ps1,...,sm }, and f is the maxroot function.

6.1 An Algorithmic Perspective

One can visualize this process with a tree, with “layer k” i.e. {ps1,...,sk } is represented in the kth level of the

tree. If Si has values {s1i , . . . , s
`i
i } for all i ∈ [m], then
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p∅

ps11

ps11 ,s
1
2

. . .

ps11 ,...,s
1
m

. . . p
s11 ,...,s

`m
m

. . . p
s11 ,s

`2
2

. . .

. . . p
s
`1
1

p
s
`1
1 ,s12

. . .

. . . p
s
`1
1 ,s

`2
2

. . .

p
s
`1
1 ,...,s1m

. . . p
s
`1
1 ,...,s

`m
m

The Theorem simply allows us to find a path p(0) = p∅,p
(1), . . . ,p(m) = ps1,...,sm from the root p∅ to some leaf

polynomial ps1,...,sm in our interlacing family such that the largest root of p(i) is at most the largest root of
p(i−1) for all i ∈ [m]. p(m) = ps1,...,sm is then the polynomial we are looking for.

This visualization also suggests an algorithm, namely, “walk down the tree” starting at the root, moving to
a child with smaller maximum root, and terminating when a leaf node is hit.

Algorithm 3 Interlacing-Families-Algorithm-Outline

Input: an interlacing family {ps1,...,sm }
1: compute (maximum root of) p∅
2: for i = 1, . . . ,m do
3: for s = s1i , . . . , s

`i
i do

4: compute (maximum root of) ps1,...,si−1,s
5: if maxroot(ps1,...,si−1,s) ≤maxroot(ps1,...,si−1

) then
6: set ps1,...,si ← ps1,...,si−1,s
7: end if
8: end for
9: end for

10: return ps1,...,sm

The challenge here is efficiency. In general, one needs:

1. polynomial depth of the interlacing family tree

2. polynomially many children for each node in the interlacing family tree

3. to be able to compute (the maximum root of) p∅ efficiently

4. to be able to compute (the maximum root of) each child polynomial ps1,...,si+1
of ps1,...,si efficiently

For many interlacing families of interest (including all considered in this survey, with a single exception),
we do not expect to be able to run this “natural” algorithm in polynomial time. Just computing p∅ can be
#P-Hard, as we will see.
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7 Stability

To prove that a family of polynomials {ps1,...,sm } is an interlacing family, one needs to prove the existence of
a common interlacing for {ps1,...,sk ,t}t∈Sk+1

for all k and all (s1, . . . , sk) ∈ S1 × · · · × Sk . This is where Theorem 7
will be particularly useful. To prove that existence of a common interlacing for {ps1,...,sk ,t}t∈Sk+1

, it suffices to
show that all convex combinations ∑

t∈Sk+1

λtps1,...,sk ,t

are real-rooted. For this, we can then employ the power of real stability, a generalization of real-rootedness;
real stable polynomials are very well-studied.

Let H = {z ∈ C : Im(z) > 0}.

Definition 7. A nonzero polynomial p ∈ C[z1, . . . , zn] is stable if z ∈ Hn =⇒ p(z) , 0. A stable polynomial
is real stable if it has real coefficients.

Observe that real stability is indeed a generalization of real-rootedness. Indeed, if p is a real univariate
polynomial, then, since complex roots come in conjugate pairs, p is real-rooted if and only if p is real stable.
Now, let’s see an equivalent characterization of (real) stability that, while we will not use directly, can be
useful for intuition.

Lemma 14. A polynomial p(z) is stable if and only if the univariate restriction p(te + x) is stable for all e ∈
Rn>0,x ∈ Rn.

Proof. Suppose p is stable. Suppose for contradiction that there exists e ∈ Rn>0,x ∈ Rn such that p(te + x) is
not stable; choose t0 ∈ H such that p(t0e + x) = 0. Then, since e ∈ Rn>0,x ∈ Rn and Im t0 > 0, all entries of
t0e + x have positive imaginary part, i.e. te + x ∈Hn, contradicting p being stable.

Now suppose p is not stable. Choose z0 ∈ Hn such that p(z0) , 0. Decompose z0 into t0e0 + x0, where
x0 = Rez0 = (Re(z0)1, . . . ,Re(z0)n) ∈ Rn, e = Imz0 = (Im(z0)1, . . . , Im(z0)n) and t0 = i. Since z0 is a root of p,
t0 = i is a root of p(te + x). Since t0 ∈H, there exists e ∈ Rn>0,x ∈ Rn such that p(te + x) is not stable.

Corollary 8. A polynomial p(z) is real stable if and only if the univariate restriction p(te + x) is real-rooted for
all e ∈ Rn>0,x ∈ Rn.

Proof. Observe that p has real coefficients if and only if p(te + x) has real coefficients for all e ∈ Rn>0,x ∈ Rn

(one direction is obvious; the other direction follows from if c
∏
i∈S z

di
i is some monomial in p with c < R

and S ⊂ [n], then c
∏
i∈S (tei + zi)di is a monomial in p(te + x) so that for e = 1S + ε1[n]\S ,x = 0, we get

p(te + x) = c
∏
i∈S⊂[n](tei + zi)di + εs(t), which has a nonreal coefficient of ≈ c for sufficiently small ε > 0).

Hence, p is real stable if and only if p(te + x) is real stable for all e ∈ Rn>0,x ∈ Rn if and only if p(te + x) is
real-rooted for all e ∈ Rn>0,x ∈ Rn.

The main reason stability is such a nice property for polynomials to have is that there is a large class of
useful operators under which this property is preserved.

Theorem 18 (Stability-Preserving Operators). Let p ∈ C[z1, . . . , zn] be a stable polynomial. Then the following
are also all stable.

1. p · q, where m ∈ N and q ∈ C[z1, . . . , zm] is also stable (Closure Under Products)

2. p(zσ (1), . . . , zσ (n)) for any permutation σ : [n]→ [n] (Coordinate Permutation)

3. p(. . . , azi , . . . ) for any a > 0 and i ∈ [n] (Positive Coordinate Scaling)

4. p(. . . , zi , . . . , zi , . . . ) ∈ C[. . . , zi , . . . , zi , . . . ] (Diagonalization: restricting some zj to be equal to some other
zi for any i, j ∈ [n])
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5. zdi p(. . . ,−1/zi , . . . ) where d = degi(p) is the degree of zi in p viewing other variables as constants, for any
i ∈ [n] (Coordinate Inversion)

6. p(. . . , a, . . . ) for any a ∈H = H∪R and i ∈ [n] (Specialization: fixing a coordinate)

7. ∂zip, for any 1 ≤ i ≤ n (Differentiation)

8. (1−∂zi )p, for any 1 ≤ i ≤ n

7.1 Examples

The closure properties of stable polynomials given in Theorem 18 already give us many tools. Let’s start
with an example of how to prove a univariate polynomial is real-rooted (recall, this was the original mo-
tivation for bringing in this theory). The idea is to start with a (usually multivariate) polynomial that we
already know to be real stable, and apply a sequence of stability-preserving operators that also reduce this
polynomial to the original polynomial of interest.

Example 2. Claim: For any k ∈ [n] and any λ1, . . . ,λn ∈ R, the polynomial p(t) =
∑
S∈([n]

k )
∏
i∈S (1 + tλi) is

real-rooted.

Proof. Consider the following bivariate polynomial.

p(y, t) =
n∏
i=1

(y + (t −λi)) =
n∑
j=0

yn−j


∑
S∈([n]

j )

∏
i∈S

(t −λi)


p(y, t) clearly has real coefficients and is stable, for if (y, t) ∈ H2, then Im(y + t −λi) > 0 (since λi is real and
Im(y), Im(t) > 0) for all i ∈ [n], which shows p(y, t) , 0. Differentiating n − k times with respect to y, we
obtain

∂n−k

∂yn−k
p(y, t) =

k∑
j=0

(n− j)!
(k − j)!

yk−j


∑
S∈([n]

j )

∏
i∈S

(t −λi)


Specializing to y = 0, the j = k term in the sum is left behind[

∂n−k

∂yn−k
p(y, t)

]
y=0

= (n− k)! ·
∑
S∈([n]

k )

∏
i∈S

(t −λi)

By Theorem 18, we’ve only applied operators that preserve real stability, so q(t) =
∑
S∈([n]

k )
∏
i∈S (t−λi) is real

stable; since it is a polynomial in a single variable, it is real-rooted. Finally, p(t) = (−t)kq(−1/t) proves p is
real-rooted.

The following is an important example. It is a large class of polynomials that are real stable.

Theorem 19 (Proposition 2.4 from [24]). Let A1, . . . ,Am be Hermitian positive semidefinite matrices. Then the
polynomial

det

 m∑
i=1

ziAi


is real stable.

Finally, in the special case of two variables, it turns out we can completely characterize all real stable
polynomials.

Theorem 20 (Corollary 6.7 from [29]). Let p(z1, z2) be a real stable polynomial of degree d. Then, there exist
positive semidefinite matrices A,B ∈ Rd×d , with A + B positive definite, and a symmetric matrix C ∈ Rd×d such
that either p(z1, z2) = det(z1A+ z2B+C) or p(z1, z2) = −det(z1A+ z2B+C).
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8 The Kadison-Singer Problem

Problem 3. Does every pure state on the (abelian) von Neumann algebra D of bounded diagonal operators on `2
have a unique extension to a pure state on B(`2), the von Neumann algebra of all bounded operators on `2?

Setting up the technical machinery required to understand what exactly the problem statement is is far
beyond the scope of this survey. Fortunately, through a series of many works between 1959, the time the
problem was first posed by Kadison-Singer [1], and the early 2000s, it was shown that a positive answer
to the problem is equivalent to several other conjectures. We focus on a particular equivalent conjecture,
stated by Weaver in 2004 [17], and resolve it.

Conjecture 1 (KS2; [17]). There exist universal constants α ≥ 2 and β > 0 such that if both

1. w1, . . . ,wm ∈ Cd satisfy ||wi || ≤ 1 for all i

2.
∑m
i=1 |〈u,wi〉|2 = α for every unit vector u ∈ Cd

then there exists a partition S1,S2 of [m] such that∑
i∈Sj

|〈u,wi〉|2 ≤ α − β

for every unit vector u ∈ Cd , for every j ∈ {1,2}.

The main technical theorem is a purely probabilistic result that we will use the method of interlacing
polynomials to prove.

Theorem 21 (Theorem 1.4 from [35]). Let ε > 0 and D1, . . . ,Dm be independent distributions each supported on
finitely many vectors in Cd . Let v1 ∼ D1, . . . , vm ∼ Dm be random vectors drawn independently such that

m∑
i=1

E[viv
∗
i ] = I

and E[||vi ||2] ≤ ε for all 1 ≤ i ≤m. Then

P


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
m∑
i=1

viv
∗
i

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ ≤ (1 +

√
ε)2

 > 0

This theorem implies a kind of generalization of KS2, where instead of considering a partition of size 2,
we consider a partition of size r ≥ 1.

Corollary 9. Let r ∈ N and u1, . . . ,um ∈ Cd satisfy
∑m
i=1uiu

∗
i = I and ||ui ||2 ≤ δ for all 1 ≤ i ≤ m. Then, there

exists a partition S1, . . . ,Sr of m such that ∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
∑
i∈Sj

uiu
∗
i

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣ ≤

(
1
√
r

+
√
δ

)2

for all 1 ≤ j ≤ r.

Proof. For every i ∈ [m] and k ∈ [r], definewi,k = 0⊕· · ·⊕ui⊕· · ·⊕0 ∈ Crd , where ui appears in the kth position
in the direct sum; wi,k will have r(k − 1) zero entries, followed by the entries of ui , and then followed by
zeros. For intuition,

wi,1 =


ui
0
...
0

 wi,2 =


0
ui
...
0

 . . . wi,r−1 =


0
...
ui
0

 wi,r =


0
...
0
ui


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Let Di be a uniform distribution supported on {
√
rwi,k}rk=1, for all 1 ≤ i ≤ m; let vi ∼ Di for all 1 ≤ i ≤ m be

independent. Then,

EDi [viv
∗
i ] =

r∑
k=1

1
r

(√
rwi,k

)(√
rwi,k

)∗
=

r∑
k=1

wi,kw
∗
i,k =


uiu
∗
i 0 . . . 0

0 uiu
∗
i . . . 0

...
...

. . .
...

0 0 . . . uiu
∗
i

 ∈ C
(rd)×(rd)

so that by the assumption that
∑m
i=1uiu

∗
i = I , we have

∑m
i=1EDi [viv

∗
i ] = Ird . Furthermore, ||vi ||2 =

∣∣∣∣∣∣√rui ∣∣∣∣∣∣2 =
r ||ui ||2 ≤ rδ.

Setting ε = rδ, Theorem 21 shows there exists an assignment to the v1, . . . , vm such that∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
m∑
i=1

viv
∗
i

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ ≤ (

1 +
√
rδ

)2

Define Sk = {i ∈ [m] : vi = wi,k}. Then, for all k ∈ [r],∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
∑
i∈Sk

uiu
∗
i

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
∑
i∈Sk

wi,kw
∗
i,k

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
m∑
i=1

viv∗i

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ ≤

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
r∑
k=1

∑
i∈Sk

wi,kw
∗
i,k

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

=
1
r

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
r∑
k=1

∑
i∈Sk

(√
rwi,k

)(√
rwi,k

)∗∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣ =

1
r

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
m∑
i=1

viv
∗
i

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ ≤ 1

r

(
1 +
√
rδ

)2
=

(
1
√
r

+
√
δ

)2

Weaver’s KS2 conjecture now immediately follows as a special case.

Proof of KS2 (Conjecture 1). Set r = 2, δ = 1/18, α = 18, β = 2 and ui = wi /
√
α for all 1 ≤ i ≤ m. Then, since∑m

i=1 |〈u,wi〉|2 = α for all unit vectors u ∈ Cd ,
∑m
i=1 |〈u,ui〉|2 = u∗

(∑m
i=1uiu

∗
i

)
u = 1 for all unit vectors u ∈ Cd

so
∑m
i=1uiu

∗
i = I . Furthermore, ||ui ||2 ≤ ||wi ||2 /α = δ ||wi ||2 ≤ δ for all 1 ≤ i ≤m. Corollary 9 then shows there

exists a partition S1,S2 of m such that

∑
i∈Sj

|〈u,ui〉|2 = u∗

∑
i∈Sj

uiu
∗
i

u ≤
∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
∑
i∈Sj

uiu
∗
i

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣ ≤

(
1
√

2
+

1
√

18

)2

for every unit vector u ∈ Cd and every j ∈ {1,2}. In particular,

∑
i∈Sj

|〈u,wi〉|2 = α ·
m∑
i=1

|〈u,ui〉|2 ≤ 18 ·
(

1
√

2
+

1
√

18

)2

= 16 = α − β

for every unit vector u ∈ Cd and every j ∈ {1,2}, as desired. Thus KS2 holds with constants α = 18 and
β = 2.

8.1 A Bound with High Probability

Before diving into the proof, let’s contrast Theorem 21 with a “with high probability” bound, which is a
direct application of matrix concentration bounds. Essentially, in Theorem 21, we are trading probability
guarantees for good upper bounds on the maximum norm: instead of getting a weaker upper bound, that
is dependent on the dimension, with high probability, we are getting a very strong dimension-independent
bound but with just nonzero probability.
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Theorem 22 (Matrix Chernoff; Theorem 1.1 from [31]). Consider a finite collection of independent Hermitian
positive semidefinite d ×d matrix-valued random variables X1, . . . ,Xm. Suppose λmax(Xk) ≤ R with probability 1,
for all 1 ≤ k ≤m. Define µmin = λmin

(∑m
k=1E[Xk]

)
and µmax = λmax

(∑m
k=1E[Xk]

)
. Then for δ ∈ [0,1],

P

λmin

 m∑
k=1

Xk

 ≤ (1− δ)µmin

 ≤ d ·
[

e−δ

(1− δ)1−δ

]µmin/R

and for δ ≥ 0,

P

λmax

 m∑
k=1

Xk

 ≥ (1 + δ)µmax

 ≤ d ·
[

eδ

(1 + δ)1+δ

]µmax/R

Proposition 1. Let v1, . . . ,vm ∈ Cd be random vectors independently drawn from distributions D1, . . . ,Dm, where
`i = |supp(Di)| < ∞. Assume that E

∑m
1 viv

∗
i = I and E ||vi ||2 ≤ ε for all i ∈ [m]. Furthermore, assume that

||vi ||2 ≤ cε for all vi ∈ Di and all 1 ≤ i ≤m, for some constant c > 0. Then∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
m∑
i=1

viv
∗
i

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ < O(ε logd)

with high probability, that is, there exists a constant C > 0 such that

P


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
m∑
i=1

viv
∗
i

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ < Cε logd

→ 1 as d→∞

Proof. We wish to apply Matrix Chernoff. Let Xi = viv∗i be a random Hermitian positive semidefinite d × d
matrix. By assumption, λmax(Xi) ≤ tr(Xi) = ||vi ||2 ≤ cε with probability 1, for all 1 ≤ i ≤m. Furthermore,

µmin = λmin

 m∑
1

Eviv∗i

 = λmin(Id) = 1

µmax = λmax

 m∑
1

Eviv∗i

 = λmin(Id) = 1

Then, by the Matrix Chernoff bound (Theorem 22), for every δ ≥ 0,

P


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
m∑
i=1

viv
∗
i

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ ≥ 1 + δ

 = P

λmax

 m∑
i=1

Xi

 ≥ (1 + δ)µmax

 ≤ d · ( eδ

(1 + δ)1+δ

)1/cε

Since cε is fixed, to prove the claim, it suffices to choose δ such that

eδ

(1 + δ)1+δ
≤ o(d−cε)

For this, δ ≤ O(ε logd) suffices.

It turns out, in order to obtain any kind of “with high probability” guarantees on the operator norm of∑m
i=1 viv

∗
i , one cannot avoid a logd dependence in the upper bound. Furthermore, one needs a bound on

the maximum norm of any vector in each distribution.

8.2 Interlacing Families and the Mixed Characteristic Polynomial

LetD1, . . . ,Dm be the given independent distributions, and let vi,1, . . . , vi,`i be the vectorsDi is supported on,
for all 1 ≤ i ≤ m. For convenience, we also view Di as a probability distribution over the indices [`i]. Let
pi,ji be the probability of vi,ji (or ji ∈ [`i]) under Di . Our strategy is to:
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1. show the set of polynomials

pj1,...,jm(x) =

 m∏
i=1

pi,ji

χ
 m∑
i=1

vi,jiv
∗
i,ji

 (x)

form an interlacing family

2. prove an upper bound on the maximum root of

Ej1∼D1,...,jm∼Dm

[
pj1,...,jm(x)

]
We begin with step 1. By Theorem 7, it suffices to show that averages of the polynomials pj1,...,jm(x) are
real-rooted. This is where we’ll employ the real stability results of the previous section. The main theorem
is as follows; step 1 is an immediate consequence.

Theorem 23 (Theorem 4.1 from [35]). Let D1, . . . ,Dm be independent distributions each supported on finitely
many vectors in Cd . Set Ai = E[viv∗i ]. Then, for every matrix M ∈ Cd×d ,

Edet

M − m∑
i=1

viv
∗
i

 =


 m∏
i=1

(1−∂zi )

det

M +
m∑
i=1

ziAi



z1=···=zm=0

In particular, setting M = xI , we have the following for the mixed characteristic polynomial.

µ[A1, . . . ,Am](x) def= Eχ

 m∑
i=1

viv
∗
i

 (x) =


 m∏
i=1

(1−∂zi )

det

xI +
m∑
i=1

ziAi



z1=···=zm=0

First, we need a technical lemma.

Lemma 15. Let A ∈ Cn×n be arbitrary. If v ∈ Cn is a random vector, then

Ev[det(A− vv∗)] = (1−∂t)det(A+ tEv[vv∗]) |t=0

Proof. First, assume A is invertible. By the Matrix Determinant Lemma (Lemma 6), we may write

Ev[det(A− vv∗)] = Ev[det(A)(1− v∗A−1v)] = det(A)−det(A)Ev[v∗A−1v]

= det(A)−det(A)Ev[tr(A−1vv∗)] = det(A)−det(A) tr
(
A−1Ev[vv∗]

)
=

[
det(A+ tEv[vv∗])−det(A) tr

(
A−1Ev[vv∗]

)]
t=0

= (1−∂t)det(A+ tEv[vv∗]) |t=0

where in the last step, we use Corollary 4.

Now, assume A isn’t invertible. Consider a sequence of invertible matrices {Ak}∞k=1 such that Ak → A entry-
wise. Since Ev[det(A− vv∗)] and (1−∂t)det(A+ tEv[vv∗]) |t=0 are continuous functions in A and

Ev[det(Ak − vv∗)] = (1−∂t)det(Ak + tEv[vv∗]) |t=0

for every k ≥ 1, we have

Ev[det(A− vv∗)] = lim
k→∞

Ev[det(Ak − vv∗)] = lim
k→∞

(1−∂t)det(Ak + tEv[vv∗]) |t=0= (1−∂t)det(A+ tEv[vv∗]) |t=0
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Proof of Theorem 23. We will prove the claim by induction on 0 ≤ k ≤ m. When k = 0, there is nothing to
prove. Assume that for every matrix M,

Edet

M − k∑
i=1

viv
∗
i

 =


 k∏
i=1

(1−∂zi )

det

M +
k∑
i=1

ziAi



z1=···=zk=0

for some 0 ≤ k < m. We will prove equality for k + 1. Applying independence of the vi , we may break the
expectation on the left-hand side into

Evk+1∼Dk+1
Ev1∼D1,...,vk∼Dk det

M − k∑
i=1

viv
∗
i − vk+1v

∗
k+1


By the induction hypothesis, the inner expectation is

Evk+1∼Dk+1


 k∏
i=1

(1−∂zi )

det

M +
k∑
i=1

zkAk − vk+1v
∗
k+1



z1=···=zk=0

which, after we use linearity of expectation to move out the differential operators, gives
 k∏
i=1

(1−∂zi )

Evk+1∼Dk+1
det

M +
k∑
i=1

zkAk − vk+1v
∗
k+1



z1=···=zk=0

Finally, applying Lemma 15, this inner expectation reduces to
 k∏
i=1

(1−∂zi )

 (1−∂zk+1
)det

M +
k∑
i=1

zkAk + zk+1Ak+1



z1=···=zk+1=0

which proves the inductive step.

Corollary 10. Let D1, . . . ,Dm be independent distributions each supported on finitely many vectors in Cd . Set
Ai = Evi∼D[viv∗i ]. Then the mixed characteristic polynomial

µ[A1, . . . ,Am](x) = Eχ

 m∑
i=1

viv
∗
i

 (x)

is real-rooted.

Proof. Since A1, . . . ,Am, I are all positive semidefinite, Theorem 19 shows

det

xI +
m∑
i=1

ziAi


is real stable in x,z1, . . . , zm. Theorem 23 shows that

µ[A1, . . . ,Am](x) =


 m∏
i=1

(1−∂zi )

det

xI +
m∑
i=1

ziAi



z1=···=zm=0

i.e. µ[A1, . . . ,Am](x) is obtained from det
(
xI +

∑m
i=1 ziAi

)
by applying a sequence of stability-preserving

operators (Theorem 18). Hence, µ[A1, . . . ,Am](x) is real stable; since it is univariate, it is real-rooted.

Remark 3. Note that Corollary holds even when Di is supported on a single vector, for any 1 ≤ i ≤m. In the
extreme case when Di is supported on a single vector vi for every 1 ≤ i ≤m, we have that µ[A1, . . . ,Am](x) is
just the characteristic polynomial of

∑m
i=1 viv

∗
i , which we know is real-rooted since it

∑m
i=1 viv

∗
i is Hermitian

positive semidefinite.
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Corollary 11 (Theorem 4.5 from [35]). The set of polynomials pj1,...,jm form an interlacing family.

Proof. Let j1, . . . , jk be a partial assignment. We must show that {pj1,...,jk ,t(x)}jk+1
t=1 has a common interlacing.

By Theorem 7, it suffices to prove that the convex combination

`k+1∑
t=1

λtpj1,...,jk ,t(x)

is real-rooted for every choice of λt ≥ 0 satisfying
∑`k+1
t=1 λt = 1. For this, let wk+1 be a random vector that is

equal to vk+1,t with probability λt . Then

`k+1∑
t=1

λtpj1,...,jk ,t(x) =

 k∏
i=1

pi,ji

Ewk+1,vk+1,...,vmχ

 k∑
i=1

vi,jiv
∗
i,ji

+wk+1w
∗
k+1 +

m∑
i=k+2

viv
∗
i

 (x)

Observe that the right-hand side is a multiple of a mixed characteristic polynomial. Hence, Corollary 10
shows it is real-rooted and we’re done.

8.3 Multivariate Barriers

In this subsection, we prove a general upper bound on the largest root of the mixed characteristic polyno-
mial of positive semidefinite matrices A1, . . . ,Am in the case when

∑m
i=1Ai = I .

Theorem 24 (Theorem 5.1 from [35]). Suppose A1, . . . ,Am are Hermitian positive semidefinite matrices satisfy-
ing

∑m
i=1Ai = I and tr(Ai) ≤ ε for all 1 ≤ i ≤m. Then maxroot(µ[A1, . . . ,Am](x)) ≤ (1 +

√
ε)2.

This will be useful for the main theorem we want to prove for Kadison-Singer, since Ai = E[viv∗i ] so that
tr(Ai) = tr(E[viv∗i ]) = E[tr(viv∗i )] = E[||vi ||2]. In particular, our assumption that E[||vi ||2] ≤ ε directly trans-
lates to tr(Ai) ≤ ε.

The idea here is similar the argument we used for building well-invertible submatrices and Ramanujan
sparsifiers. Theorem 23 shows us the mixed characteristic polynomial µ[A1, . . . ,Am](x) is the result of ap-
plying a sequence of differential and specialization operators to det

(∑m
i=1 ziAi

)
. In particular, we can think

of µ[A1, . . . ,Am](x) as being the result of a process that slowly moves the roots of det
(∑m

i=1 ziAi
)

to the roots

of
(∏m

i=1(1−∂zi )
)
det

(∑m
i=1 ziAi

)
. We will devise multivariate barrier functions that will “guide” this pro-

cess. Specifically, we will use the barriers given by

Φ i
p(z) =

∂zip(z)
p(z)

= ∂zi logp(z)

For convenience, we say a vector y ∈ Rd is above the roots of p ∈ R[z1, . . . , zd] if p(y + t) > 0 for all t ∈ Rd≥0;
the set of points that are above the roots of p is denoted by ABOVE(p). When p is a real-rooted univariate
polynomial, ABOVE(p) is precisely the set of real numbers larger than the largest root of p. To prove the
desired bound, it then suffices to prove that

(1 +
√
ε)2 · 1 ∈ ABOVE


 m∏
i=1

(1−∂zi )

det

 m∑
i=1

ziAi




since then, (1 +
√
ε)2 ∈ ABOVE(µ[A1, . . . ,Am](x)) =⇒ (1 +

√
ε)2 ≥maxroot(µ[A1, . . . ,Am](x)).

We begin by showing a nice identity for the barrier in a special case that we will need later.

36



Lemma 16. Suppose p(z1, . . . , zm) = det
(∑m

i=1 ziAi
)
, where A1, . . . ,Am are Hermitian positive semidefinite matri-

ces. Then

Φ
j
p(z1, . . . , zm) = tr


 m∑
i=1

ziAi

−1

Aj


for every z = (z1, . . . , zm) ∈ ABOVE(p).

Proof. For every z = (z1, . . . , zm) ∈ ABOVE(p), by definition, p(z1, . . . , zm) > 0. In particular,
∑m
i=1 ziAi is in-

vertible for every z ∈ ABOVE(p). Thus,
∑m
i=1 ziAi is invertible for every z ∈ ABOVE(p). By Corollary 4,

∂zjp(z1, . . . , zm) = det

 m∑
i=1

ziAi

 tr


 m∑
i=1

ziAi

−1

Aj

 = p(z1, . . . , zm) · tr


 m∑
i=1

ziAi

−1

Aj


Hence, substituting this into the definition of Φ j

p, we have the claim.

Φ
j
p(z1, . . . , zm) =

∂zjp(z1, . . . , zm)

p(z1, . . . , zm)
= tr


 m∑
i=1

ziAi

−1

Aj


Now, let’s turn to some nice properties of the barriers we’ve defined and their relation to the set

ABOVE(p). Specifically, they are nonincreasing and convex in every coordinate, holding other variables
fixed.

Lemma 17 (Lemma 5.7 from [35]). Suppose p is real stable and z ∈ ABOVE(p). Then for all 1 ≤ i, j ≤ m and
δ ≥ 0:

1. Φ i
p(z+ δej ) ≤ Φ i

p(z) (monotonicity)

2. Φ i
p(z+ δej ) ≤ Φ i

p(z) + δ ·∂zjΦ
i
p(z+ δej ) (convexity)

Proof. We consider the two cases i = j and i , j separately. To avoid confusion between the variable argu-
ments of Φ i

p, p, etc. and z ∈ ABOVE(p), we will use x = (x1, . . . ,xm) for the variable arguments.

Let’s start with the easier one: i = j. Let qz,i(xi) =
∏d
k=1(xi − λk), where λ1, . . . ,λd are the roots of qz,i(xi),

the restriction of p to coordinate i while keeping all other coordinates fixed as constants; note λ1, . . . ,λd are
real by Theorem 18 since p is real stable. Then

Φ i
p(x) =

q′z,i(xi)

qz,i(xi)
=

d∑
k=1

1
xi −λk

Differentiating, we have

∂xiΦ
i
p(x) =

d∑
k=1

∂
∂xi

1
xi −λk

= −
d∑
k=1

1
(xi −λk)2 ≤ 0

proving monotonicity. Convexity follows by differentiating once more (recall that a twice differentiable
univariate function is convex if and only if its second derivative is nonnegative).

∂2
xiΦ

i
p(x) |x=z=

 d∑
k=1

∂2

∂x2
i

1
xi −λk


x=z

=
d∑
k=1

2
(zi −λk)3 > 0
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where in the last inequality, we use the fact that z ∈ ABOVE(p) =⇒ zi > λk .

Now, let’s turn to the case when i , j. Similarly, define qz,i,j (xi ,xj ) to be the bivariate restriction of p to
the coordinates xi ,xj , fixing all other coordinates as constants. Again, note that qz,i,j is real stable and
(zi , zj ) ∈ ABOVE(qz,i,j ). By Theorem 20, there are Hermitian positive semidefinite matrices Bi ,Bj and a Her-
mitian matrix C such that either qz,i,j (xi ,xj ) = det(xiBi +xjBj +C) or qz,i,j (xi ,xj ) = −det(xiBi +xjBj +C); since
qz,i,j (zi + ti , zj + tj ) > 0 for every (ti , tj ) ∈ R2

≥0, qz,i,j (xi ,xj ) = det(xiBi + xjBj +C).

For convenience, set M = ziBi + zjBj + C; note M is positive definite (in particular, invertible) since z ∈
ABOVE(p) and Bi + Bj is positive definite by Theorem 20. By Lemma 4 and the definition of M, we may

write Φ i
p(z) = tr

(
M−1Bi

)
= tr

(
IBiM

−1
)

and

Φ i
p(z+ δej ) = tr

(
(M + δBj )

−1Bi
)

= tr
(
((I + δBjM

−1)M)−1Bi
)

= tr
(
M−1(I + δBjM

−1)−1Bi
)

= tr
(
(I + δBjM

−1)−1BiM
−1

)
For δ ≥ 0 sufficiently small, we can write out (I + δBjM−1)−1 as the following power series.

I − δBjM−1 + δ2(BjM
−1)2 +

∞∑
k=3

(−δBjM−1)k

Hence,

Φ i
p(z+ δej ) = tr


I − δBjM−1 + δ2(BjM

−1)2 +
∞∑
k=3

(−δBjM−1)k
BiM−1


= tr(IBiM

−1) + tr


−δBjM−1 + δ2(BjM

−1)2 +
∞∑
k=3

(−δBjM−1)k
BiM−1


= Φ i

p(z) + tr


−δBjM−1 + δ2(BjM

−1)2 +
∞∑
k=3

(−δBjM−1)k
BiM−1


Writing out the definition of the partial derivative, we have

∂zjΦ
i
p(z) = lim

δ→0

Φ i
p(z+ δej )−Φ i

p(z)

δ
= lim
δ→0

tr


−BjM−1 + δ(BjM

−1)2 +
∞∑
k=3

(−1)kδk−1(BjM
−1)k

BiM−1


= tr

(
−BjM−1BiM

−1
)

To prove monotonicity, observe that ∂zjΦ
i
p(z) = − tr

(
BjM

−1BiM
−1

)
≤ 0 since Bj and M−1BiM

−1 are positive
semidefinite.

It remains to prove convexity in the direction ej . Following a similar computation, if we differentiate
again, we obtain

∂2
zjΦ

i
p(z) = tr

(
(BjM

−1Bj )(M
−1BiM

−1)
)

which is nonnegative since BjM−1Bj and M−1BiM
−1 are positive semidefinite (since they are conjugate to

M−1 and Bi respectively, which are both positive semidefinite). This proves convexity.

Now, we derive update rules for our barriers that will allow us to reason about the evolution of the
maximum root.

Lemma 18 (Lemmas 5.9 and 5.10 from [35]). Suppose p is real stable and z ∈ ABOVE(p).
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1. If Φ i
p(z) < 1, then z ∈ ABOVE((1−∂zi )p).

2. If δ > 0 satisfies Φ j
p(z) ≤ 1− δ−1, then Φ i

(1−∂zj )p(z+ δej ) ≤ Φ i
p(z) for all i.

Proof. 1. Let t ∈ Rm≥0. By Lemma 17 part 1, Φp is nonincreasing in each coordinate. Since Φ i
p(z) < 1, we

have Φ i
p(z+t) ≤ Φ i

p(z) < 1. Writing out the definition of Φ i
p, we see this is equivalent to ∂zip(z+t) < p(z+

t), which implies (1−∂zi )p(x+t) > 0, for all 1 ≤ i ≤m. Since t ∈ Rm≥0 was arbitrary, z ∈ ABOVE((1−∂zi )p).

2. For convenience, we will take ∂i to mean ∂zi . Let’s first write Φ i
(1−∂zj )p in terms of Φ j

p, Φ i
p and ∂jΦ i

p.

Observe that

p −∂jp =
(
1−

∂jp

p

)
p = (1−Φ j

p)p

Hence,

Φ i
(1−∂zj )p =

∂i(p −∂jp)

p −∂jp
=
∂i

(
(1−Φ j

p)p
)

(1−Φ j
p)p

=
(1−Φ j

p)(∂ip)

(1−Φ j
p)p

+
p(∂i(1−Φ i

p))

(1−Φ j
p)p

= Φ i
p −

∂iΦ
j
p

1−Φ j
p

= Φ i
p −

∂jΦ
i
p

1−Φ j
p

where in the last step we use the fact that we can change the order of partial differentiation:

Φ i
p −

∂iΦ
j
p

1−Φ j
p

= Φ i
p −

∂i∂j logp(z)

1−Φ j
p

= Φ i
p −

∂j∂i logp(z)

1−Φ j
p

= Φ i
p −

∂jΦ
i
p

1−Φ j
p

Thus, Φ i
(1−∂zj )p(z+ δej ) ≤ Φ i

p(z) is equivalent to

−
∂jΦ

i
p(z+ δej )

1−Φ j
p(z+ δej )

≤ Φ i
p(z)−Φ i

p(z+ δej )

By Lemma 17 part 2 (convexity of Φ i
p in coordinate j, for all i, j), it suffices to show that the left-hand

side obeys the following tighter upper bound.

−
∂jΦ

i
p(z+ δej )

1−Φ j
p(z+ δej )

≤ −δ ·∂jΦ i
p(z+ δej )

Again, since Φ j
p(z) is nonincreasing for every coordinate by Lemma 17 part 1, we have ∂jΦ i

p(z+δej ) ≤ 0.
Thus, dividing by −∂jΦ i

p(z+ δej ) from both sides, we have the equivalent inequality

1

1−Φ j
p(z+ δej )

≤ δ

This is immediately implied by the fact that Φ j
p(z+ δej ) ≤ Φ

j
p(z) ≤ 1− δ−1 < 1.

Proof of Theorem 21. Consider the polynomial

pk(z1, . . . , zm) =

 k∏
i=1

(1−∂zi )

det

 m∑
i=1

ziAi


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defined for all 0 ≤ k ≤ m; note pk is real stable by Theorem 19 and Theorem 18 for all 0 ≤ k ≤ m, and
pk+1 = (1 − ∂zk+1

)pk for all 0 ≤ k < m. For convenience, define the variables t =
√
ε + ε, φ = 1 − 1

1+
√
ε
< 1,

and δ = 1/(1 −φ) = 1 +
√
ε > 0; note 1 − δ−1 = φ. Finally, for 0 ≤ k ≤ m, define xk = t1 +

∑k
i=1 δei to be the

vector with t + δ in the first k coordinates and t in the remaining coordinates. We will prove by induction
on 0 ≤ k ≤m that

1. xk ∈ ABOVE(pk)

2. Φ i
pk (x

k) ≤ φ for all 1 ≤ i ≤m

It will then follow that with k = m, we have xm = (t + δ)1 = (1 +
√
ε)2 · 1 ∈ ABOVE(pm). Recalling that

by Theorem 23, pm satisfies pm(x, . . . ,x) = µ[A1, . . . ,Am](x), this then proves the (1 +
√
ε)2 upper bound on

maxroot(µ[A1, . . . ,Am](x)).

Since A1, . . . ,Am are positive semidefinite and
∑m
i=1Ai = I =⇒

∑m
i=1 x

0(i)Ai = t
∑m
i=1Ai = tI =⇒ p(x0) =

det(tI) > 0, x0 ∈ ABOVE(p). Furthermore, by Corollary 4,

Φ i
p0

(z1, . . . , zm) =
∂ip0(z1, . . . , zm)
p0(z1, . . . , zm)

= tr


 m∑
i=1

ziAi

−1

Ai


so that

Φ i
p0

(x0) = tr
(
(tI)−1 ·Ai

)
= t−1 tr(Ai) ≤

ε
t

=
ε

ε+
√
ε

= φ

This verifies that the base case holds.

Suppose the claim holds for some k ≥ 0. Since pk is real stable, xk ∈ ABOVE(pk) and Φk+1
pk (xk) ≤ φ < 1, we

have xk ∈ ABOVE((1−∂zk+1
)pk) = ABOVE(pk+1) by Lemma 18 part 1; since the coordinates of xk+1 = xk+δek+1

are at least those of xk , xk+1 ∈ ABOVE(pk+1). Furthermore, since δ > 0 satisfies Φk+1
pk (xk) ≤ φ = 1 − δ−1, we

have by Lemma 18 part 2 that

Φ i
pk+1

(xk+1) = Φ i
(1−∂zk+1

)pk
(xk + δek+1) ≤ Φ i

pk (x
k) ≤ φ

for all 1 ≤ i ≤m. Thus, we also have Φ i
pk+1

(xk+1) ≤ φ. This completes the induction and proves the theorem.

With the results of this subsection and the previous subsection, we can now prove the main probabilistic
result that implies a positive answer to the Kadison-Singer problem.

Proof of Theorem 21. Let D1, . . . ,Dm be the given independent distributions such that
∑m
i=1EDi [viv

∗
i ] = I and

EDi [||vi ||
2] ≤ ε. Define Ai = EDi [viv

∗
i ]. Then, by linearity of trace and expectation, for all 1 ≤ i ≤m,

tr[Ai] = tr[EDi [viv
∗
i ]] = EDi [tr[viv

∗
i ]] = EDi [v

∗
i vi] = EDi [||vi ||

2] ≤ ε

By Theorem 24, maxroot(µ[A1, . . . ,Am](x)) ≤ (1 +
√
ε)2. Now, Corollary 11 shows the set of polynomials

pj1,...,jm form an interlacing family so by Corollary 7, there exists an assignment j1, . . . , jm, i.e. vectors v1,j1 ∈
D1, . . . , vm,jm ∈ Dm such that

maxroot

χ
 m∑
i=1

vi,jiv
∗
i,ji

 (x)

 ≤maxroot(µ[A1, . . . ,Am](x)) ≤ (1 +
√
ε)2

that is, ∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
m∑
i=1

vi,jiv
∗
i,ji

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ ≤ (1 +

√
ε)2

as desired.
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8.4 Applications

8.4.1 Revisiting Restricted Invertibility

Recall that Restricted Invertibility (Theorem 10) guarantees the existence of a well-invertible column sub-
matrix AS of A. One can ask if we can make stronger guarantees. For example, can we “split up” A into
several well-invertible submatrices? Under what conditions can this occur?

Problem 4 (Strong Bourgain-Tzafriri). There exists a universal constant c > 0 such that for every B > 0, there
exists m ∈ N such that for every linear operator T : Rn → Rn with ||T ei || = 1 for all 1 ≤ i ≤ n and ||T || ≤ B, then
there is a partition {Sj }m1 of [n] such that

||T v||22 ≥ c ||v||
2
2

for every v ∈ span{ei : i ∈ Sj }, for every 1 ≤ j ≤m.

Casazza-Vershynin proved that this is in fact equivalent to the Kadison-Singer problem.

Theorem 25 (Theorem 2.4 from [26]). The Kadison-Singer Problem has a positive solution if and only if the
Strong Bourgain-Tzafriri Problem has a positive solution.

Thus, the positive resolution to the Kadison-Singer Problem immediately implies a much stronger claim
over Theorem 10.

8.4.2 The Asymmetric Traveling Salesman Problem

Theorem 21 made the assumption that the D1, . . . ,Dm are independent. One can ask under what looser
assumptions on the relationship between the D1, . . . ,Dm gives similar results. One can indeed relax the
independence assumptions and for this, we need a couple definitions.

Definition 8. Let µ be a probability distribution on the collection of subsets of [m]. Define the generating
polynomial of µ in the variables x1, . . . ,xm by

gµ(x1, . . . ,xm) =
∑
S⊂[m]

µ(S) · xS

where xS =
∏
i∈S x

S for every S ⊂ [m] (with x∅ = 1). µ is a homogeneous distribution if gµ is a homogeneous
polynomial. µ is a strongly Rayleigh distribution if gµ is real stable.

Theorem 26 (Theorem 1.2 from [37]). Let µ be a homogeneous strongly Rayleigh probability distribution on
[m] such that PS∼µ[i ∈ S] ≤ ε1 for all 1 ≤ i ≤m. Let v1, . . . , vm ∈ Rd be vectors satisfying

m∑
i=1

viv
∗
i = I

and ||vi ||2 ≤ ε2 for all 1 ≤ i ≤m. Then,

PS∼µ


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∑i∈S viv∗i

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ ≤ 4(ε1 + ε2) + 2(ε1 + ε2)2

 > 0

This result is actually incomparable to Theorem 21 but, just as Theorem 21, does imply a positive an-
swer to the Kadison-Singer Problem. The main benefit here is that it allows one to make similar existence
claims but when the objects (vectors) being analyzed are negatively dependent.

[37] proved this result and used it to show the existence of a thin basis in a set of vectors, and the exis-
tence of a spectrally thin tree in a graph. These results together with the results of [39] imply that the
Held-Karp linear program relaxation for the Asymmetric Traveling Salesman Problem is bounded asymp-
totically by a polynomial in loglogn, where n is the number of vertices in the graph. We refer interested
readers to [37] and [39] for details.
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9 Building Bipartite Ramanujan Graphs I: Ramanujan Covers

The goal of this section is to present a construction of infinite families of simple d-regular bipartite Ra-
manujan graphs, for arbitrary d > 1. The idea is based on taking a simple d-regular bipartite Ramanujan
graph and “lifting” it to obtain a larger simple d-regular Ramanujan graph. This construction is primarily
existential; we do not know of a way to make the natural interlacing families algorithm efficient on the
interlacing family we will analyze here. Later, we’ll see a completely different construction that actually
has a polynomial time algorithm for construction.

9.1 Expansion

We begin with a definition.

Definition 9 (Edge Expansion). LetG = (V ,E) be a d-regular graph. We define the edge expansion of S ⊂ V
by

φ(S) =
|E(S,S)|
d · |S |

where S = V \ S and E(S,S) = {(u,v) ∈ E : u ∈ S,v ∈ S} is the set of edges crossing the cut (S,S). The edge
expansion of G is defined to be φ(G) = minS⊂V :|S |≤|V |/2φ(S).

Note that in a d-regular graph, d · |S | is the total number of edges incident to some vertex in S, while
|E(S,S)| is the total number of edges incident to some vertex in S and leaving S. Hence, φ(S) in some sense
measures the connectivity of S to the rest of the graph, reweighted by its “importance”, namely its size.

The intuition here is as follows: we want to measure the connectivity of a graph. Of course, if this is
all we cared about, we could just use the complete graph, which has maximum connectivity (each vertex is
connected to as many other vertices as possible). However, we also want to be cost efficient (the complete
graph has Ω(n2) edges). Hence, we need to trade some connectivity for sparsity.

How should this tradeoff be made? Well, if only a single vertex has very low connectivity with the rest
of the graph, then maybe we don’t care that much. Low connectivity only really becomes a problem when
removal of only a few edges disconnects are large portion (say, a constant fraction of the vertices) of the
graph from another large portion.

Example 3. Here is an example. Although the following graph is not d-regular, it illustrates why we
not only care about connectivity but also a quantity like expansion, where connectivity is weighted by
“importance” (quantified by the size of the vertex sets on each side of the cut).

Figure 1: This is a dumbbell graph consisting of two 5-cliques connected by a single edge.

The main problem with this graph is that removal of just a single edge, namely, the middle edge, dis-
connects the two halves, both with n/2 ≥Ω(n) vertices, from each other. This would make a poor network
indeed!

Here is a simple result making the preceding intuition more rigorous.
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Lemma 19 (Lemma 1.2 from [32]). Let G = (V ,E) be a d-regular graph. If any ε-fraction of the edges of G are
removed, for some 0 < ε < φ(G), then G will still have a connected component that contains at least a

(
1− ε

2φ(G)

)
-

fraction of the vertices.

With this intuition, it becomes clear that large edge expansion is desirable. Expanders are graphs “with
Ω(1) expansion”, i.e. those for which every cut S has |E(S,S)| within a constant (times d) factor of |S | (so
that large sets subsets of vertices have many edges leaving it). More formally:

Definition 10 (Expanders). A sequence {Gn = (Vn,En)}n∈N of dn-regular graphs with |Vn| = n are a family of
expanders if there exists an absolute constant c > 0 independent of n such that φ(Gn) ≥ c for all n ∈ N.

Now, let’s look at a key tool to approximating the edge expansion of a graph.

Theorem 27 (Cheeger’s Inequalities). Let µ1 ≤ · · · ≤ µn be the eigenvalues of LG, where G = (V ,E) is a d-regular
graph. Then

µ2

2d
≤ φ(G) ≤

√
2µ2

d

Translated into the eigenvalues λ1 ≤ · · · ≤ λn of the adjacency matrix AG of G, we have

1
2
− λ2

2d
≤ φ(G) ≤

√
2− 2λ2

d

Thus, to prove that G has large expansion, it suffices to show that λ2 is small w.r.t. d.

Note: When analyzing spectral properties of d-regular graphs, we generally do not care about the largest
eigenvalue, which is d (consider the vector 1; d-regularity of G shows that sum of each row is d so that
AG1 = d1). This only tells us about d-regularity of G and nothing else. Similarly, if G is also bipartite, we
do not care about the smallest eigenvalue, since symmetry of the spectrum of AG (Theorem 5) shows that
the smallest eigenvalue is −d; again, this only tells us d-regularity and bipartiteness, nothing else. We refer
to these eigenvalues as the “trivial” eigenvalues.

We conclude this section with the definition of Ramanujan graphs. We will see soon why these graphs
are considered “optimal” expanders.

Definition 11 (Ramanujan Graph). A d-regular graph G is Ramanujan if the largest nontrivial eigenvalue
in absolute value of its adjacency matrix (not ±d) is upper bounded by 2

√
d − 1

Remark 4. One can actually define Ramanujan graphs much generally via the unverisal cover of G. We will
not discuss this notion in this survey.

9.2 Applications of Expanders

9.2.1 Rapid Random Walk Mixing

Definition 12 (Markov Chain). A Markov chain is a set of states Ω with a transition (probability) func-
tion P : Ω ×Ω→ [0,1] with P (a,b) = P[a→ b], i.e. the probability of “transitioning” from a to b. If Ω is
finite, we often write P as a transition matrix. Furthermore, we often represent the chain as a weighted
directed graph G = (V = Ω,E = Ω×Ω), where each edge (a,b) ∈ E has weight P (a,b).

Remark 5. Given a (possibly directed and/or nonnegatively weighted) graph G = (V ,E), one can define
a Markov chain with Ω = V and transition probabilities given by P (a,b) = wa,b/

∑
v∼awa,v = wa,b/dw(a); if

(u,v) < E), then P (u,v) = 0. More compactly, we can write the transition probabilities as P = D−1A, where
D = diag({dw(u)}u∈V ).

Definition 13 (Random Walk). Let (Ω, P ) be a Markov chain. A walk on Ω is a sequence of states {si}m1
(we allow m =∞). A random walk on Ω with initial distribution Q is a random sequence {si}m1 (we allow
m =∞) such that s1 ∼Q initially, and we generate si+1 with probability P [si+1 | si] = P (si , si+1), for all i.
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Markov chains are very useful in approximation algorithms. For example, Markov Chain Monte Carlo
(MCMC) is used to sample from complex distributions that are intractable to learn exactly. An applica-
tion from statistical machine learning is approximate learning of probabilistic graphical models (Hidden
Markov Models, Bayesian networks, etc.). It has also found applications in web search and page rank, mod-
eling users’ website visits as a Markov chain. In physics, Markov chains are used to model thermodynamic
systems. Finally, in economics, Markov chains are used to model the evolution of stock prices.

A key property useful in modeling with Markov chains is that they converge to a “stationary distribu-
tion” on the vertices; this is usually the intractable distribution we are trying to sample from (by the design
of the chain). To generate samples, one then runs a random walk for some time on the Markov chain so that
it converges to an approximate stationary distribution. More specifically, at each time step t of the walk,
the probability that st is at a certain vertex is given by (P >)tπ.

Definition 14 (Stationary Distribution). A distribution π on the vertices of G = (V ,E) is a stationary dis-
tribution if P >π = π.

Theorem 28. For a Markov chain given as a weighted undirected graph G, if G is connected and not bipartite,
then G has a unique stationary distribution. Furthermore, limt→∞(P >)tπ0 = π for any initial distribution π0 on
V .

Remark 6. For general weighted graphs, the bipartiteness condition can be fixed by making the chain “lazy”;
we do this by adding “self-edges” (or “loops”) to each vertex to makeG not bipartite. Furthermore, we make
the weight of the self-loop on vertex v equal to dw(v). It turns out this preserves the stationary distribution
of the chain.

In order to efficiently generate these samples from an approximate stationary distribution, one needs to
show that the Markov chain “converges” quickly to the stationary distribution.

Definition 15 (Mixing Time). The mixing time of a Markov chain corresponding to a weighted graph
G, with stationary distribution π, is the smallest time t such that for any initial distribution π0 on V ,∣∣∣∣∣∣(P >)tπ0 −π

∣∣∣∣∣∣
1
≤ 1/2e, where ||·||1 is the total variation distance (i.e. `1-distance).

Thus, when one designs a Markov chain for a problem (such as learning a Bayesian network), one needs
that the chain not only converges to the correct stationary distribution, but also that it doesn’t take too long
to converge; only then will the chain be useful.

Now, here is the connection to expander graphs. For simplicity, we’ll work with d-regular unweighted
undirected graphs.

Theorem 29. Let G = (V ,E) be a d-regular, unweightd, undirected graph. Then the mixing time of the lazy
Markov chain associated with G mixes in

O
(

logn
φ(G)2

)
steps.

Recall that expanders are graphs for which φ(G) is Ω(1). Hence, this result states that running a
lazy Markov chain on an expander will converge quickly (become 1/2e-close in total variation distance
in O(logn) steps) to the correct stationary distribution that we want.

9.2.2 Error-Correcting Codes

Suppose we would like to transmit a m-bit message over a (possibly insecure) channel. We want the bits
that the sender ends up sending to be “robust” to errors, where some bits may be flipped along the way,
in the sense that the receiver can still recover the original message being sent. Of course, if the sender just
sends his original m-bit message without modification, any error in the received message is unrecoverable.
Some redundancy/additional bits will be needed.
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For example, one can send three copies of the same m-bit message concatenated to each other. The re-
ceiver can then take a majority vote over all three copies for each bit. If no pair of bits corresponding to
the same location in the message are corrupted, then the receiver will recover the message correctly. The
problem with this is that it is communication efficient (we need to transmit three times as many bits) with
weak guarantees.

First, let’s formalize a model. We will view {0,1}m as the vector space Fm2 , where addition and scalar multi-
plication are down element-wise modulo 2.

Definition 16 (Code). Fix m and consider the set of all possible m-bit messages {0,1}m. Fix n > m. An
error-correcting code is an injective map C : {0,1}m→ {0,1}n. Each n-bit string in the image of C is called a
codeword. A code is linear if every linear combination of codewords is a codeword, that is, there exists a
parity-check matrix M ∈ {0,1}(n−m)×n such that y ∈ im(C) if and only if My = 0. Note every linear code has
a matrix A ∈ {0,1}n×m such that C(x) = Ax.

The rate of a code C : {0,1}m→ {0,1}n is equal to r(C) = m/n. The distance of a code C : {0,1}m→ {0,1}n is
minc1,c2∈im(C) ||c1 − c2||1.

Remark 7. Of course, we also want encoding and decoding to be done efficiently. This is why we will focus
on linear codes in this section.

Coding theory studies codes and the tradeoffs between the rate of the code, a measure of its bit effi-
ciency, and the distance of the code, a measure of its robustness to noise (the distance is the minimum
number of bit flips, i.e. errors, required to transform a codeword into another).

Somewhat surprisingly, expander graphs have found numerous applications here; they have been used
to design efficient and robust error-correcting codes. The idea was first introduced in [2] and is as follows.
We will construct a sparse bipartite graph G = (V = L∪R,E) with n vertices on one side of the bipartition L,
and n−m vertices on the other side R. The parity-check matrix M ∈ {0,1}(n−m)×n is then defined by Mij = 1
if and only if vertex i ∈ L and vertex j ∈ R are connected by an edge (this is also known as the Tutte matrix
of G). It turns out that the rate and distance of the code associated with this parity-check matrix M is
intimately related to the expansion properties of the graph G. This construction also, for example, gives a
code with Ω(1) rate and Ω(n) distance; note the stark contrast between the distance achieved here and the
naive “copy-the-message-several-times” approach, which achieved Ω(1) rate but O(1) distance. For more
details, we refer the reader to [2], [13], and [20].

9.2.3 Additional Applications

Other applications of expander graphs include the theory of pseudorandomness and embeddings of finite-
point metric spaces into Euclidean space with small dimension. For more applications, see [20].

9.3 Prior Work on Ramanujan Graphs

The seminal work of Alon-Boppana showed that for any infinite sequence of simple undirected d-regular
graphs of size tending to infinity, the largest nontrivial eigenvalue in absolute value tends to at least 2

√
d − 1;

that is, asymptotically, the 2
√
d − 1 bound is optimal. This is why Ramanujan graphs are particularly inter-

esting: they are in this sense, “optimal” expanders.

Theorem 30 (Alon-Boppana Bound; [4] and [8]). For a fixed d, if {Xn} is a sequence of simple undirected
graphs with Xn having n vertices and maximum degree d, then liminfn→∞ |λ(Xn)| ≥ 2

√
d − 1, where λ(G) =

max1≤i≤n:λi (G),±d |λi(G)| is the largest nontrivial eigenvalue in absolute value.

Simultaneously, we also believe that random d-regular graphs (in a model defined in the following
theorem) are Ramanujan with “reasonable” probability, for any d > 1. The first step towards this was the
work of Friedman, who showed that random d-regular (multi-)graphs are “almost” Ramanujan with high
probability.
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Theorem 31 (Theorem 1.1 from [16]). Fix ε > 0 and an even positive integer d. Then there are a constants
c,c′ > 0 such that for a random multigraphG, formed by choosing d/2 uniformly random permutationsπ1, . . . ,πd/2
on [n] independently and taking the edge set to be {(i,πj (i)), (i,π−1

j (i))}i∈[n],j∈[d/2], we have

P[∀i > 1, |λi(G)| ≤ 2
√
d − 1 + ε] ≥ 1− c

nd(
√
d−1+1)/2e−1

and

P[λ2(G) > 2
√
d − 1] ≥ c′

nb(
√
d−1+1)/2c

Empirical work calculations has also shown that Ramanujan graphs actually exist in great abundance.
Specifically, the work of Miller-Novikoff-Sabelli [25] empirically showed that the largest nontrivial positive
eigenvalue and the smallest nontrivial negative eigenvalue of a d-regular graph can be well-modeled by
a Tracy-Widom distribution. As a result, it is conjectured that if the mean and standard deviation of the
corresponding Tracy-Widom distribution grow asymptotically in a desirable way as the number of vertices
n grows, then:

1. approximately 52% of d-regular graphs from families of bipartite d-regular graphs should be be
Ramanujan

2. approximately 27% of d-regular graphs from families of nonbipartite d-regular graphs should be be
Ramanujan

Tracy-Widom distributions commonly seen in random matrix theory, specifically when one examines the
spectral distributions of random matrix ensembles such as the Gaussian Unitary Ensemble. Such distribu-
tions are beyond the scope of this survey and we will not discuss further their results here. We refer the
reader to [25].

Finally, there are has also been work on explicitly constructing infinite families of Ramanujan graphs for a
fixed degree. Prior works [5], [7], [11] were group and number theoretical constructions, and hence, only
worked for d-regular graphs of specific (but infinitely many) degrees d. However, they had the benefit of
being “explicit”, in the sense that:

1. they were Cayley graphs and can be described by a set of group generators

2. the graphs were efficiently constructable: one can query the set of neighbors of any vertex in polyno-
mial time

3. they did not rely on bipartiteness

Theorem 32 ([5]). Let p,q be unequal prime numbers congruent to 1 modulo 4. Then there exists a (p+1)-regular
(not necessarily) Ramanujan graph with n = q(q2 − 1) or n = q(q2 − 1)/2 vertices. In particular, for every prime p
congruent to 1 modulo 4, there exists an infinite family of (p+ 1)-regular Ramanujan graphs.

Theorem 33 (Informal; [11]). For every prime p and positive integerm, there exists an infinite family of (pm+1)-
regular Ramanujan graph.

Again, we will not discuss these constructions.

9.4 2-Covers

As stated earlier, the argument is based on a “lifting” idea proposed by Bilu-Linial [19], who used it to give
a deterministic polynomial time algorithm to construct arbitrarily large expanders. These expanders pro-

duced have nontrivial eigenvalues bounded in absolute value by O
(√
d log3 d

)
. Specifically, we will show

that every d-regular Ramanujan graph can be “lifted” to a d-regular Ramanujan graph that has twice as
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many vertices; applying a sequence of lifts then enables us to build arbitrarily large d-regular Ramanujan
graphs starting with a small Ramanujan graph.

Let’s first formalize what a “lift” means. These are also known as “covers”. While “lift” has a nice in-
tuitive meaning for the process being described, “cover” is, in a sense, a more appropriate name, stemming
from “covering spaces” in topology. From now on, we will stick with “cover”.

Definition 17. Let G = (V ,E) be a graph, with m = |E|, and s : E → {±1} (or s ∈ {±1}m more commonly), be
a signing of the edges of G. Then the 2-cover Gs of G associated with s is the graph Gs = (Vs,Es) whose
vertices and edges can be labeled as Vs = {uL,uR : u ∈ V } and Es = {(uL,vL), (uR,vR) : (u,v) ∈ E,s(u,v) =
1} ∪ {(uL,vR), (uR,vL) : (u,v) ∈ E,s(u,v) = −1}.

uL

uR

vL

vR

uL

uR

vL

vR

Figure 2: These are the possible 2-covers of a graph with two vertices u,v and an edge connecting them.
The 2-cover on the left corresponds to the sign +1, while the 2-cover on the right corresponds to the sign
−1. This idea extends more generally: every edge (with endpoints) of a 2-cover Gs of G corresponding to
the signing s ∈ {±1}m is replaced with either a copy of the left (corresponding to +1 on that edge) or a copy
of the right (corresponding to −1 on that edge).

Lemma 20. If G = (V ,E) is a bipartite graph, then so is Gs for every 2-cover Gs of G.

It was shown that the eigenvalues of a 2-cover can be related to the eigenvalues of the base graph.

Lemma 21 (Lemma 3.1 from [19]). Let G be a graph and A be its adjacency matrix, and As be the signed
adjacency matrix of A w.r.t. a signing s ∈ {±1}m of the edges. Let Gs be the 2-cover of G associated with the signing
s and B be its adjacency matrix. Then every eigenvalue of A and every eigenvalue of As is an eigenvalue of B.
Furthermore, the multiplicity of each eigenvalue of B is the sum of its multiplicities in A and As.

We will refer to the eigenvalues of As (with multiplicity) as the “new eigenvalues”, and the eigenvalues
(with multiplicity) of A as the “old eigenvalues”. The following conjecture formalizes the idea behind the
construction.

Conjecture 2 (Conjecture 3.1 from [19]). For every d-regular graph G, there exists a 2-cover G̃ such that all
new eigenvalues, i.e. the eigenvalues of As, where s is the signing associated with the 2-lift, are in the range
[−2
√
d − 1,2

√
d − 1].

We will present an affirmative resolution for the bipartite case using the technique of interlacing fami-
lies.

Theorem 34. Let G = (V ,E) be a d-regular bipartite graph. Then there exists a signing s ∈ {±1}m such that
the corresponding 2-cover Gs = (Vs,Es) has all new eigenvalues bounded in the interval [−2

√
d − 1,2

√
d − 1]. In

particular, if G is a d-regular bipartite Ramanujan graph, then so is Gs, for some signing s ∈ {±1}m.

9.5 Interlacing Families and the Matching Polynomial

Let G = (V ,E), with |V | = n and |E| = m, be a d-regular graph. Our goal is to show that in the set of edge
signings {±1}m, there exists a signing s such that the eigenvalues of As are bounded in [−2

√
d − 1,2

√
d − 1].

To do this, we will:
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1. show that {det(xI −As)}s∈{±1}m forms an interlacing family

2. bound the maximum root of
∑
s∈{±1}m det(xI −As) by 2

√
d − 1

Note that these combined do not imply the desired result. This is because step 2 only upper bounds the
maximum root; it does not lower bound the minimum root. Both are required since we are bounding the
largest root in absolute value. This is where we crucially use the bipartiteness of G, since all 2-covers of a
bipartite graph are bipartite (Lemma 20), and the spectrum of a bipartite graph is symmetric about zero
(Theorem 5); an upper bound on the maximum nontrivial eigenvalue immediately gives a lower bound on
the minimum nontrivial eigenvalue.

We will do step 2 first. It turns out much of the work for this step had already been done. We will re-
late

∑
s∈{±1}m det(xI −As) to the matching polynomialMG(x) of G, which is defined by

MG(x) def=
bn/2c∑
k=0

(−1)kmkx
n−2k

where mk is the number of matchings with k edges in G (with the convention that m0 = 1). From this, we
will apply a well-known bound due to Heilmann-Lieb [3] on the maximum root ofMG(x).

Theorem 35 (Theorem 3.6 from [34]).

Es∼unif({±1}m)[det(xI −As)] =MG(x)

Proof. For convenience, we drop the subscript for the expectation, as all expectations will be over unif({±1}m).
Recall that we may expand the determinant out as:

det(xI −As) =
∑
σ∈Sn

sign(σ )
n∏
i=1

(xI −As)i,σ (i) =
∑
σ∈Sn

sign(σ )
n∏
i=1

(x −As(i,σ (i)))

=
∑
σ∈Sn

sign(σ )
n∑
k=0

xn−k
∑

S⊂[n]:|S |=k

∏
i∈S

As(i,σ (i))


Hence, applying linearity of expectation,

Es[det(xI −As)] =
∑
σ∈Sn

sign(σ )
n∑
k=0

xn−k
∑

S⊂[n]:|S |=k
Es

∏
i∈S

As(i,σ (i))


=

n∑
k=0

xn−k
∑

S⊂[n]:|S |=k

∑
σ∈Sn

sign(σ )Es

∏
i∈S

As(i,σ (i))


=

n∑
k=0

xn−k
∑

S⊂[n]:|S |=k

∑
σ∈Sn:(i,σ (i))∈E,∀i∈S

sign(σ )Es

∏
i∈S

s(i,σ (i))


Note, we cannot take a step further and simplify this last expression into

n∑
k=0

xn−k
∑

S⊂[n]:|S |=k

∑
σ∈Sn:(i,σ (i))∈E,∀i∈S

sign(σ )
∏
i∈S

Es[s(i,σ (i))]


because, while we do know that s(i,σ (i)) is independent of σ (j,σ (j)) for (i,σ (i)) , (j,σ (j)), the product may
include (i,σ (i)) and (σ (i), i), which are perfectly correlated.

Now, let’s look at each expectation Es [
∏
i∈S s(i,σ (i))] for any fixed S ⊂ [n] and σ ∈ Sn with (i,σ (i)) ∈ E

for all i ∈ S. Note the number of times the sign for any fixed (i,σ (i)) appears in the product is in {0,1,2}
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(since at most, the product accounts for both (i,σ (i)) and (σ (i), i), when both i,σ (i) ∈ S, where we have
s(i,σ (i)) = s(σ (i), i)). Furthermore, recall that the signs assigned to each edge are independent and uni-
formly random from {±1}. Hence, the expectation is zero if the sign for any edge (i,σ (i)) appears exactly
once in the product.

In particular, the expectation is nonzero only when σ ∈ Sn satisfies (i,σ (i)) ∈ E for all i ∈ S, as well as
both i,σ (i) ∈ S, in which case the expectation is 1 (since s(i,σ (i))0 = s(i,σ (i))2 = 1 for all i). These are pre-
cisely the perfect matchings on S, i.e. matchings on [n] such that every vertex of S is matched to another
vertex of S, and no vertex outside of S is matched. Note such permutations also have sign(σ ) = (−1)|S |/2.
Thus, we can write the entire sum as

n∑
k=0

xn−k
∑

S⊂[n]:|S |=k,k even

∑
perfect matching σ∈Sn on S

(−1)k/2 =
bn/2c∑
k=0

(−1)kxn−2k
∑

S⊂[n]:|S |=k

∑
perfect matching σ∈Sn on S

1

=
bn/2c∑
k=0

(−1)kmkx
n−2k =MG(x)

Theorem 36 (Theorems 4.2 and 4.3 from [3]). Let G = (V ,E) be a graph with maximum degree d. ThenMG(x)
is real-rooted and maxroot(MG(x)) ≤ 2

√
d − 1.

Now, it remains to prove that {det(xI −As)}s∈{±1}m forms an interlacing family. The main technical work
lies in the following theorem.

Theorem 37 (Theorem 5.1 from [34]). Let p1, . . . ,pm ∈ [0,1]. Then

∑
s∈{±1}m

 ∏
i:si=1

pi


 ∏
i:si=−1

(1− pi)

det(xI −As)

is real-rooted.

Corollary 12 (Theorem 5.2 from [34]). The polynomials {det(xI −As)}s∈{±1}m form an interlacing family.

Proof. For convenience, for a signing s = (s1, . . . , sm) ∈ {±1}m, set fs(x) = fs1,...,sm(x) = det(xI − As). By the
definition of an interlacing family, we must show that for every partial assignment (s1, . . . , sk) ∈ {±1}k , and
every λ ∈ [0,1], the convex combination

qs1,...,sk (x) = λfs1,...,sk ,1(x) + (1−λ)fs1,...,sk ,−1(x) = λ
∑

s′k+2∈{±1},...,s′m∈{±1}

fs1,...,sk ,1,s′k+2,...,s
′
m

(x)

+ (1−λ)
∑

s′k+2∈{±1},...,s′m∈{±1}

fs1,...,sk ,−1,s′k+2,...,s
′
m

(x)

is real-rooted. It suffices to show that qs1,...,sk (x)/2m−k−1 is real-rooted. For this, observe that we may write

1
2m−k−1

qs1,...,sk (x) =
∑

s∈{±1}m

 ∏
i:si=1

pi


 ∏
i:si=−1

(1− pi)

fs(x)

with

pi =


(1 + si)/2 if 1 ≤ i ≤ k
λ if i = k + 1
1/2 otherwise
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Case 1 corresponds to the partial assignment that we’ve already fixed s1, . . . , sk . We have pi = 1 if si = 1
and 1 − pi = 1 if si = −1. Case 2 corresponds to the current convex combination weights λ on fs1,...,sk ,1 and
fs1,...,sk ,−1. Case 3 corresponds to the remaining signs; this is where we distribute the 1/2m−k−1.

Applying Theorem 37 gives the result.

It remains to prove Theorem 37. For this, we will need the real-rootedness of more general class of
polynomials.

Theorem 38 (Theorem 6.6 from [34]). Let a1, . . . , am,b1, . . . , bm ∈ Rn, p1, . . . ,pm ∈ [0,1] and D be a Hermitian
positive semidefinite matrix. Then∑

S⊂[m]

∏
i∈S

pi


∏
i<S

(1− pi)

det

xI +D +
∑
i∈S

aia
∗
i +

∑
i<S

bib
∗
i


is real-rooted.

Proof. An easy way is to use the machinery we already developed in resolving the Kadison-Singer problem.
Specifically, we observe that the polynomial of interest is essentially a mixed characteristic polynomial.

Consider distributions Di over {ai ,bi}, with Pv∼Di [v = ai] = pi and Pv∼Di [v = bi] = 1 − pi . Let Ai = piaia
∗
i +

(1− pi)bib∗i . We will draw vi from Di for all 1 ≤ i ≤m independently. Corollary 10 shows

µ[A1, . . . ,Am](x) = Ev1∼D1,...,vm∼Dm det

xI −D − m∑
i=1

viv
∗
i


=

∑
S⊂[m]

∏
i∈S

pi


∏
i<S

(1− pi)

det

xI −D −∑
i∈S

aia
∗
i −

∑
i<S

bib
∗
i


is real-rooted. Finally, using the fact that det(−A) = (−1)ndet(A) for A ∈ Cn×n, we see that the original
polynomial of interest may be written as

(−1)n
∑
S⊂[m]

∏
i∈S

pi


∏
i<S

(1− pi)

det

−xI −D −∑
i∈S

aia
∗
i −

∑
i<S

bib
∗
i

 = (−1)nµ[A1, . . . ,Am](−x)

we have the result.

We are now ready to prove Theorem 37.

Proof of Theorem 37. Let dv be the degree of v in G, and d = maxv dv be the maximum degree of G. To show
that ∑

s∈{±1}m

 ∏
i:si=1

pi


 ∏
i:si=−1

(1− pi)

det(xI −As)

is real-rooted, it suffices to show that∑
s∈{±1}m

 ∏
i:si=1

pi


 ∏
i:si=−1

(1− pi)

det(xI + dI −As)

is real-rooted, as the roots of these two polynomials differ by d.

Next, we note that dI −As may be written as a signed Laplacian matrix of G plus a diagonal matrix with
nonnegative entries, so that it is positive semidefinite. More precisely, if for each edge (u,v) ∈ E, we set

L1
u,v = (eu − ev)(eu − ev)∗
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if (u,v) has sign +1 in s, and

L−1
u,v = (eu + ev)(eu + ev)∗

if (u,v) has sign −1 in s, then

dI −As =
∑

(u,v)∈E
L
su,v
u,v +D

where D = diag({d−dv}v∈V ). Thus, if we take au,v = eu −ev and bu,v = eu +ev , then our polynomial of interest
becomes ∑

s∈{±1}m

 ∏
i:si=1

pi


 ∏
i:si=−1

(1− pi)

det

xI +D +
∑

(u,v)∈E:su,v=1

au,va
∗
u,v +

∑
(u,v)∈E:su,v=−1

bu,vb
∗
u,v


=

∑
S⊂E

∏
i∈S

pi


∏
i<S

(1− pi)

det

xI +D +
∑

(u,v)∈S
au,va

∗
u,v +

∑
(u,v)∈E\S

bu,vb
∗
u,v


where we use S to denote the set of edges signed with +1. It follows immediately from Theorem 38 that
this polynomial is real-rooted.

Proof of Theorem 34. Corollary 12 shows that {det(xI −As)}s∈{±1}m forms an interlacing family and so there
exists a signing s̃ ∈ {±1}m such that maxroot(det(xI −As̃)) ≤ maxroot(Es∼unif({±1}m)[det(xI −As)]). Since the
expectation on the right-hand side isMG(x) by Theorem 35, which has maximum root upper bounded by
2
√
d − 1 by Theorem 36, the adjacency matrix of the 2-coverGs̃ has all eigenvalues bounded in [−2

√
d − 1,2

√
d − 1]

as desired.

9.6 r-Covers

The proof above shows how to construct simple d-regular bipartite Ramanujan graphs for every degree
d > 1, but only of specific sizes, namely powers of 2 multiplied by the size of the base graph. Ideally, we’d
like to be able to strengthen the argument to show the existence of d-regular bipartite Ramanujan graphs
of arbitrary size. Now, 2-covers correspond to signings of edges of the base graph. By viewing the set of
signs {±1} as the set of permutations on 2 item S2, one can see how to generalize the notion of a 2-covers to
that of an r-covers, for r ≥ 1.

Definition 18. Let G = (V ,E) be a graph, with m = |E|, and σ : E→ Sr . Then the r-cover Gσ of G associated
with σ is the graph Gσ = (Vσ ,Eσ ) whose vertices and edges can be labeled as Vσ = {v1, . . . , vr : v ∈ V } and
Eσ = {(u1,vσ (1)), . . . , (ur ,vσ (r)) : (u,v) ∈ E}. The set of r-covers of G is denoted Cr,G.

Lemma 22. If G = (V ,E) is a bipartite graph, then so is Gσ for every r-cover Gσ of G, for every r > 1.

Then, it is natural to ask if every simple d-regular graph has a good r-lift, for any r ≥ 1. If this were
true, then we would indeed be able to show the existence of d-regular bipartite Ramanujan graphs of all
sizes. In this section, we’ll give a very high level sketch of how to resolve this question affirmatively. For
more detail, we refer to [41].

Before we continue, we need an analogue of the signed adjacency matrix we used for 2-covers in order
to talk about “new eigenvalues”. It doesn’t seem immediately obvious (at least if one doesn’t know repre-
sentation theory) how to generalize the notion of a signed adjacency matrix, since in this special case, all
we had to do was change the sign of the entries of A appropriately.

However, what we really are doing is encoding the information about the edge signs in a matrix. Now,
we just have to encode the information about the permutations described by σ : E → Sr in a matrix for
more general r ≥ 1. As it turns out, the right tool here to use is that of group representations. While repre-
sentation theory well lies outside the scope, we’ll just give the definitions needed to state the main results
of [41].

51



9.6.1 A Quick Detour Into Group Representations

Recall that a group G is a set with a binary operation · : G ×G→ G (the group law of G) such that

1. a · b ∈ G for all a,b ∈ G (closure).

2. There exists an element e ∈ G such that a · e = e · a = a for all a ∈ G (identity).

3. For every a ∈ G, there exists an element a−1 ∈ G such that a · a−1 = a−1 · a = e (inverses).

A group is abelian if a · b = b · a for all a,b ∈ G. A map ϕ : G → H where G,H are group is a group
homomorphism if ϕ(a ·b) = ϕ(a) ·ϕ(b) for all a,b ∈ G. Finally, if G is a group and S is a set, then a left (resp.
right) group action is a function ϕ : G ×X→ X (resp. ϕ : X ×G→ X) satisfying

1. ϕ(e,x) = x (resp. ϕ(x,e) = x) for all x ∈ X

2. ϕ(ab,x) = ϕ(a,ϕ(b,x)) (resp. ϕ(x,ab) = ϕ(ϕ(x,a),b)) for all a,b ∈ G,x ∈ X

Definition 19. A d-dimensional representation of a finite group Γ is a group homomorphism π : Γ →
GL(V ), where V is a d-dimensional vector space and GL(V ) is the group of invertible linear transforma-
tions from V to itself (with function composition as the group operation). For d ∈ N, a d-dimensional
complex representation of Γ is a representation where V = Cd and GL(V ) = GLd(C) is the set of invertible
d × d complex matrices. If Γ additionally has a topological structure (i.e. it is a topological group), then we
require π to also be continuous.

Two representations π1,π2 : Γ → GLd(C) are isomorphic if there exists B ∈ GLd(C) such that π1(g) =
B−1π2(g)B for all g ∈ Γ . For two representations π1 : Γ → GLd1

(C) and π2 : Γ → GLd2
(C), we define their

direct sum π1 ⊕π2 : Γ →GLd1+d2
(C) by

(π1 ⊕π2)(g) =
(
π1(g) 0

0 π2(g)

)
A representation is irreducible if it is not isomorphic to a sum of representations. A representation is
unitary if it is isomorphic to a representation whose image is a subgroup of the group of unitary matrices.
A representation is faithful if it is injective.

Example 4. The trivial representation πtriv : Γ →GL1(C) = C is given by g 7→ 1 for all g ∈ Γ .

Example 5. Consider the action of Γ on itself by right multiplication, namely g(h) = hg. If we view C|Γ |
as the set of complex-valued functions on Γ , then the action gives a representation πreg : Γ → GL|Γ |(C)
such that πreg(g) is a (permutation) matrix satisfying πreg(g)v(h) = v(hg) for all complex-valued functions
v ∈ C|Γ |, for all g,h ∈ Γ . πreg is known as the (right) regular representation of Γ . One can similarly define a
(left) regular representation of Γ by considering the group action of Γ on itself by left multiplication. For
Γ = Sr , these two representations coincide.

Example 6. Consider the regular representation πreg of Sr , which maps σ ∈ Sr to the permutation matrix
corresponding to it. Since the subspace span{1} of Cr is invariant under all permutation matrices, πreg
is isomorphic to the trivial representation from Γ to span{1}. Hence, the action of πreg on span{1}⊥ is an
(r − 1)-dimensional representation called the standard representation of Γ and is denoted πstd.

For example, the standard representation of S2 = {id,swap} is simply πstd(id) = 1 and πstd(swap) = −1.
The standard representation of S3 is given by

id 7→ I2 (123) 7→
(
e2πi/3 0

0 e−2πi/3

)
(132) 7→

(
e−2πi/3 0

0 e2πi/3

)
(12) 7→

(
0 1
1 0

)
(23) 7→

(
0 e−2πi/3

e2πi/3 0

)
(13) 7→

(
0 e2πi/3

e−2πi/3 0

)
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With this final example, we can now define the analogue of the signed adjacency matrix for an r-cover
σ : E → Sr . Specifically, let G be a graph, r ≥ 1, and fix an ordering on the vertices V = [n] of G. For a
σ : E→ Sr , we define

Aσ =


πstd(σ (1,1)) . . . πstd(σ (n,1))

...
. . .

...
πstd(σ (1,n)) . . . πstd(σ (n,n))

 ∈ Cn(r−1)×n(r−1)

where we make the abuse of notation by still writingπstd(σ (u,v)) even if (u,v) < E; in this case, πstd(σ (u,v)) =
0. Observe that when r = 2 and σ : E → S2 corresponds to a signing, we recover the original notion of a
signed adjacency matrix.

9.6.2 Interlacing Families and the d-Matching Polynomial

The key consequence of [41] as we alluded to earlier is the following.

Theorem 39. Let G = (V ,E) be a d-regular bipartite graph. Let r ≥ 1 be arbitrary. Then there exists a
σ : E → Sr such that the corresponding r-cover Gσ = (Vσ ,Eσ ) has all new eigenvalues bounded in the inter-
val [−2

√
d − 1,2

√
d − 1]. In particular, if G is a d-regular bipartite Ramanujan graph, then so is Gσ , for some

σ : E→ Sr .

To prove this, the same strategy works as in the special case of r = 2. Specifically, we will:

1. show that {det(xI −Aσ )}σ∈SEr forms an interlacing family

2. bound the maximum root of
∑
σ∈SEr det(xI −Aσ ) by 2

√
d − 1

For step 2, we will relate ∑
σ∈SEr

det(xI −Aσ )

to a special polynomial whose roots we know how to analyze. When r = 2, we use the matching polynomial
of a graph. For r > 2, we need a generalization (yet again). [41] proposed to use what they call the k-
matching polynomial, which for a general graph G is defined by

Mk,G(x) = EH∼unif(Ck,G)[MH (x)]

for k = r − 1. In the case when r = 2, we recover the regular matching polynomial of G:M1,G(x) =MG(x).

Theorem 40 (Theorem 1.8 from [41]). Let G be a simple, connected d-regular graph. Let r ∈ N. Then

Eσ∼unif(SEr )[det(xI −Aσ )] =Mr−1,G(x)

Theorem 41 (Theorem 2.7 from [41]). If G is a simple, connected d-regular graph, and k ∈ N, thenMk,G(x) is
real-rooted. Furthermore, all root ofMk,G(x) lie in [−2

√
d − 1,2

√
d − 1].

We refer the details of the proofs of these statements to [41]. One key thing to note is that we have
reduced and rephrased the results of [41] to the special case when:

1. G is d-regular and simple; many results of [41] allow G to have multiedges and do not assume regu-
larity (they phrase their results in the language of the universal cover of G)

2. the lifts are given by labeling the edges of G with elements from the symmetric group Sr and rep-
resenting them in Aσ by block matrices given by the standard representation of Sr ; the results of
[41] allow labelings from a finite group Γ other than Sr along with a complex representation π : Γ →
GLr−1(C), subject to some nice conditions that we will not present
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9.7 Kadison-Singer and Ramanujan Coverings

Now, let’s look at an interesting connection between the Kadison-Singer Problem and Ramanujan graphs.
Let G = (V ,E) be a d-regular graph. Recall the proof of Theorem 34. Recall we defined au,v = eu − ev and
bu,v = eu + ev , and showed that

dI −As =
∑

(u,v)∈E:su,v=1

au,va
∗
u,v +

∑
(u,v)∈E:su,v=−1

bu,vb
∗
u,v

Then

Es∼unif({±1}m)

 ∑
(u,v)∈E:su,v=1

au,va
∗
u,v +

∑
(u,v)∈E:su,v=−1

bu,vb
∗
u,v

 = Es∼unif({±1}m) [dI −As] = dI −Es∼unif({±1}m)[As] = dI

More compactly, if ru,v = au,v/
√
d with probability 1/2 and ru,v = bu,v/

√
d with probability 1/2, then

E

 ∑
(u,v)∈E

ru,vr
∗
u,v

 = I

Now,
∣∣∣∣∣∣au,v/√d∣∣∣∣∣∣2 =

∣∣∣∣∣∣bu,v/√d∣∣∣∣∣∣2 = 2/d. Hence, if we formulate this entire problem of demonstrating there
exists a signing s ∈ {±1}m as an instance of Theorem 21 that implied Kadison-Singer, specifically with
ε = 2/d and Du,v = unif({au,v/

√
d,bu,v/

√
d}) for all (u,v) ∈ E, then we have

Ps

||dI −As || ≤
1 +

√
2
d

2 = Ps


∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
∑

(u,v)∈E
ru,vr

∗
u,v

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣ ≤

1 +

√
2
d

2 > 0

that is, there exists a signing such that λmax(dI −As) ≤ d(1+
√

2/d)2 = d+2+2
√

2d =⇒ λmax(As) ≤ 2+2
√

2d.
Note that asymptotically, this is optimal (but suboptimal w.r.t. the 2

√
d − 1 bound we obtained using the

matching polynomial; see Theorem 35 and Theorem 36).

What is particularly interesting about this reduction is that this shows the dependence on ε in the bound

P


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
m∑
i=1

viv
∗
i

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ ≤ (1 +

√
ε)2

 > 0

is asymptotically optimal; if we could do better, then we’d be able to show the existence of the existence
of a signing s ∈ {±1}m such that λmax(As) ≤ o(

√
d). This would immediately contradict the Alon-Boppana

bound (Theorem 30).

9.8 Shortcomings of this Proof

9.8.1 The Natural Algorithm is Inefficient

Theorem 35 shows that

Es∼unif({±1}m)[det(xI −As)] =MG(x)

In particular, the root of the interlacing family is the matching polynomial. Now, it is known that com-
puting even the just the constant coefficient ofMG(x) (which is the number of perfect matchings in G) is
#P-Hard to compute. Hence, we cannot hope to exactly and efficiently compute the coefficients ofMG(x).
This makes computing the maximum root ofMG(x) much more difficult.

Now, one can say that by Theorem 36, maxroot(MG(x)) ≤ 2
√
d − 1, so it doesn’t really matter what maxroot(MG(x))
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is precisely (because we only really care about the 2
√
d − 1 upper bound). However, how do we proceed to

the next step? That is, how do we compute the maximum roots of p1,p−1, the children of the rootMG(x)?
Well, if could compute their coefficients efficiently, then we can also compute the coefficients ofMG(x) by
just writing it as p1 + p−1. In particular, it is #P-Hard to compute the coefficients of p1,p−1. Now, we re-
ally are stuck, because here, we actually need to know which polynomial, p1 or p−1, has its maximum root
smaller than 2

√
d − 1.

This is actually a problem for the natural interlacing family algorithm for the Kadison-Singer problem
as well. Specifically, the constant term of

µ[A1, . . . ,Am](x)

is given by
 m∏
i=1

(1−∂zi )

det

xI +
m∑
i=1

ziAi



z1=···=zm=x=0

=


 m∏
i=1

(1−∂zi )

det

 m∑
i=1

ziAi



z1=···=zm=0

= (−1)m
 ∂m

∂z1
· · ·∂zm

det

 m∑
i=1

ziAi



z1=···=zm=0

which is (up to a sign) the mixed discriminant D(A1, . . . ,Am) of A1, . . . ,Am. Since Ai = EDi [viv
∗
i ] and we

make no assumptions on Di other than finite support, computing µ[A1, . . . ,Am](x) in all cases requires be-
ing able to compute the mixed discriminant D(A1, . . . ,Am) efficiently in all cases. Again, we cannot hope
to do this as mixed discriminants can encode the permanent, which is #P-Hard to compute in general (for
a matrix B ∈ Rm×m, perB = D(A1, . . . ,Am), where Ai = diag(b1i , . . . , bmi) for all columns 1 ≤ i ≤ m). The best
known polynomial-time algorithms for approximating mixed discriminants in general achieve exponential
multiplicative approximation ratios; for example, [15] achieve, through a deterministic algorithm, an ap-
proximation ratio of mm/m! ≈ em.

With this in mind, we can only hope to approximate the maximum roots of the desired polynomials. This
question was addressed in [43], where they gave algorithms that, given access to the top k coefficients of a
degree-n polynomial, approximates the maximum root of p to within a multiplicative factor of n1/k when
k ≤ logn, and 1 +O(k−2 log2n) when k > logn, respectively. These algorithms run in time polynomial in k;
in the context of running the natural interlacing families algorithm, they lead to 2Õ(n1/3)-time algorithms
for finding the desired polynomials. Unfortunately, [43] also proves nearly matching lower bounds.

Another approach has been to restrict attention to special kinds of covers that are easy to work with and
for which there are only polynomially many such covers. [38] considered covers known as “shift covers”
(in their terminology, “shift lifts”), which are covers for which σ is a power of the “shift” permutation
(1 · · · r) ∈ Sr (it sends 1 to 2, 2 to 3, etc. and r to 1).

9.8.2 Bipartiteness

To prove that there is a lift satisfying the Ramanujan bound, we needed to use the fact that the eigenvalues
are symmetric about 0, since we are only able to directly bound the largest eigenvalue. However, we’d ide-
ally like to be able to show that infinite families of nonbipartite Ramanujan graphs exist as well. Here, we
present an attempt to remove this dependency that does not work, but is interesting nonetheless.

The idea here is to consider a kind of “symmetrized” characteristic polynomial ΞA, where the roots of
this polynomial are symmetric about 0 and each root of the original characteristic polynomial χA is a root
of ΞA. Then, one can attempt to use the method of interlacing polynomials in a similar fashion to prove
a bound on the largest root of ΞA; then, by symmetry, we can conclude a bound on both the largest and
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smallest roots of χA. Let A be a symmetric matrix with eigenvalues λ1 ≤ · · · ≤ λn. Define

ΞA(x) =
n∏
i=1

(x −λi)(x+λi) = det(xI −A)det(xI +A) = det(x2I −A2) = det
(
xI −

[
0 A
A 0

])
This is the lowest degree polynomial with λ1, . . . ,λn as roots (with multiplicity), and whose roots are sym-
metric about 0. Now, if we consider the adjacency matrix A of a graph G, and a signing s ∈ {±1}m, then

ΞAs (x) = det
(
xI −

[
0 As
As 0

])

This has a nice interpretation: As corresponds to a 2-cover Gs of G, and so
[

0 As
As 0

]
corresponds to the

double cover of Gs.

Ideally, the next step in this idea is to show that {ΞAs (x)}s∈{±1}m forms an interlacing family. Unfortunately,
this is actually not true. It turns that

Es∼unif({±1}m)[ΞAs (x)]

fails to be real-rooted, even for small graphs (a simple experiment with K2,2 shows this average is not
real-rooted).
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10 Building Bipartite Ramanujan Graphs II: Unions of Matchings

In this section, we’ll present a completely different construction of d-regular bipartite Ramanujan graphs.
The key differences in results are that

1. we will be able to give a deterministic polynomial time algorithm for building such graphs

2. the graphs produced may have multiedges

Here, instead of taking a base d-regular bipartite Ramanujan graph and lifting it to a larger d-regular bi-
partite Ramanujan graph, we will just build the desired multigraph in one shot. Specifically, if given a
degree d and an even size 2n, we will be able to return, in polynomial time a d-regular bipartite Ramanu-
jan multigraph.

The idea is similar to the model Friedman was working with to prove Theorem 31. Specifically, we’ll
carefully choose d permutations on [2n] and then take G to be the union of the matchings corresponding to
the permutations. This requires analyzing a completely different interlacing family.

For convenience, we will overload the notation of Sn to mean both the set (group) of permutations on n
letters as well as the group of n×n permutation matrices.

The main result is as follows.

Theorem 42. Let P1, . . . , Pd ∼ unif(Sn) be independent, where d ≥ 3 and n > d/2. Then there exists a choice of
n×n permutations Q1, . . . ,Qd such that all nontrivial eigenvalues of the adjacency matrix

A =
d∑
i=1

[
0 Qi
Q>i 0

]

are upper bounded by 2
√
d − 1 in absolute value. In particular, there exists a choice of d perfect matchings on 2n

vertices [2n] = V such that their union is a d-regular bipartite Ramanujan multigraph.

The proof strategy is exactly the same as in the previous applications we’ve seen. We’ll begin with the
first step of proving that the polynomials we are interested in form an interlacing family. This is the sim-
pler part. Following this step, we’ll spend a few subsections developing the machinery needed to bound
the largest nontrivial eigenvalue of the average of the adjacency matrices of unions of d perfect matchings.

Just as in the previous method of building Ramanujan graphs, this construction relies crucially on bipar-
titeness, since we need the eigenvalues of the adjacency matrix to be symmetric about 0 in order to bound
the smallest nontrivial eigenvalue.

Finally, unlike in previous sections, here, we will not go through all details of proofs. We will sketch
their main ideas and refer the reader to [36] for long calculations, etc.

10.1 Interlacing Families for Permutations

The main goal of this subsection is to prove the following theorem.

Theorem 43. The set of polynomials

χ

 d∑
i=1

[
0 PiS

>
i

(PiS
>
i )> 0

] (x)

where the Pi ,Si range over Sn, form an interlacing family.
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Remark 8. This theorem is stated in a way that is nicer to work with when we try to bound the roots
of the average of these polynomials later on. Of course, the product of uniformly random, independent
permutations is a uniformly random permutation so what one should keep in mind is that we are really
saying that the set of polynomials

χ

 d∑
i=1

[
0 Pi
P >i 0

] (x)

form an interlacing family. Note there are (n!)d many of these polynomials.

We will actually prove a more general fact. But first, we need a nice condition on the distributions
allowed on Sn which will allow us to decompose a random variable taking values in Sn.

Definition 20 (Realizability by Swaps). A random swap S is a matrix-valued random variable taking values
in {I,σ }, where σ is some transposition of two indices i , j in [n]. A random variable P taking values in Sn
is realizable by swaps if there exist random swaps S1, . . . ,SN such that the distribution of P is the same as
the distribution of SN · SN−1 · · ·S2 · S1.

Lemma 23. Let P ,Q ∼ unif(Sn). Then, P ,Q and P ⊕Q =
(
P 0
0 Q

)
are realizable by swaps.

Proof Sketch. For P ,Q, see the Fisher-Yates algorithm for generating a uniformly random permutation via
n random swaps. This also proves that P ⊕ I and I ⊕ Q are realizable by swaps. Finally, observe that
P ⊕Q = (P ⊕ I) · (I ⊕Q) so that P ⊕Q is realizable by swaps.

With these notions in hand, we first state a simpler “version” of our goal.

Theorem 44. Let k ∈ N be arbitrary. Suppose A1, . . . ,Ad are symmetric k × k matrices, and D1, . . . ,Dd be inde-
pendent distributions on the set of k × k permutation matrices such that Pi ∼ Di is realizable by swaps, for all
1 ≤ i ≤ d. Then, the set of polynomials  d∏

i=1

PDi [Pi]

χ
 d∑
i=1

PiAiP
>
i

 (x)

form an interlacing family.

Again, the key is to decompose each Pi into a product of random swap matrices. This theorem will follow
immediately using Theorem 7 and the following, which is the main technical work of this subsection.

Theorem 45 (Theorem 3.3 from [36]). Let A1, . . . ,Ad be symmetric matrices in Rn×n and let {Sij }i∈[d],j∈[N ] be
independent (not necessarily identical) random swaps. Then

E{Sij }χ

 d∑
i=1

 1∏
j=N

Sij

Ai
 N∏
j=1

S>ij


 (x)

is real-rooted.

Proof Sketch. The first key observation is that the polynomial p(X1, . . . ,Xd) = det(X1 + · · ·+Xd) satisfies two
important properties:

1. The univariate restriction p(tI − A1, . . . , tI − Ad) is real-rooted for symmetric matrices A1, . . . ,Ad (re-
ferred to as hyperbolicity in [36]). This follows from the Spectral Theorem; for symmetric matrices
A1, . . . ,Ad , p(tI −A1, . . . , tI −Ad) is the characteristic polynomial of a real symmetric matrix.

2.

p(X1, . . . ,Xi−1,Xi + svv>,Xi+1, . . . ,Xd) = p(X1, . . . ,Xd) + s ·Di,vv> [p(X1, . . . ,Xd)]
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for every vector v ∈ Rn, every 1 ≤ i ≤ d, and every s ∈ R, where

Di,vv> [p(X1, . . . ,Xd)] def=
[
∂tp(X1, . . . ,Xi−1,Xi + tvv>,Xi+1, . . . ,Xd)

]
t=0

is a linear operator (referred to as rank-1 linearity in [36]). This can be proved using the Matrix
Determinant Lemma (Lemma 6) and Corollary 4:

det

 d∑
i=1

Xi + svv>
 =

1 + sv>
 d∑
i=1

Xi


−1

v

det

 d∑
i=1

Xi


and

(
∂tp(X1, . . . ,Xi−1,Xi + tvv>,Xi+1, . . . ,Xm)

)
|t=0= det

 d∑
i=1

Xi

 tr


 d∑
i=1

Xi


−1

vv>

 =

v>
 d∑
i=1

Xi


−1

v

det

 d∑
i=1

Xi


The other key observation is that random swaps preserve these nice properties in expectation:

Lemma 24 (Lemma 3.7 from [36]). For any random swap S and any 1 ≤ i ≤ d, ES [p(X1, . . . ,Xi−1,SXiS
>,Xi+1, . . . ,Xd)]

is hyperbolic and rank-1 linear.

Once we have this, the theorem follows immediately, since applying this lemma inductively dN times,
we have

E{Sij }det

 d∑
i=1

 1∏
j=N

Sij

Xi
 N∏
j=1

S>ij




is rank-1 linear and hyperbolic, and then restricting this polynomial to (t/m)I −A1, . . . , (t/m)I −Ad yields
real-rootedness of

E{Sij }χ

 d∑
i=1

 1∏
j=N

Sij

Ai
 N∏
j=1

S>ij




by hyperbolicity. Hence, it remains to prove Lemma 24.

Proof Sketch of Lemma 24. Let S be any random swap equal to σ with probability λ ≥ 0 and identity with
probability 1−λ. Let 1 ≤ i ≤ d be arbitrary. We must show that

q(X1, . . . ,Xm) = (1−λ)p(X1, . . . ,Xm) +λp(X1, . . . ,σXiσ
>, . . . ,Xm)

is hyperbolic and rank-1 linear. For rank-1 linearity, observe that since Di,vv> is a linear operator, the sum
of rank-1 linear polynomials is rank-1 linear.

Hyperbolicity is a bit more involved. The steps of the proof proceeds as follows:

1. Show that if P (X1, . . . ,Xm) is rank-1 linear and hyperbolic, then the roots of P (tI − A1, . . . , tI − Ad)
interlace the roots of P (tI −A1, . . . , tI −Ai−1, tI −Ai − vv>, tI −Ai+1, . . . , tI −Ad). In the special case of
P (X1, . . . ,Xd) = det

(∑d
i=1Xi

)
, this is just the Cauchy Interlacing Theorem (Theorem 8). For the general

case, see Lemma 3.8 from [36].

2. Prove that if σ is a transposition and A is symmetric, then A−σAσ> has rank 2 and trace 0 so that we
can write A− σAσ> = aa> − bb> for some vectors a,b ∈ Rn. This is a simple calculation for which we
refer the reader to Lemma 3.10 from [36]. Then, hyperbolicity reduces to proving that

Q(tI −A1, . . . , tI −Ad) = (1−λ)P (tI −A1, . . . , tI −Ad) +αP (tI −A1, . . . , tI −Ai − aa> + bb>, . . . , tI −Ad)
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is real-rooted. Using step 1, we know that

P (tI −A1, . . . , tI −Ai + bb>, . . . , tI −Ad)

interlaces both P (tI −A1, . . . , tI −Ad) and

P (tI −A1, . . . , tI −Ai − aa> + bb>, . . . , tI −Ad)

so that the two polynomials, whose (1 − λ,λ) convex combination is Q(tI − A1, . . . , tI − Ad), have a
common interlacing. Since λ ∈ [0,1] was arbitrary, applying Theorem 7 completes the proof.

Proof of Theorem 43. Set k = 2n and

M =
[

0 I
I 0

]
∈ R(2n)×(2n)

and set A1 = · · · = Ad = M. Let P1, . . . , Pd ,S1, . . . ,Sd be independent, uniformly random n × n permutation
matrices. Lemma 23 shows that the random matrices Pi ⊕ Si are realizable by swaps. Writing[

Pi 0
0 Si

]
M

[
Pi 0
0 Si

]>
=

[
0 (PiS

>
i )

(PiS
>
i )> 0

]
and applying Theorem 44, we have the result.

Corollary 13. There exist n×n permutation matrices Q1, . . . ,Qd such that

λ2

χ
 d∑
i=1

[
0 Qi
Q>i 0

] (x)

 ≤ λ2

EP1,...,Pd ,S1,...,Sdχ

 d∑
i=1

[
0 PiS

>
i

(PiS
>
i )> 0

]
(x)




where λ2(p) denotes the second largest root of the polynomial p (in this case, this is the largest nontrivial eigen-
value).

10.2 Finite Free Convolutions

As in previous applications of the interlacing families proof technique, one needs to analyze the maximum
root of the average of the polynomials in the interlacing family. The polynomials we discuss in this subsec-
tion are somewhat different from the ones in the interlacing family we ultimately want to analyze. We will
relate these soon. For now, we will be considering the average of characteristic polynomials of matrices of
the form A+QBQ> and (A+QBR>)(A+QBR>)>, where Q,R are orthonormal matrices.

The inspiration for studying these polynomials stems from free probability, which studies “noncommu-
tative random variables” and as an application, studies limiting distributions of the spectra of random
matrices. We refer interested readers to [28].

Definition 21 (Symmetric Additive Convolution). Let p(x) = χ[A](x) and q(x) = χ[B](x) be two real-rooted
polynomials, where A,B ∈ Rn×n are symmetric. We define the symmetric additive convolution of p and q
by

(p�n q)(x) = EQ∼unif(O(n))χ[A+QBQ>](x)
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Definition 22 (Asymmetric Additive Convolution). Let p(x) = χ[AA>](x) and q(x) = χ[BB>](x) be two real-
rooted polynomials with nonnegative roots, for some A,B ∈ Rn×n. We define the asymmetric additive
convolution of p and q by

(p��n q)(x) = EQ,R∼unif(O(n))χ[(A+QBR>)(A+QBR>)>](x)

Alternatively, we can define it as the polynomial satisfying the relation

S((p��n q)(x)) = EQ,R∼unif(O(n))χ

[[
0 A
A> 0

]
+
[
Q 0
0 R

][
0 B
B> 0

][
Q 0
0 R

]>]
(x)

where S is the linear operator on C[x] defined by (Sp)(x) = p(x2). This follows from the fact that

S(χ[M>M](x)) = χ
[

0 M
M> 0

]
(x)

for every M ∈ Rn×n.

From now on, whenever we write p�n q for two polynomials p,q we will implicitly assume p,q are char-
acteristic polynomials of Hermitian n × n matrices A,B respectively. Similarly, whenever we write p��n q
for two polynomials p,q, we will implicity assume p,q are characteristic polynomials of positive semidefi-
nite Hermitian n×n matrices.

The following are some nice properties of these convolutions.

Lemma 25 (Properties of �n and ��n; Lemma 2.5 from [36]). 1. (p�n q)(x) is real-rooted.

2. (p��n q)(x) is real-rooted, with all roots being nonnegative.

3. �n and ��n are bilinear operators (in the coefficients of the polynomials on which they operate) and asso-
ciative.

As alluded to mentioned earlier, in this section, we will be able to give a polynomial time algorithm for
building the elusive Ramanujan graphs. That the natural interlacing families algorithm runs in polynomial
time crucially depends on the following explicit analytic formulas for the convolutions of two polynomi-
als; specifically, given polynomials p,q through their coefficients, we can compute p�n q and p��n q in
polynomial time using the following formulas.

Theorem 46 (Theorem 1.1 from [40]). Suppose

p(x) =
n∑
k=0

(−1)kakx
n−k q(x) =

n∑
k=0

(−1)kbkx
n−k

are real-rooted polynomials. Then,

(p�n q)(x) =
n∑
k=0

(−1)kxn−k ·

 ∑
i+j=k

(n− i)!(n− j)!
n!(n− i − j)!

aibj


Theorem 47 (Theorem 1.3 from [40]). Suppose

p(x) =
n∑
k=0

(−1)kakx
n−k q(x) =

n∑
k=0

(−1)kbkx
n−k

are polynomials with nonnegative real roots. Then,

(p��n q)(x) =
n∑
k=0

(−1)kxn−k ·

 ∑
i+j=k

(n− i)!(n− j)!
n!(n− i − j)!

aibj


2
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10.3 The Cauchy Transform

Definition 23. Let p(x) =
∏d
i=1(x −λi) be a degree-d real-rooted polynomial. We define the Cauchy Trans-

form of p to be the function

Gp(x) =
1
d
·
p′(x)
p(x)

=
1
d

d∑
i=1

1
x −λi

Similarly, we define the Inverse Cauchy Transform of p to be

Kp(w) = max{x ∈ R : Gp(x) = w}

Remark 9. Observe that Gp blows up at the roots of p and is decreasing for x > maxroot(p). Thus, Kp(w) is
the unique value of x such that x >maxroot(p) and Gp(x) = w. Note two key facts about Kp(w):

1. Kp(w) is an upper bound on maxroot(p)

2. Kp(w)→maxroot(p) as w→∞

Note that the Cauchy Transform is essentially the barrier from Kadison-Singer but for a single vari-
able and the barrier from Ramanujan Sparsifiers, and is also very similar to the barrier from Restricted
Invertibility. [36] note that using the barrier argument from Ramanujan Sparsifiers [27] is suboptimal. The
following results (proven in [40] and but also stated in [36]) are what will allow us to achieve the optimal
Ramanujan bound.

Theorem 48 (Theorem 2.7 from [36]). Let p,q be real-rooted polynomials, and let w > 0. Then Kp�nq(w) ≤
Kp(w) +Kq(w)−w−1.

Theorem 49 (Theorem 2.8 from [36]). Let p,q be real-rooted polynomials. Assume that all roots of p(x) and
q(x) are nonnegative. Then KS(p��n q)(w) ≤ KSp(w) +KSq(w)−w−1.

10.4 Quadrature

In this subsection, we will focus on relating finite free convolutions to averaging over Sn. The name
“quadrature” (also known as “Gaussian quadrature”) comes from numerical integration. It is a method
of computing the integral of a function f approximately or, in some cases, exactly, by reducing the inte-
gral to a finite sum of f evaluated at a small number of special points known as “quadrature points”. The
approximation guarantees are usually made through Taylor series. This theory of integral approximation
is also a beautiful example of a practical application of the theory of orthogonal polynomials. We will not
discuss those applications here.

We refer to the following result as a “quadrature” result because we are relating an average over the or-
thogonal group, namely, an integral, to an average over Sn, namely, a finite sum. However, our goal is
actually “to go in the opposite direction”, in the sense that we are trying to use an integral to compute a
sum that has superexponentially many terms. The reason we want to do this is precisely because this inte-
gral is (essentially) a finite free convolution, for which we have bounds on maximum roots via Theorem 48
and Theorem 49, as well as polynomial-time computable formulas via Theorem 46 and Theorem 47.

Theorem 50 (Quadrature Theorem; Theorem 4.2 from [36]). Let A,B ∈ Rn×n be symmetric. Then

EP∼unif(Sn) det(A+ P BP >) = EQ∼unif(O(n)) det(A+QBQ>)

In order to prove this, we will show that M 7→ det(A+MBM>) satisfies invariance under right multipli-
cation by orthonormal matrices. That this invariance implies the quadrature result, Theorem 50, is a result
of the following supporting lemma.
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Lemma 26 (Lemma 4.3 from [36]). Let f :O(n)→ R be any function, and let H be a finite subgroup of O(n). If
f is “invariant” in the sense that

EP∼unif(H)f (P ) = EP∼unif(H)f (PQ0)

for all Q0 ∈O(n), then

EP∼unif(H)f (P ) = EQ∼unif(O(n))f (Q)

Proof. It suffices to prove that EQ∼unif(O(n))f (Q) = EQ∼unif(O(n))f (PQ) for every P ∈H , since then,

EQ∼unif(O(n))f (Q) = EP∼unif(H)EQ∼unif(O(n))f (PQ) = EQ∼unif(O(n))EP∼unif(H)f (PQ)

= EQ∼unif(O(n))EP∼unif(H)f (P ) = EP∼unif(H)f (P )

where in the last step, we use invariance. To prove EQ∼unif(O(n))f (Q) = EQ∼unif(O(n))f (PQ), it suffices to show
that the map Q 7→ PQ is bijective, for all P ∈ H . For this, we’ll use the fact that H is a finite subgroup of
O(n). If M ∈ O(n) is arbitrary, then P −1M ∈ O(n) so that P −1M 7→ M. This shows Q 7→ PQ is surjective.
Similarly, if PA = P B, then A = P −1PA = P −1P B = B so that Q 7→ PQ is injective. This proves bijectivity and
hence, the lemma.

10.4.1 Proving Invariance

Here, we will outline how to show thatM 7→ det(A+MBM>) satisfies the invariance property of Lemma 26
with H = Sn. We restate the goal in the following lemma.

Lemma 27 (Invariance). Define fA,B :O(n)→ R by fA,B(M) = det(A+MBM>), where A,B are fixed matrices in
Rn×n. Let H = Sn. Then EP∼unif(H)fA,B(P ) = EP∼unif(H)fA,B(PQ0) for every Q0 ∈O(n).

The plan is as follows: first, we view Sn as the set of permutations on e1, . . . , en, the vertices of the
probability simplex. Then, we will decompose Sn into subgroups Ai,j,k , where Ai,j,k ⊂ Sn is the set of
all permutations that fix e` for all ` < {i, j,k}. Similarly, we will decompose O(n) into subgroups Oi,j,k ,
where Oi,j,k ⊂ O(n) is the set of all orthogonal transformations that fix V ⊥, where V is the 2-dimensional
subspace parallel to the 2-dimensional affine subspace containing ei , ej , ek . With the following lemma, this
will essentially allow us to just consider invariance with respect to Ai,j,k and Oi,j,k .

Lemma 28.
⋃
i,j,kAi,j,k generate Sn. Similarly,

⋃
i,j,kOi,j,k generate O(n).

Proof.
⋃
i,j,kAi,j,k contains the set of all transpositions on n elements. The fact that the set of transpositions

on n elements generate Sn is a standard result from group theory. For the second fact, see [36] Lemma
4.7.

Lemma 29 (Invariance w.r.t. Ai,j,k and Oi,j,k). For every i, j,k not all equal, and every Q0 ∈Oi,j,k ,

EP∼unif(Ai,j,k )fA,B(P ) = EP∼unif(Ai,j,k )fA,B(PQ0)

Proof Sketch. Since Ai,j,k is isomorphic to A2 � S3, and Oi,j,k is isomorphic to O(2), the claim is equivalent
to proving

EP∼unif(A2) det(A+ (P ⊕ In−2)B(P ⊕ In−2)>) = EP∼unif(A2) det(A+ (PQ0 ⊕ In−2)B(PQ0 ⊕ In−2)>)

for every Q0 ∈O(2). For this, first decompose O(2) into SO(2), the subgroup of rotations

Rθ =
[

cosθ sinθ
−sinθ cosθ

]
and the subgroup of reflections

F =
{
I2,

[
1 0
1 −1

]}
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Similarly, decompose A2 into Z3 = {R0,R2π/3,R4π/3}, the three cyclic permutations of e1, e2, e3, and F. Then,
first prove that

EP∼unif(Z3) det(A+ (P ⊕ In−2)B(P ⊕ In−2)>) = EP∼unif(Z3) det(A+ (P Rθ ⊕ In−2)B(P Rθ ⊕ In−2)>)

which involves proving

det(A+ (Rθ ⊕ In−2)B(Rθ ⊕ In−2)>) =
2∑

k=−2

cke
ikθ

for some constants c−2, c−1, c0, c1, c2. We refer the details to Lemma 4.5 from [36]. Once we have this,
combining with the fact that

EP∼unif(A2) det(A+ (P ⊕ In−2)B(P ⊕ In−2)>) = ED∼unif(F)ER∼unif(Z3) det(A+ (RD ⊕ In−2)B(RD ⊕ In−2)>)

= ED∼unif(F)ER∼unif(Z3) det(A+ (R⊕ In−2)(D ⊕ In−2)B(D ⊕ In−2)>(R⊕ In−2)>)

we have the claim, since every Q0 ∈O(2) may be written as RθD for some Rθ ∈ SO(2) and D ∈ F.

With these, we can prove invariance with respect to Sn and O(n).

Proof of Lemma 27. First, observe that

EP∼unif(An)fA,B(P ) = EP∼unif(An)EP1∼unif(Ai,j,k )fA,B(P P1) = EP∼unif(An)EP1∼unif(Ai,j,k )fP>AP ,B(P1)

By Lemma 29, for every i, j,k not all equal and every Q1 ∈Oi,j,k ,

EP∼unif(An)EP1∼unif(Ai,j,k )fP>AP ,B(P1) = EP∼unif(An)EP1∼unif(Ai,j,k )fP>AP ,B(P1Q1)

= EP∼unif(An)EP1∼unif(Ai,j,k )fA,B(P P1Q1)

= EP∼unif(An)fA,B(PQ1)

With these, we conclude that for every Q1 ∈Oi,j,k ,

EP∼unif(An)fA,B(P ) = EP∼unif(An)fA,B(PQ1)

Now, let Q0 ∈ O(n) be arbitrary. By Lemma 28, we may write Q0 =
∏m
`=1Q`, where for ever `, there ex-

ists i, j,k not all equal such that Q` ∈ Ai,j,k . Then inductively applying the above equality m times gives
EP∼unif(An)fA,B(P ) = EP∼unif(An)fA,B(PQ0) as desired.

10.4.2 Bipartite Quadrature

Finally, here, we apply our main Quadrature Theorem (Theorem 50) to adjacency matrices of bipartite
graphs. For convenience of notation, for A,B ∈ Rn×n (not necessarily symmetric), we define

MA,B(P ,Q) =
[

0 A
A> 0

]
+
[
P 0
0 Q

][
0 B
B> 0

][
P 0
0 Q

]>
∈ R(2n)×(2n)

Since Theorem 50 does not deal with matrices of the form P ⊕ I and Q ⊕ I nor I ⊕ P and I ⊕Q, where
P ∼ unif(Sn) and Q ∼ unif(O(n)), we cannot apply it directly. We need a “bipartite” analogue. However, it
turns out the proof is nearly identical; for A,B ∈ Rn×n not necessarily symmetric, one first needs to replace
fA,B(M) = det(A+MBM>) with fA,B(C) = det(MA,B(C,I)) (resp. fA,B(C) = det(MA,B(I,C))), all occurrences of
P in fA,B by P ⊕ I (resp. I ⊕ P ), and all occurrences of Q in fA,B by Q⊕ I (resp. I ⊕Q). This gives:

Theorem 51 (Corollary 4.12 from [36]). For A,B ∈ Rn×n not necessarily symmetric,

EP∼unif(Sn) det
(
MA,B(P , I)

)
= EQ∼unif(O(n)) det

(
MA,B(Q,I)

)
and

EP∼unif(Sn) det
(
MA,B(I,P )

)
= EQ∼unif(O(n)) det

(
MA,B(I,Q)

)
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Then, as an immediate consequence, through two applications of the preceding theorem, we have:

Corollary 14 (“Bipartite Analogue” of Theorem 50; Theorem 4.11 from [36]). For A,B ∈ Rn×n not necessarily
symmetric,

EP ,S∼unif(Sn) det
(
MA,B(P ,S)

)
= EQ,R∼unif(O(n)) det

(
MA,B(Q,R)

)
Now, we have the main result.

Theorem 52 (Theorem 4.10 from [36]). Suppose A,B ∈ Rn×n are (not necessarily symmetric) matrices with
A1 = A>1 = a1 and B1 = B>1 = b1. Let p,q be degree-(n − 1) real-rooted polynomials such that χ[AA>](x) =
(x − a2)p(x) and χ[BB>](x) = (x − b2)q(x). Then

EP ,S∼unif(Sn)

[
χMA,B(P ,Q)(x)

]
= (x2 − (a+ b)2)S((p��n−1 q)(x))

Proof Sketch. First, apply a change of basis V that simultaneously block diagonalizes A,B,P ,S as

VAV > = Â⊕ a V BV > = B̂⊕ b V P V > = P̂ ⊕ 1 V SV > = Ŝ ⊕ 1

This isolates the eigenvector 1 common to all of those these matrices and allows us to restrict our attention
to Â, B̂, P̂ , Ŝ ∈ R(n−1)×(n−1).

Conjugating MA,B(P ,S) by V ⊕V , we have

EP ,Q∼unif(Sn)

[
χMA,B(P ,S)(x)

]
= (x2 − (a+ b)2)EP ,S∼unif(Sn)

[
χMÂ,B̂(P̂ ,Ŝ)(x)

]
(For the full calculation, see [36].)

Applying Corollary 14, the definition of the asymmetric additive convolution, and recalling that p(x) =
χ[ÂÂ>](x) and q(x) = χ[ÂÂ>](x), we have

EP ,Q
[
χMÂ,B̂(P̂ ,Q̂)(x)

]
= EP ,Q∼unif(O(n))

[
χMÂ,B̂(P̂ ,Q̂)(x)

]
= S((p��n−1 q)(x))

Combining these we have the result.

Corollary 15 (Corollary 4.13 from [36]). Suppose A1, . . . ,Ad ∈ Rn×n are (not necessarily symmetric) matrices,
with Ai1 = A>i 1 = ai for all 1 ≤ i ≤ d. Suppose p1, . . . ,pd are degree-(n − 1) real-rooted polynomials satisfying
χ[AiA

>
i ](x) = (x − a2

i )pi(x) for every 1 ≤ i ≤ d. Then

EP1,...,Pd ,S1,...,Sd∼unif(Sn)χ

 d∑
i=1

(Pi ⊕ Si)
[

0 Ai
A>i 0

]
(Pi ⊕ Si)>

 (x) =

x2 −

 d∑
i=1

ai


2S [(p1��n−1 . . .��n−1pd)(x)]

Proof Sketch. Apply Theorem 52 inductively.

10.5 Combining All of these Techniques

We now know that the set of polynomials

χ

 d∑
i=1

[
0 Pi
P >i 0

] (x)

where the Pi range over Sn, form an interlacing family. It remains to bound the largest nontrivial root of

EP1,...,Pd∼unif(Sn)

χ
 d∑
i=1

[
0 Pi
P >i 0

] (x)


This is where we will apply the finite free convolution results. The preceding four subsections were devoted
to setting up the machinery required to perform this analysis. We are now ready to prove Theorem 42.
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Proof of Theorem 42. Again, let M =
(

0 I
I 0

)
be a fixed perfect matching on n vertices. By Theorem 43, all

that is left to do is to upper bound

λ2

EP1,...,Pd ,S1,...,Sdχ

 d∑
i=1

[
0 PiS

>
i

(PiS
>
i )> 0

]
(x)




Since I1 = 1 · 1, Corollary 15 shows that

EP1,...,Pd ,S1,...,Sdχ

 d∑
i=1

[
0 PiS

>
i

(PiS
>
i )> 0

]
(x)

 = (x2 − d2)S

(p��n−1 . . .��n−1p)(x)︸                         ︷︷                         ︸
d times


where p(x) = (x − 1)n−1. Hence, it suffices to upper bound maxroot(S[(p��n−1 . . .��n−1p)(x)]).

Now, observe that

Gp(x) =
1

2(n− 1)
2(n− 1)x(x2 − 1)n−2

(x2 − 1)n−1 =
x

x2 − 1

is decreasing for all x > 1, and, applying Theorem 49 with the inverse Cauchy transform d − 1 times induc-
tively, we also have

KS((p��n−1...��n−1 p)(x))(w) ≤ d · KS(p(x)) −
d − 1
w

= d · K(x2−1)n−1(w)− d − 1
w

Thus, K(x2−1)n−1(w) = x if and only if w = Gp(x) = x
x2−1 . Plugging this in to the right-hand side of the above

bound, we have an upper bound of

d · K(x2−1)n−1(w)− d − 1
w

= dx − (d − 1)(x2 − 1)
x

=
x2 + (d − 1)

x
= x+

d − 1
x

for any x > 1. This quantity is clearly minimized at x =
√
d − 1, for which the bound becomes 2

√
d − 1. This

is exactly what we wanted to show.

10.6 An Algorithm

Now, let’s discuss the natural interlacing families algorithm. Specifically, in this subsection, we’ll explain
the problem with the natural interlacing families algorithm, and sketch the main ideas in [42] behind ob-
taining a polynomial time algorithm for produce the desired Ramanujan multigraphs.

What is nice in this method of computing the Ramanujan multigraphs is that Theorem 47 provides us
with a polynomial-time method for computing

EP1,...,Pd ,S1,...,Sdχ

 d∑
i=1

[
0 PiS

>
i

(PiS
>
i )> 0

]
(x)

 = (x2 − d2)S

(p��n−1 . . .��n−1p)(x)︸                         ︷︷                         ︸
d times


which is the root of the interlacing family tree. The tree also has depth d. The algorithm can then be written
as:
There is one major problem with this algorithm: Each internal node of the tree has n! many children!
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Algorithm 4

Input: a degree d ≥ 3; a size n > d/2
Output: the adjacency matrix of a d-regular bipartite Ramanujan multigraph G = (V ,E) with |V | = 2n

1: set M =
[

0 I
I 0

]
# adjacency matrix of a fixed perfect matching on 2n vertices

2: set p(x) = p0(x) = (x − 1)n−1

3: for 1 ≤ k ≤ d do
4: # compute and cache k-wise convolution of p with itself:
5: pk(x) = (p��n−1 . . .��n−1p)(x) = (pk−1��n−1p)(x) # use convolution formula in Theorem 47
6: end for
7: compute q0(x) = S(pd(x)) # this is the root of the interlacing family tree (after dividing out x2 − d2)
8: compute r0 = maxroot(q0), the largest nontrivial root
9: keep track of the adjacency matrix of current multigraph A← 0 ∈ R(2n)×(2n)

10: for 1 ≤ k ≤ d do
11: for permutation P ∈ Sn do
12: # compute current characteristic polynomial and divide out trivial roots ±k (current multigraph

is k-regular)

13: t(x)← χ

[
A+

[
0 P
P > 0

]]
(x)/(x2 − k2)

14: # compute the expected characteristic polynomial over remaining perfect matchings having
fixed those in A and the new one specified by P

15: q̃k(x)← (t��n−1pd−k)(x) # use convolution formula in Theorem 47
16: if maxroot(q) ≤ rk−1 = maxroot(qk−1(x)) then
17: qk(x)← q̃k(x)
18: rk ←maxroot(qk)

19: A← A+
[

0 P
P > 0

]
20: break out of inner for-loop
21: end if
22: end for
23: end for
24: return A
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10.6.1 A Modified Interlacing Family

The key observation of [42] was that by Theorem 45, there is no need fix an entire matching at once. In
particular, [42] proposed the following variant of the interlacing family we considered earlier. For con-
venience, we index the 2n vertices by [2n], with [n] indexing the vertices on one side of the bipartition
specified by M.

Definition 24 (Partially Specified Matching). A partially specified matching is a bipartite matching such
that vertices 1, . . . , t are matched and no vertex t+ 1, . . . ,n are matched. The Matching Interlacing Family is
the interlacing family obtained by taking the nodes to be partially specified or perfect matchings, with the
child of an internal node that has matched vertices 1, . . . , t either matching vertex t + 1 if t < n, or starting a
new partially specified matching (matching vertex 1) if t = n.

Note that the Matching Interlacing Family still has the same leaves as that of the original interlacing
family; thus, the roots of the Matching Interlacing Family and the original interlacing family are also equal.
Hence, the upper bound on the largest nontrivial root remains valid. The only thing one has to prove is
that the Matching Interlacing Family is in fact, an interlacing family.

Theorem 53 (Lemma 3.1 from [42]). The Matching Interlacing Family is an interlacing family.

Proof Sketch. Fix permutations P1, . . . , Pk−1 ∈ Sn specifying perfect matchings, and a permutation Pk,t speci-
fying a partially specified matching up to and including node 1 ≤ t ≤ n. The main detail here is to instead
consider the random adjacency matrix

Ak,t = Ak,t(Sk,t+1,Sk+1, . . . ,Sd ;P1, . . . , Pk−1, Pk,t)

def=
k−1∑
i=1

[
0 Pi
P >i 0

]
+
[

0 Sk,t+1Pk,tS
>
k,t+1

(Sk,t+1Pk,tS
>
k,t+1)> 0

]
+

d∑
i=k+1

[
0 Si
S>i 0

]
and its expected characteristic polynomial

Ek,t(x) = Ek,t(x;P1, . . . , Pk−1, Pk,t)
def= E

Sk+1,...,Sd∼unif(Sn),Sk,t+1∼unif(S (t+1)
n )

[
χ
[
Ak,t(Sk,t+1,Sk+1, . . . ,Sd ;P1, . . . , Pk−1, Pk,t)

]
(x)

]
for every 1 ≤ k ≤ d and every 1 ≤ t ≤ n, where Sk+1, . . . ,Sd are independent uniformly random permutations
for yet-to-be-determined perfect matchings, Sk,t+1 is a random permutation such that Sk,tPk,t gives a perfect

matching, and S (t+1)
n is the subgroup of Sn of permutations fixing 1, . . . , t (with convention S (t+1)

n = Sn when
t = 0).

Even though we have not explicitly analyzed these random adjacency matrix, we’ve already set up all
of the machinery required to prove this result. For details, we refer to [42].

The main benefit of the Matching Interlacing Family is that the number of children of an internal node
drops to n; while the depth of the tree increases to dn, the total number of nodes in this interlacing family
tree is still superexponentially smaller. The new algorithm is now as follows:
As stated in the algorithm, the one thing preventing us from obtaining an efficient algorithm is the lack of
nice convolutional formulas for computing the expected characteristic polynomial Ek,t(x). The majority of
the work of [42] was to show how to compute the coefficients of Ek,t(x). [42] first proves a new quadrature
result:

Theorem 54 (Theorem 4.1 from [42]). Let A ∈ Rn×n be arbitrary (not necessarily symmetric) and let P ∼
unif(S (t+1)

n ), which we view as a random permutation matrix that randomly permutes et+1, . . . , en and fixes e1, . . . , et .
Then, the expected characteristic polynomial of[

0 A
A> 0

]
+
[

0 P
P > 0

]
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Algorithm 5

Input: a degree d ≥ 3; a size n > d/2
Output: the adjacency matrix of a d-regular bipartite Ramanujan multigraph G = (V ,E) with |V | = 2n

1: set M =
[

0 I
I 0

]
# adjacency matrix of a fixed perfect matching on 2n vertices

2: set p(x) = p0(x) = (x − 1)n−1

3: for 1 ≤ k ≤ d do
4: # compute and cache k-wise convolution of p with itself:
5: pk(x) = (p��n−1 . . .��n−1p)(x) = (pk−1��n−1p)(x) # use convolution formula in Theorem 47
6: end for
7: compute q0,0(x) = S(pd(x)); this is the root of the interlacing family tree (after dividing out x2 − d2)
8: compute r0,0 = maxroot(q0,0), the largest nontrivial root
9: keep track of the adjacency matrix of current multigraph A← 0

10: for 1 ≤ k ≤ d do
11: keep track of current matched vertices with permutation Pt ; initialize P0← I
12: for vertex 1 ≤ t ≤ n do
13: for unmatched vertex n+ 1 ≤ v ≤ 2n do # potential neighbor of t
14: set St,v to be the a fixed (deterministic) swap that matches t to v
15: compute Ek,t(x) # NOTE: need new routine (that we don’t already know how to compute)
16: if maxroot(Ek,t) ≤ rk,t = maxroot(qk,t) then
17: qk,t(x)← Ek,t(x)
18: rk,t←maxroot(qk,t)
19: Pt← St,vPt−1
20: break out of inner for-loop
21: end if
22: end for
23: end for

24: update A← A+
[

0 Pn
P >n 0

]
25: end for
26: return A
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is equal to the expected characteristic polynomial of[
0 A
A> 0

]
+
[

0 Q
Q> 0

]
where Q is a uniformly random orthogonal matrix that fixes the subspace spanned by e1, . . . , et .

Then, [42] reduces computing Ek,t(x) to computing the coefficients of the expected characteristic poly-
nomial of (Â + Q̂)>(Â + Q̂), where again, the expectation is taken over orthogonal matrices that fix the
subspace spanned by e1, . . . , et . Finally, to compute these coefficients, [42] introduces a trivariate polyno-
mial, written as a determinant of a (2n) × (2n) matrix. It turns out the kth coefficient of the characteristic
polynomial we are interested in is a linear combination, with polynomially many terms, of the coefficients
of this trivariate polynomial. We refer the reader to [42] for details of the analysis. These ingredients com-
bined make Algorithm 5 a polynomial time algorithm for producing the adjacency matrix of a d-regular,
bipartite Ramanujan multigraph.
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11 Open Questions

1. Is there an efficient algorithm to find the vectors promised in Theorem 21?

2. Is there an efficient algorithm to find the good graph covers promised in Theorem 34 and Theorem 39?

3. How can we reduce the computational complexity of the algorithm from [42]?

4. How can we remove the bipartiteness condition in the Ramanujan graph constructions?

5. What are other interesting applications of the method of interlacing polynomials?

12 Acknowledgements

I am very grateful to both Professor Shayan Oveis Gharan, as well as Professor Rekha Thomas, for all
of their patience and encouragement, for very helpful discussions and for giving useful feedback on this
thesis. I also would like to thank Alireza Rezaei and Yuan Gao for helping me proofread this thesis and also
providing helpful feedback. Last but not least, I want to thank my friends and family for the incredible
love and support they’ve given me.

71



References

[1] R. V. Kadison, I. M. Singer. Extensions of pure states. American Journal of Mathematics 81, pp.383-400
(1959)

[2] R. G. Gallager. Low Density Parity Check Codes. MIT Press, Cambridge, MA (1963)

[3] O. J. Heilmann, E. H. Lieb. Theory of monomer-dimer systems. Communications in Mathematical Physics,
25(3), pp.190-232 (1972)

[4] N. Alon. Eigenvalues and Expanders. Combinatorica 6 (2), pp.83-96 (1986)

[5] A. Lubotzky, R. Phillips, P. Sarnak. Ramanujan Graphs. Combinatorica 8 (3), pp.261-277 (1986)

[6] J. Bourgain, L. Tzafriri. Invertibility of “Large” Submatrices with Applications to the Geometry of Ba-
nach Spaces and Harmonic Analysis. Israel Journal of Mathematics, Volume 57, pp.137-224 (1987)

[7] G. A. Margulis. Explicit group theoretical constructions of combinatorial schemes and their application
to the design of expanders and concentrators. Problems of Information Transmission, 24(1), pp.39-46
(1988)

[8] A. Nilli. On the Second Eigenvalue of a Graph. Discrete Mathematics 91, pp.207-210 (1991)

[9] J. P. Dedieu. Obreschkoff’s theorem revisited: what convex sets are contained in the set of hyperbolic
polynomials? Journal of Pure and Applied Algebra, Vol. 81, Issue 3, pp.269-278 (1992)

[10] H. Dette, W. J. Studden. Some New Asymptotic Properties for the Zeros of Jacobi, Laguerre and Her-
mite Polynomials. arXiv:math/9406224v1 (1994)

[11] M. Morgenstern. Existence and Explicit Constructions of q + 1 Regular Ramanujan Graphs for Every
Prime Power q. Journal of Combinatorial Theory, Series B 62, pp.44-62 (1994)

[12] A. Benczur, D. Karger, Approximating s-t minimum cuts in Õ(n2) time. Proceedings of the twenty-eighth
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[29] J. Borcea, P. Brändén. Multivariate Pólya-Schur Classification Problems in the Weyl Algebra.
arXiv:math/0606360v6 (2009)

[30] D. A. Spielman, N. Srivastava. An Elementary Proof of the Restricted Invertibility Theorem.
arXiv:0911.1114 (2010)

[31] J. A. Tropp. User-friendly tail bounds for sums of random matrices. arXiv:1004.4389 (2010)

[32] L. Trevisan. Lecture Notes on Expansion, Sparsest Cut, and Spectral Graph Theory.

[33] A. Marcus, D. A. Spielman, N. Srivastava. Ramanujan Graphs and the Solution of the Kadison-Singer
Problem. arXiv:1408.4421 (2014)

[34] A. Marcus, D. A. Spielman, N. Srivastava. Interlacing Families I: Bipartite Ramanujan Graphs of All
Degrees. arXiv:1304.4132 (2014)

[35] A. Marcus, D. A. Spielman, N. Srivastava. Interlacing Families II: Mixed Characteristic Polynomials
and the Kadison-Singer Problem. arXiv:1306.3969 (2014)

[36] A. Marcus, D. A. Spielman, N. Srivastava. Interlacing Families IV: Bipartite Ramanujan Graphs of All
Sizes. arXiv:1505:08010 (2015)

[37] N. Anari, S. O. Gharan. The Kadison-Singer Problem for Strongly Rayleigh Measures and Applications
to Asymmetric TSP. arXiv:1412.1143 (2015)

[38] K. Chandrasekaran, A. Velingker. Towards Constructing Ramanujan Graphs Using Shift Lifts.
arXiv:1502.07410v3 (2015)

[39] N. Anari, S. O. Gharan. Effective-Resistance-Reducing Flows, Spectrally Thin Trees, and Asymmetric
TSP. arXiv:1411.4613 (2015)

[40] A. Marcus, D. A. Spielman, N. Srivastava. Finite free convolutions of polynomials. arXiv:1504.00350
(2015)

[41] C. Hall, D. Puder, W. F. Sawin. Ramanujan Coverings of Graphs. arXiv:1506.02335 (2016)

[42] M. B. Cohen. Ramanujan Graphs in Polynomial Time. arXiv:1604.03544 (2016)

[43] N. Anari, S. O. Gharan, A. Saberi, N. Srivastava. Approximating the Largest Root and Applications to
Interlacing Families. arXiv:1704.03892 (2017)

73



[44] Lecture 11: Clustering and the Spectral Partitioning Algorithm. Lecturer: Shayan Oveis Gharan.
Course: CSE 521 Design and Analysis of Algorithms I (2016)

[45] Lecture 12: Introduction to Spectral Graph Theory, Cheeger’s Inequality. Lecturer: Shayan Oveis Gha-
ran. Course: CSE 521 Design and Analysis of Algorithms I (2016)

[46] Lecture 13: Random walks on graphs and electrical networks. Lecturer: James R. Lee. Course: CSE
525 Randomized Algorithms (2016)

[47] Lecture 18: Markov chains and mixing times. Lecturer: James R. Lee. Course: CSE 525 Randomized
Algorithms (2016)

74


	Introduction and Organization
	Preliminaries
	Some Notation
	Linear Algebra
	Eigenvalues and Eigenvectors
	Trace and Determinant Properties
	Other Useful Formulas

	A Very Quick Primer on Spectral Graph Theory

	Small-Scale Interlacing
	Warm-Up I: The Column Subset Selection Problem
	Bourgain-Tzafriri Restricted Invertibility
	A Single Univariate Barrier with Interlacing
	An Algorithm

	Warm-Up II: Spectral Graph Sparsification
	Prior Work
	``Twice Ramanujan'' Sparsifiers
	Intuition with Interlacing
	Two Univariate Barriers
	An Algorithm

	Interlacing Families
	An Algorithmic Perspective

	Stability
	Examples

	The Kadison-Singer Problem
	A Bound with High Probability
	Interlacing Families and the Mixed Characteristic Polynomial
	Multivariate Barriers
	Applications
	Revisiting Restricted Invertibility
	The Asymmetric Traveling Salesman Problem


	Building Bipartite Ramanujan Graphs I: Ramanujan Covers
	Expansion
	Applications of Expanders
	Rapid Random Walk Mixing
	Error-Correcting Codes
	Additional Applications

	Prior Work on Ramanujan Graphs
	2-Covers
	Interlacing Families and the Matching Polynomial
	r-Covers
	A Quick Detour Into Group Representations
	Interlacing Families and the d-Matching Polynomial

	Kadison-Singer and Ramanujan Coverings
	Shortcomings of this Proof
	The Natural Algorithm is Inefficient
	Bipartiteness


	Building Bipartite Ramanujan Graphs II: Unions of Matchings
	Interlacing Families for Permutations
	Finite Free Convolutions
	The Cauchy Transform
	Quadrature
	Proving Invariance
	Bipartite Quadrature

	Combining All of these Techniques
	An Algorithm
	A Modified Interlacing Family


	Open Questions
	Acknowledgements

