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ABSTRACT
This thesis proposes a newmethod of domain-specific symbolic compilation with which to construct
efficient and programmable synthesis systems for parallel tree programs. This thesis presents an
implementation of such a synthesis systems for scheduling the parallel evaluation of attribute
grammars. This synthesis system is evaluated on the goals of efficiency and programmability
against the current state of the art for programmable synthesis systems. The synthesis system fares
well in this evaluation.
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1 INTRODUCTION
1.1 Motivation
Many program optimizations boil down to scheduling computation at some level of abstraction.
Modern compilers incorporate many such optimizations. Notable examples are instruction sched-
uling [19], polyhedral loop transformation [4, 5], and automatic vectorization [1, 12]. Instruction
scheduling orders a set of instructions so as to expose maximal instruction-level parallelism while
respecting data dependences. Polyhedral loop transformation rearranges loop nests to improve
data locality and to expose opportunities for further optimization of the loop body. Automatic
vectorization transforms scalar computation into equivalent vector computation (e.g., inside a loop
body following polyhedral loop transformation). In each instance, a portion of the source program
is transformed into a semantically equivalent version that scores higher on some optimization
objective, such as the degree of potential instruction-level parallelism.
Recent work has applied scheduling techniques for powerful optimization and even synthesis

of programs at a high level of abstraction. Prominent examples are automatic parallelization and
vectorization of recursive procedures [9, 15] and synthesis of image-processing pipelines [11, 13, 14].
In both cases, automated reasoning on an appropriate high-level abstraction of program behavior
is key to tractability. The first work is a source-level program optimization but infers such an
abstraction of relevant program behavior using a complex analysis [18]. The second work, a system
named Halide, instead starts from a carefully designed high-level abstraction of the intended
program behavior — provided by the user — and then synthesizes an optimal implementation in a
scheduling language. The Halide scheduling language expresses the implementation decisions of
interest, from which one can generate an implementation in a language like C. These systems are
indicative of a new paradigm in program construction, wherein users specify intended program
behavior with a high-level domain-specific language and rely on the computer to derive an efficient
implementation through scheduling into a lower-level language.
Even without synthesis, explicit representation of relevant implementation decisions with a

scheduling language has significant benefits for programmers. In fact, industry adoption of the
Halide system began on the basis of manual scheduling. When schedules are represented explicitly
with a domain-specific language, software engineers can quickly experiment with different low-level
implementations and search for one with desirable performance characteristics. When available,
synthesis techniques augment the user’s search with automation.

1.2 Problem
The goal of this thesis is synthesis of parallel tree programs with both efficiency and programmability
of the underlying synthesis system. In particular, the synthesis problem is posed as scheduling the
parallel evaluation of an attribute grammar, provided by the user as the specification. Efficiency
enables synthesis to scale to larger and more complex problem instances, also enabling use in
interactive or dynamic applications. Programmability facilitates adaptation of the synthesis system
to evolving user needs, ideally as easily as changing a classical interpreter of the schedule language.

No prior synthesis system for parallel tree programs has achieved both efficiency and programma-
bility. Efficient synthesis is typically accomplished with hand-written constraint generators, but the
complexity of an efficient constraint encoding sacrifices programmability. Programmable synthesis
has more recently been accomplished with solver-aided domain-specific languages [16], which
translate a classical schedule interpreter to constraints; however, the general-purpose constraint
generation often precludes a particularly efficient encoding, with workarounds introducing the
same drawbacks as direct constraint generators. Figures 1 and 2 illustrate and describe the high-level
architecture of these two approaches. Both omit details of the process to extract a final program
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G ∈ LAG
generation
−−−−−−−−→ ϕ ∈ LConstraint

Fig. 1. High-level architecture of a synthesis system based on a constraint generator. The system analyzes the
attribute grammar G and syntactically translates it to a constraint ϕ in some constraint language.

G ∈ LAG
interpretation
−−−−−−−−−−→ int(G, t, sch[®x]) ∈ LRacket

partial evaluation
−−−−−−−−−−−−→

P[®x] ∈ LCore
symbolic evaluation
−−−−−−−−−−−−−−→ ϕ[®x] ∈ LFOL

Fig. 2. High-level architecture of a synthesis system based on a solver-aided domain-specific language. The
system runs the schedule interpreter int on an attribute grammar G with an example tree t and a symbolic
schedule sch[®x], constructed in terms of primitive symbolic variables ®x . Partial evaluation reduces this to a
residual program P[®x] in some core symbolic language, for which symbolic evaluation generates a constraint
system ϕ[®x] in first-order logic.

G ∈ LAG
interpretation
−−−−−−−−−−→ inttrace(G, t, sch[®x]) ∈ LRacket

partial evaluation
−−−−−−−−−−−−→

P[®x] ∈ LTrace
symbolic evaluation
−−−−−−−−−−−−−−→ ϕ[®x] ∈ LILP

Fig. 3. High-level architecture of a synthesis system based on a symbolic abstraction for parallel program
traces. The system runs the schedule interpreter inttrace (implemented with the symbolic trace) on an attribute
grammar G with an example tree t and a symbolic schedule sch[®x], constructed in terms of primitive symbolic
variables ®x . Partial evaluation vec this to a residual program P[®x] in the symbolic trace language, for which
symbolic evaluation generates a constraint system ϕ[®x] as an integer linear program.

from a constraint solution, which is the same for all systems discussed and not the focus of this
work.

1.3 Solution
We propose a method of domain-specific symbolic compilation for synthesis of parallelism schedules
that maintains the engineering advantages of solver-aided domain-specific languages, by means of
a symbolic abstraction for program traces, yet achieves greater scalability in constraint solving by
orders of magnitude. Figure 3 illustrates and describes the high-level architecture of the synthesis
system. In particular, this thesis presents three contributions:

(1) A symbolic abstraction for parallel program traces — a symbolic trace — that naturally
expresses parallel scheduling problems.

(2) A domain-specific extension for symbolic compilation that generates efficiently solvable
constraints for operations on a symbolic trace.

(3) An efficient and programmable synthesizer for parallel evaluation schedules of an attribute
grammar, built with the prior two contributions.
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1.4 Overview
Here, we provide a brief overview of the rest of the thesis. Section 2 describes the formalism
of attribute grammars; the syntax of LAG ; their definition of an input domain of trees; their
computational semantics on such trees; and an example in the form of the HVBox attribute grammar.
Section 3 describes a language of tree traversal schedules; the syntax of LS ; the computational
semantics of such schedules; a simple interpreter of LS ; and two example schedules for HVBox.
Section 4 describes the abstraction offered by the symbolic trace; the high-level semantics of its
operations; and an interpreter for LS implemented in its language, LT . Section 5 describes general-
purpose symbolic compilation, as implemented by the Rosette programming language, and extension
of domain-specific symbolic compilation for the symbolic trace language LT . Section 6 describes a
nontrivial extension of the scheduling problem, affecting both LAG and LT , that requires significant
modifications to both versions of the scheduling interpreter, illustrating the programmability of the
symbolic trace language. Section 7 analyzes the efficiency and programmability in greater detail
on several benchmarks. Section 8 overviews key related works. Finally, Section 9 summarizes the
main points and ideas of this thesis.
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I f ace ::= interface Id { Attr ∗ }

Class ::= class Id1 : Id2 { Child
∗Attr ∗Rule∗ }

Child ::= child Id1 : Id2;

Attr ::= input Id : Type;
�� output Id : Type;

Rule ::= Id1.Id2 := Expr;

Expr ::= Id1.Id2
�� Id(Expr ∗) �� Expr1 ◦ Expr2 �� . . . ◦ ∈ {+, -, *, /, &&, ||}

Type ::= int
�� float �� bool �� . . .
Fig. 4. Syntax for the language of attribute grammars, LAG .

2 ATTRIBUTE GRAMMARS
An attribute grammar [8] is a declarative formalism for a large class of tree computations. An
attribute grammar consists of two components:
(1) A context-free grammar describing the shape of the tree domain.
(2) A set of attributes with evaluation rules for computing attributes from each other.

The evaluation rules for an attribute grammar are unordered with respect to each other. To evaluate
an attribute grammar on some tree is to perform every evaluation rule on every applicable node
of the tree, while respecting dependencies. Evaluation must therefore determine an order of
computation that satisfies all dependencies between attributes. The scheduling problem for attribute
grammars is to find an order that satisfies the dependencies for any possible tree. With such a
schedule, one may statically compile the evaluation of an attribute grammar into an efficient,
deterministic program.

2.1 Syntax
Figure 4 presents the syntax for a language of attribute grammars, LAG . A user specifies the desired
parallel tree program with an attribute grammar in this syntax.
An attribute grammar is a natural form of specification for users, as its constructs correspond

to those in object-oriented programming. The syntax of LAG emphasizes this correspondence.
An interface serve a role comparable to an abstract class or, more literally, an interface in some
object-oriented languages; an interface defines the common set of attributes for all implementing
classes. A class serves a role similar to classes in mainstream object-oriented languages, though
the purpose corresponds most closely to “plain-old data" or “struct" types in some object-oriented
languages. A class in LAG inherits from a single interface (class Id1 : Id2 { . . . }) and specifies the
following features of its node instances: the full set of attributes, the set of child nodes with expected
interfaces (child Id1 : Id2), and the set of evaluation rules defining local or child attributes.

2.2 Semantics
The computational meaning of an attribute grammar is summarized by the semantics given in
Figure 6 1, which assumes that the input tree is well-formed according to the rules given in Figure 5.
Initially, every attribute starts out uninitialized, indicated with a ⊥ value, except input attributes.
Evaluating the attribute grammars means repeatedly performing evaluation rules until none are

1The intent of the semantics is to elucidate the meaning of attribute-grammar evaluation and draw attention to the inherent
nondeterminism. Low-level details are therefore omitted, as they would hinder rather than aid clarity of these features.
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AttrI
self ∈ tree attr ∈ self.class.inputs

self.fields[attr] , ⊥
AttrO

self ∈ tree attr ∈ self.class.outputs

self.fields[attr] = ⊥

Fig. 5. Selected rules for a well-formed input tree of an attribute grammar.

Eval

self ∈ tree rule ∈ self.class.rules
self.fields[rule.lhs] = ⊥ ∀attr ∈ rule.deps, self.fields[attr] , ⊥

self.fields[rule.lhs]← eval(self, rule.rhs)

Fig. 6. Nondeterministic semantics for evaluation of an attribute grammar.

left uninitialized. To do so, one must nondeterministically select (1) a node and (2) an evaluation
rule such that (a) the left-hand-side attribute of the rule is uninitialized and (b) all dependencies (i.e.,
attributes appearing in the right-hand-side expression) are initialized. A schedule for evaluation of
an attribute grammar codifies a deterministic procedure to perform these nondeterministic choices.

2.3 Example
Attribute grammars naturally express many problems of practical interest, such as document layout
and data visualization. Figure 7 (on the following page) shows a large fragment of an attribute
grammar for HVBox, a data visualization that recursively partitions a space horizontally and
vertically. The portions omitted simply set up the root node, i.e., initialize x and y attributes to 0.
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interface HVBox {
output w, h, x, y : int;

}
// HVBox ::= HVBoxleft HBox HVBoxright
class HBox : HVBox {

child left, right : HVBox;
left.x := self.x;
right.x := self.x + left.w;
left.y := self.y;
right.y := self.y;
self.w := left.w + right.w;
self.h := max(left.h, right.h);

}
// HVBox ::= HVBoxlower VBox HVBoxupper
class VBox : HVBox {

child upper, lower : HVBox;
upper.x := self.x;
lower.x := self.x;
upper.y := self.y + lower.h;
lower.y := self.y;
self.w := max(upper.w, lower.w);
self.h := upper.h + lower.h;

}
// HVBox ::= Leaf
class Leaf : HVBox {

input w0, h0 : int;
self.w := self.w0;
self.h := self.h0;

}

upper.y
lower.y

left.x right.x

self.x

self.y

Fig. 7. The HVBox attribute grammar and illustration of HBox and VBox cells.
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Sched ::= Sched1 ;; Sched2
�� Sched1 || Sched2 �� Trav

Trav ::= Order { Visit∗ }

Order ::= pre
�� post

Visit ::= Id 7→ Slot∗

Slot ::= Id1.Id2

Fig. 8. Syntax of the language of tree traversal schedules, LS .

3 TREE TRAVERSAL SCHEDULES
Synthesis requires an abstraction with which to reason about the implementation space. For
evaluation of an attribute grammar, tree traversal schedules are a natural choice, as an efficient
evaluation strategy must traverse the tree in some manner to apply evaluation rules. While not
every possible traversal is expressible in this language of tree traversal schedules, programmability
of the synthesis system will allow users to augment the language as needed, unlike past work.

3.1 Syntax
Figure 8 shows the syntax for the language of tree traversal schedules, LS . A schedule takes
one of three forms: a parallel composition of two subschedules, a sequential composition of two
subschedules, or a traversal pass. A traversal pass is either pre-order (top-down) or post-order
(bottom-up). A traversal pass also specifies the sequence of evaluation rules — each identified by
its left-hand-side attribute — to perform at each node visit by class.

3.2 Semantics
Figure 9 gives the deterministic semantics for the language of tree traversal schedules 2. A sequential
composition runs the subschedules left to right. A parallel composition may run the subschedules
either left to right or right to left. (While it may seem inaccurate to specify the parallel semantics
in this way, it is perfectly sound for evaluation of an attribute grammar; in this context, there is no
temporary, intermediate with which concurrent threads could interfere.) A traversal pass runs the
denoted visitor procedure on the tree in the named traversal order.
An important feature of this semantics is that the crucial decisions affecting performance —

traversal order and schedule composition — are abstracted away from the lower-level details
of individual evaluation rules. This separation makes synthesis tractable, as an outer loop can
enumerate many “skeleton" schedules (that omit placement of individual evaluation rules) given
an efficient mechanism to complete (or reject) each skeleton schedule.

3.3 Examples
Figure 10a shows a sequential tree traversal schedule for HVBox. Box dimensions are computed
in a preorder, or bottom-up, traversal, so that attribute values may flow upward through the tree.
Subsequently, box coordinates are computed in a postorder, or top-down, traversal so that values
may flow downward through the tree. The sequential ordering of the two traversal passes ensures
that box dimensions are computed before the box coordinates.

2The intent of the semantics is to elucidate the meaning of attribute-grammar evaluation and draw attention to the newly
enforced determinism. Low-level details are therefore omitted, as they would hinder rather than aid clarity of these features.
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Seq
⟨sched1, tree⟩ ⇓ tree’ ⟨sched2, tree’⟩ ⇓ tree”

⟨sched1;;sched2, tree⟩ ⇓ tree”

ParL
⟨sched1;;sched2, tree⟩ ⇓ tree’

⟨sched1||sched2, tree⟩ ⇓ tree’
ParR

⟨sched2;;sched1, tree⟩ ⇓ tree’

⟨sched1||sched2, tree⟩ ⇓ tree’

Pre
⟨preorder(tree, visitor), tree⟩ ⇓ tree’ visitor = JvisitsK

⟨pre{visits}, tree⟩ ⇓ tree’

Post
⟨postorder(tree, visitor), tree⟩ ⇓ tree’ visitor = JvisitsK

⟨post{visits}, tree⟩ ⇓ tree’

Fig. 9. Deterministic semantics for the language of tree traversal schedules, LS

post {
HBox 7→ self.w, self.h
VBox 7→ self.w, self.h
Leaf 7→ self.w, self.h

} ;; pre {
HBox 7→ left.x, right.x,

left.y, right.y
VBox 7→ lower.x, upper.x,

lower.y, upper.y
Leaf 7→

}

(a) A sequential tree traversal schedule.

(post {
HBox, VBox, Leaf 7→ self.w

} ;; pre {
HBox 7→ left.x, right.x
VBox 7→ lower.x, upper.x
Leaf 7→

}) || (post {
HBox, VBox, Leaf 7→ self.h

} ;; pre {
HBox 7→ left.y, right.y
VBox 7→ lower.y, upper.y
Leaf 7→

})

(b) A parallel tree traversal schedule.

Fig. 10. Two tree traversal schedules for the HVBox attribute grammar.

More complex schedules also exist, with potentially interesting performance characteristics.
Figure 10b shows a tree traversal schedule for HVBox that makes explicit use of parallelism. This
schedule specifies a parallel composition of two subschedules, each of which is a sequence of
two traversal passes as in the previous schedule. The first branch computes box widths and x-
coordinates, while the second branch computes box heights and y-coordinates. This division of
work onto two threads is correct because each subschedule is data-independent of the other; each
thread reads and writes a set of attributes disjoint from the other.

Even for a simple attribute grammar like HVBox, dividing the work onto two cores can be highly
advantageous. Parallel computation may be faster, but moreover, the data independence of the two
threads promotes effective caching, especially with a structure-of-arrays tree representation. For a
tree several times larger than available cache memory, performance may increase significantly due
to this factor alone.
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(define (interpcheck grammar sched tree)

(match sched

[(seq s1 s2) ; s1 ;; s2
(interpcheck grammar s1 tree)

(interpcheck grammar s2 tree)]

[(par s1 s2) ; s1 || s2
; Check subschedules for data independence

(interpcheck grammar (seq s2 s1) (copy tree))

(interpcheck grammar (seq s1 s2) tree)]

[(pre visits) ; pre { visits }

(preorder (visitor grammar visits) tree)]

[(post visits) ; post { visits }

(postorder (visitor grammar visits) tree)]))

(define (( visitor grammar visits) node)

(let ([class (lookup grammar (classname node))]

[slots (lookup visits (classname node))])

(for ([slot slots])

(for/all ([sloti slot]) ; for each concrete value ...

(check node (get-rule class sloti))))))

(define (check self rule)

(let ([attr (lhs rule)]

[expr (rhs rule)])

(assert (not (ready? self attr)))

(for ([ dependency (dependencies expr)])

(assert (ready? self dependency)))

(set-ready! self attr)))

Fig. 11. An interpreter to check an LS schedule on an LAG attribute grammar and tree.

3.4 Interpreter
Figure 11 shows a simple interpreter for this scheduling language, implemented in the Rosette
programming language and intended for use as a solver-aided domain-specific language (i.e.,
amenable to general-purpose symbolic compilation). The only construct used in the interpreter
specific to Rosette (i.e., not found in its host language Racket) is the for/all operation, which
applies a body to every concrete alternate of a symbolic value; Section 5 describes this operation
in greater detail. The interpreter assumes that both the attribute grammar and the tree traversal
schedule passed some sort of basic type checking and are free of any undefined references and
ill-typed expressions. Since the interpreter is intended for schedule synthesis, it abstracts away
the actual attribute values and only tracks whether or not an attribute is ready (i.e., initialized).
Similarly, it computes a parallel composition in both sequential directions, so as to ensure the
absence of data-dependence in either direction. Low-level details and helper procedures are omitted
for clarity.
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Operation Description
(choose v1 . . .vn) returns a symbolic choice from the given concrete alternate values,

to construct a program hole, written ??
(alloc ℓ) returns a concrete location, ℓ
(read ℓ) logs a read from the given concrete location ℓ
(write ℓ) logs a write to the given concrete location, ℓ
(step) advances the program to the next statement
(fork ([x c]) e) evaluates the body e with x bound to each concrete alternate of

the symbolic choice c
(parallel e1 e2) evaluates e1 then e2 while checking for data independence

across the two threads
Table 1. Operations of the symbolic trace language LT , each returning (void) unless noted otherwise..

4 SYMBOLIC ABSTRACTION FOR TRACES
The symbolic abstraction for parallel program traces — or symbolic trace — is an interface upon
which one may implement a synthesis system dealing with parallelism. This interface forms the
symbolic trace language LT , a domain-specific language embedded in the Racket programming
language.

4.1 Syntax
Table 1 summarizes the individual operations of the symbolic trace. These operations are embed-
ded in the host language, Racket. Therefore, these syntactic forms permit free combination and
composition with syntax and definitions from that programming language, including its extensive
standard library. The example interpreter in Figure 12 demonstrates this syntactic interoperability.

4.2 Semantics
The semantics of the symbolic trace language are, effectively, what one might guess: each operation
is appended to a global trace of program evaluation. However, a final call to a constraint generation
operation expresses three correctness conditions on the accumulated symbolic trace:

(1) Single assignment. Every location is written at most once.
(2) Dependency satisfaction. Every read to a location is preceded by the write to that location.
(3) Data independence. Every read to a location is not dependent on a write by a concurrent

thread.

With these operations, the user implements a tracing interpreter to define the validity of a parallel
program according to the semantics of their scheduling language, such as LS , as shown in Figure 12.
Such a tracing interpreter is abstract in its reading and writing of memory. Rather than actually
producing and consuming the resources through which dependencies are carried, the tracing
interpreter simply reports when reads and writes happen to each memory location. While seemingly
an inconvenience, this situation is actually preferable for schedule synthesis, because a valid
schedule ought towork correctly for any possible values in the tree or other input data. The following
section discusses symbolic compilation of this language to an efficiently solvable constraint system
in the form of an integer linear program.
The symbolic trace provides direct support for scheduling program statements over sequential

and parallel control flow. Partial evaluation reduces away other control-flow constructs, such as

10



(define (interptrace grammar sched tree)

(match sched

[(seq sched1 sched2) ; scheds1 ;; sched2
(interptrace grammar sched1 tree)

(interptrace grammar sched2 tree)]

[(par sched1 sched2) ; sched1 || sched2
; Check subschedules for data independence

(parallel

(interptrace grammar sched1 tree)

(interptrace grammar sched2 tree))]

[(pre visits) ; pre { visits }

(preorder (visitor grammar visits) tree)]

[(post visits) ; post { visits }

(postorder (visitor grammar visits) tree)]))

(define (( visitor grammar visits) node)

(let ([class (lookup grammar (classname node))]

[slots (lookup visits (classname node))])

(for ([slot slots])

(fork ([sloti slot]) ; for each concrete value ...

(trace class node (get-rule class sloti))))))

(define (trace self rule)

(let ([attr (lhs rule)]

[expr (rhs rule)])

(for ([ dependency (dependencies expr)])

(read (location-of self dependency)))

(write (location-of self attr))

(step)))

Fig. 12. An interpreter to check an LS schedule, implemented in the symbolic trace language LT .

recursion. Enumerative search over these higher-level constructs gives the synthesis system control
over optimization and is reasonably efficient [3].

4.3 Interpreter
Figure 12 shows an interpreter for LS implemented in LT . Note the significant similarity to the
earlier interpreter for LS given in Figure 11.
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post {
HBox 7→ ??2(HBox.rules)
VBox 7→ ??2(VBox.rules)
Leaf 7→ ??2(Leaf.rules)

} ;; pre {
HBox 7→ ??4(HBox.rules)
VBox 7→ ??4(VBox.rules)
Leaf 7→ ??0(Leaf.rules)

}

Fig. 13. A sketch of a tree traversal schedule for HVBox

5 SYMBOLIC COMPILATION
Building a synthesis systems for tree traversal schedules is ideally a straightforward process from
here. The rest of this section considers synthesis from a sketch of a tree traversal schedule with
symbolic syntax — or program holes — only for attribute slots. In other words, the synthesis problem
is simplified to assigning attributes to available slots in the sketch of a tree traversal schedules. The
sketch is built using a construct for symbolic choice, available both in general-purpose and domain-
specific symbolic compilation. A schedule sketch is therefore a symbolic value for a schedule syntax.
Figure 13 presents a schedule sketch for the HVBox attribute grammar (cf., Figure 7). Despite
initial appearances, this simplification does not actually sacrifice anything; most practical synthesis
systems based on symbolic compilation rely on enumerative search in a space of program sketches
for which completion of an individual sketch (i.e., assigning concrete syntax to program holes) is
tractable by symbolic compilation and constraint solving [3]. Section 5.1 discusses this further.

5.1 Synthesis and Verification
The techniques for synthesis and verification by symbolic compilation are independent of whether
symbolic compilation is general-purpose or domain-specific.
For both methods of symbolic compilation, the standard technique of counterexample-guided

inductive synthesis (cegis) [2] is applicable. In cegis, synthesis is performed by a search-verify
loop for some mechanically checkable specification. The search finds a candidate program correct
on a set of concrete example inputs and the verification checks whether the candidate program’s
correctness generalizes to the entire domain, perhaps up to a bound. If not, then the verification
generates a counterexample input on which the candidate program was incorrect, and the cegis
loop returns to the search phase with an example set augmented by this counterexample.
For fast and optimal synthesis, an outer loop should be used to enumerate sketches specifying

the schedule’s control flow, e.g., traversal types and compositions [3]. While not strictly necessary,
enumerating sketches expressing the control flow allows finer control for optimization and may
result in more efficiently solvable queries to the solver. With this separation, optimizing to a new
cost model is as simple as writing a new sketch enumerator. To avoid trying trivially similar sketches
that differ only in the allocation of holes to traversals, the symbolic trace allows extra holes in the
schedule that it fills with a user-provided no-op.

For schedule verification, the interpreter is run on a concrete schedule and a symbolic input. Since
state-of-the-art techniques for symbolic compilation require a bound on the size of symbolic values,
this direct approach can only provide bounded verification. For scheduling problems with highly
regular input domains, one can sometimes choose example inputs carefully so as to generalize to
the entire, possibly infinite domain, as is the case for attribute grammars.

12



5.2 Symbolic Evaluation
In either style of symbolic compilation, there is a notion of symbolic branching, denoted for/all
in Rosette and fork in the symbolic trace language. Symbolic branching explores the evaluation of
a body for each symbolic alternate (i.e., possible concrete value) of a given symbolic value, under a
path condition that now includes an assertion that the active symbolic alternate is the true one. An
example illustrates the idea:

(for/all ([x (choose v0 v1)]) (assert (P x))) ⇓
(
v = v0 ⇒ P(v0)

)
∧
(
v = v1 ⇒ P(v1)

)
This operation is the core of symbolic evaluation. Symbolic compilation is the generalized notion

of translating a program’s semantics to constraints, based on this technique and others like it.

5.3 General-Purpose
In order to handle nearly arbitrary programs, general-purpose symbolic compilation tracks the
evolution of the symbolic program state in a generic way, and it consequently derives generic
constraints. Unfortunately, such generic constraints are often inefficiently solvable. At a small
scale, this is inconsequential, but realistic synthesis problems require more efficiently solvable
constraints. In the worst case, general-purpose symbolic compilation builds a tree of symbolic
possibilities, such as µ(ϕ1, µ(ϕ2,w,x), µ(ϕ3,y, z)), wherew,x ,y, z are concrete values guarded by
the logical predicates ϕ1 ∧ ϕ2, ϕ1 ∧ ¬ϕ2, ¬ϕ ∧ ϕ3, ¬ϕ1 ∧ ¬ϕ3, respectively. For an assertion such
as P(µ(ϕ1, µ(ϕ2,w,x), µ(ϕ3,y, z))), general-purpose symbolic compilation generates the following
constraint:(
(ϕ1∧ϕ2) =⇒ P(w)

)
∧

(
(ϕ1∧¬ϕ2) =⇒ P(x)

)
∧

(
(¬ϕ1∧ϕ2) =⇒ P(y)

)
∧

(
(¬ϕ1∧¬ϕ2) =⇒ P(z)

)
As the depth of this tree of symbolic values and the complexity of the predicate P increases, this
becomes increasingly problematic.

To get an intuition for how one can outperform general-purpose symbolic compilation, suppose,
in the above example, that the predicate P could not possibly hold for some concrete value unless
that value’s guard also held. For instance, P(w) could not hold unless ϕ1 ∧ ϕ2 also held (at the very
least). In that case, the following constraint is equivalent to the one above, given the added domain
context:

P(w) ∨ P(x) ∨ P(y) ∨ P(z)

This formula is much simpler to think about, both for humans and for solvers.

5.4 Domain-Specific
The symbolic trace leverages the restricted nature of LT to generate an efficiently solvable constraint
system as an integer linear program.

5.4.1 Domain Insight. Collectively, the generated constraintsmust ensure that all dependences are
satisfied, meaning that all reads from a location follow the write into that location. A straightforward
encoding is to require that the step count at a read is higher than the step count at a write.

An easy — and consequential — optimization becomes apparent. Since step counters really only
encode a partial order on trace events, symbolic control-flow joins may soundly over-approximate
step counters by taking their maximum. Now, the solver may reason about a fixed, total order
on every possible trace event, some of which may simply not happen. This gives a significant
improvement to the performance of constraint solving, but one can do much better.
A less obvious encoding improves the solver’s performance by several orders of magnitude.

Rather than ensuring that all dependences are met, we pose the equivalent constraints ensuring
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that no antidependences exist, meaning that a write must not happen after any read from the
same location. The advantage of ruling out antidependences over only requiring dependences
is that these constraints serve a purpose somewhat analagous to conflict clauses in the conflict-
driven clause learning algorithm for Boolean satisfiability. More precisely, these antidependence
constraints express to the solver what decisions to avoid, allowing it backtrack quickly after making
an incorrect guess.

Note that the concept of antidependences does not exist in the original language of tree traversal
schedules nor either of the interpreters. General-purpose symbolic compilation thus cannot switch
from dependences to ruling out antidependences without global and nontrivial reasoning about
the high-level problem.

5.4.2 Constraint Encoding. Each symbolic choice c created by (choose v1 . . .vn) is represented
as a collection of pairs (bi ,vi ), where bi is a fresh symbolic binary variable (for communication
with the ILP solver). The symbolic choice c takes on the value vi for which bi = 1. To ensure that
a solution assigns exactly one concrete value to each symbolic choice, intT emits the constraint∑

i bi = 1 for each c .
As the program is interpreted, the symbolic trace logs every read or write with the current

guard and the current value of a hidden program counter. The step operation is implemented
simply by incrementing this program counter. For convenience, we will use R[n, ℓ] andW [n, ℓ] as
mappings from a program counter n and a location ℓ to the set of guards under which the respective
read or write occurs. A guard is implemented as a set of binary variables (originating from the
binary variables of symbolic choices), the conjunction of which is the truth value of the guard.
The first correctness condition, that every location is written at most once, is ensured by the

constraint
∑

n
∑
д∈W [n, ℓ] ∧(д) ≤ 1 for every location ℓ, where ∧(д) is a helper procedure that creates

the conjunction of a set д of binary variables in ILP. When ∧(д) = 1 for a particular д ∈W [n, ℓ] (for
some n and ℓ), then that particular write (to location ℓ) will occur in the program trace (specifically
at the program counter n). Since there should be no more than one write to ℓ, ∧(д′) should be
0 for the other д′ ∈W [n′, ℓ] (for any n′ , n). Hence, the sum of all ∧(д) for д ∈W [n, ℓ] for all n
should be less than or equal to 1 for any particular ℓ.

The second correctness condition, that every read is preceded by a write to the same location,
is ensured by the constraint ∧(дr ) +

∑
nw ≥nr

∑
дw ∈W [nw , ℓ] ∧(дw ) ≤ 1 for each дr ∈ R[nr , ℓ] and

each program counter nr and location ℓ. Rather than directly stating that the program counter
of a read must be less than (the expression for) that of the corresponding write, this constraint
states that every antidependence must be avoided; that is, there should not exist a write to ℓ
after any read to ℓ. Since locations have write-once semantics, all writes to the same location are
mutually exclusive with each other as well as with any read earlier in the trace, because a later
write rules out the possibility of scheduling an earlier read. Since the solver could satisfy these
antidependence constraints by simply never scheduling a write in the first place, we generate
dependency constraints of a similar nature. These antidependence constraints are key to efficient
solver performance, as the solver can now recognize bad partial assignments much sooner.
The constraint for the third correctness condition (i.e., data independence for parallel threads)

is a simple refinement of the previous constraint. The parallelism (parallel e1 e2) construct
is expanded such that e1 happens before e2, and then the symbolic trace treats writes in e1 as
antidependences with respect to reads e2 for the purpose of constraint generation. This correctly
encodes the semantics that e1 and e2 must exhibit data independence.
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Child ::= child Id1 : [Id2];
�� . . .

Rule ::= Id1.Id2 := Expr;�� Id1.Id2 := fold Expr1 .. Expr2;
Expr ::= Id1[-].Id2

�� Id1[0].Id2 �� Id1[$].Id2�� . . .
(a) Syntax of L′AG relative to LAG .

Slot ::= loop Id {Subslot∗ }
�� Subslot

Subslot ::= Id1.Id2

(b) Syntax of L′S relative to LS .

Fig. 14. Differences in the syntax relative to the earlier originals.

6 EXTENSIBILITY
In this section, we demonstrate the extensibility of synthesis systems built on the symbolic trace
with a nontrivial extension to the semantics of LAG and LS that we implement in the associated
synthesizer. Specifically, we extend the syntax and semantics of LAG and LS to support a statically
unbounded number of child nodes. We then show the needed modifications to the interpreter
variants from Figure 11 and Figure 12 to synthesize programs in this extended language of tree
traversal schedules, L′S .

6.1 Syntax
Figure 14a shows the differences in syntax of L′AG , the modified language of attribute grammars,
from the original language, LAG , from Figure 4. Two components of classes, child declarations
(Child) and evaluation rules (Rule and Expr ), now have additional syntactic forms and semantics
for child node sequences. Figure 14b shows the corresponding difference in syntax relative to LS ,
which is just to add an explicit loop within node visits.

6.2 Semantics
The differences in semantics for both LAG′ and L′S are low-level but worth discussing, as they are
subtle. The new form of Child indicates the presence of a child node sequence (i.e., list) named Id1,
each of which implements some class inheriting the named interface named Id2. The first form
of Rule is carried over from the original syntax but has new semantics for child node sequences.
If Id1 on the left-hand side is the name of a child node sequence, the rule defines the attribute on
each child in the sequence, and the right-hand-side expression may refer to any other attribute
Id1 . Id3 in the interface Id2. The new form of Rule is fold, that computes a particular attribute Id2
on each node in the child node sequence Id1 in a context where the previous attribute’s value is
available as Id1 [-] Id2 (initialized with Expr1 for the first node in the sequence). The new form
of slot, loop Id { Subslot∗ }, means to compute in lockstep (i.e., each rule on the first node, then
each rule on the second, and so on) the indicated evaluation rules for each node in the child node
sequence named Id .

6.3 Interpreters
Figure 15 shows the interpreter to check tree traversal schedules modified from Figure 11 to support
child node sequences and looped evaluation rules. Like the original, this interpreter assumes that
the grammar and schedule passed a simple type checking process that ensures the semantics for the
grammar and schedule are well-defined, now including the conditions for a looped evaluation rules.
Figure 16 shows the corresponding differences for an interpreter implemented in the symbolic trace
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(define (interpcheck grammar sched tree)

...) ; unchanged

(define (( visitor grammar visits) node)

...) ; unchanged

(define (( visitor grammar visits) node)

(let ([class (lookup grammar (classname node))]

[slots (lookup visits (classname node))])

(for ([slot slots])

(for/all ([sloti slot]) ; for each concrete value ...

(match sloti
[(loop child subslots)

(define virtual (accumulator))

(for ([ subslot subslots ])

(for/all ([ subsloti subslot ]) ; for each concrete value ...

(let ([rule (get-rule class subsloti)])

(check null virtual node rule))))

(for ([this (get-children node child)])

(for ([ subslot subslots ])

(for/all ([ subsloti subslot ]) ; for each concrete value

(let ([rule (get-rule class subsloti)])

(check virtual this node rule)))))]

[subslot

(check null null node (get-rule class subslot))])))))

(define (check prev this self rule)

(let ([attr (lhs rule)]

[expr (rhs rule)])

(for ([ dependency (dependencies expr)])

(assert (ready? prev this self dependency)))

(assert (not (ready? prev this self attr)))

(set-ready! prev this self attr)))

Fig. 15. An interpreter modified for L′S and L′AG

language, modified from the interpreter given in Figure 12. As a caveat, we note that the helper
procedure accumulator is implemented differently, but only to use an association list (i.e., map
data structure) provided by the symbolic trace language.
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(define (interpcheck grammar sched tree)

...) ; unchanged

(define (( visitor grammar visits) node)

...) ; unchanged

(define (( visitor grammar visits) node)

...) ; same as above, except calls (trace ...) instead of (check ...)

(define (trace prev this self rule)

(let ([attr (lhs rule)]

[expr (rhs rule)])

(for ([ dependency (dependencies expr)])

(read (location-of prev this self dependency)))

(write (location-of prev this self attr))

(step)))

Fig. 16. The interpreter implemented in LT modified for L′S and L′AG
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7 EVALUATION
This section evaluates the schedule synthesizer against the original research goals: efficiency and
programmability of the synthesis system.

7.1 Efficiency
We evaluate the performance of schedule synthesis against the current state of the art for efficient
and programmable synthesis systems, solver-aided domain-specific languages [16]. We compare
against two solver-aided domain-specific languages written in the Rosette programming language,
a solver-aided programming language extending the normal Racket programming language [17].
The symbolic trace used the ibm cplex solver for integer linear programs, whereas the solver-aided
domain-specific languages used the z3 solver for satisfiability modulo theories (i.e., first-order logic
enriched with decision procedures).
The two solver-aided domain-specific languages demonstrate the difference in outcome with

and without expert knowledge of the underlying symbolic compiler. The first, the Natural SDSL,
is designed and implemented in a natural programmatic style, as one would idiomatically in the
host language, Racket. The other, the Expert SDSL, is designed and implemented by an expert to
optimize symbolic compilation. The key difference between these two implementations is in their
low-level representation of attribute state: The Natural SDSL uses a functional association list,
whereas the Expert SDSL uses an association list of mutable cells. This seemingly inconsequential
distinction triggered enormous differences in outcome for general-purpose symbolic compilation.

Benchmarks. We evaluate performance for schedule synthesis on the attribute grammars listed in
Table 2. These attribute grammars represent the layout computation for several data visualizations,
taken from the literature [10]. The third, Treemap, also includes light data analysis, in the form of
filtering and weighting of data.

Name Interfaces Classes Evaluation Rules
HVBox 2 3 18
Sunburst 2 3 23
Treemap 2 7 109

Table 2. Benchmarks for evaluation.

Metrics. We measure the time taken in symbolic compilation and constraint solving for each
system to find the first sequential schedule and the first parallel schedule. We use the same simple
enumerator of schedules sketches and the same set of example trees for all systems. Each system is
effectively run on an identical sequence of problems for each benchmark.

Results and Analysis. For efficiency of synthesis, the symbolic trace outperformed the SDSLs.
The Natural SDSL was not performant enough to complete a single benchmark within the time out
of 15min. Even the Expert SDSL even timed-out on the benchmark Treemap (Parallel).

7.2 Programmability
We evaluate the programmability of the symbolic trace against the solver-aided domain-specific
languages. In particular, we analyze the added support for statically unbounded children to all
three synthesis systems.

Results and Analysis. All three systems required changes with only superficial differences, as
shown in Section 6.
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Benchmark Symbolic Trace Natural SDSL Expert SDSL
HVBox (Sequential) 6.241 - 27.870
HVBox (Parallel) 10.660 - 69.399
Sunburst (Sequential) 14.428 - 51.271
Sunburst (Parallel) 21.803 - 140.088
Treemap (Sequential) 69.264 - 834.479
Treemap (Parallel) 218.229 - -

Table 3. Time (s) spent in symbolic compilation. Dashes indicate time-out after 15min.

Benchmark Symbolic Trace Natural SDSL Expert SDSL
HVBox (Sequential) 0.07 N/A 0.127
HVBox (Parallel) 0.130 N/A 0.194
Sunburst (Sequential) 0.07 N/A 0.231
Sunburst (Parallel) 0.131 N/A 0.481
Treemap (Sequential) 6.11 N/A 32.256
Treemap (Parallel) 3.81 N/A N/A

Table 4. Time (s) spent in constraint solving. N/A indicates time-out above.
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8 RELATEDWORK
Solver-aided domain-specific languages [16] have made it easier to link powerful constraint solvers
with applications. The Rosette solver-aided programming language [17] uses Racket’s metapro-
gramming features to provide a high-level interface to several solvers. In contrast, the traditional
approach is to either write a custom, heuristics-based algorithm or to manually translate a problem
into constraints for a specific existing solver.
Deterministic schedulers [6, 7] map a given attribute grammar to an evaluation schedule. As

deterministic algorithms, these schedulers are typically fast but highly inflexible. Modifying the lan-
guage of attribute grammars or schedules may require nontrivial redesign of the whole scheduling
algorithm to account for every possible interaction of new and old language constructs. Moreover,
imprecision of heuristics inhibits optimization for all but the simplest cost models. As a result of
these drawbacks, all deterministic schedulers known to the authors generate simple, sequential
evaluation schedules, impractical for modern performance demands.

A constraint generator encodes schedule search for an attribute grammar into constraints, whose
solutions identify correct schedules. Manual constraint generation lacks programmability; a change
in the language of attribute grammars or schedules requires reasoning across a complex indirection
through the constraint language. Moreover, the constraint encoding must often be highly complex
to achieve adequate performance, and this hurts programmability further. This complexity and
the generally error-prone nature of manual constraint generation also makes it difficult to achieve
high confidence in the correctness of the synthesis system.

For instance, the ftl system [10] translates the dependency constraints of an attribute grammar
into a Prolog program, and uses the Prolog core as a solver to find a schedule that satisfies the
constraints. The constraint solver, constraint encoding, attribute-grammar language, and schedule
language are all fixed and changing any of them requires substantial modification to the system.
Discussion with the authors indicated that this was indeed their own experience in the system’s
development, including the support for statically unbounded children. By contrast, the system
presented here is more flexible in each of these dimensions.
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9 CONCLUSION
This thesis has presented a novel system for schedule synthesis that achieves both efficiency and
programmability. This was accomplished though a novel symbolic abstraction that extended the
symbolic compilation process for efficient trace-based reasoning. The evaluation showed that
synthesis performance favored this new approach, and that programmability was improved when
efficiency is a concern. In general, we envision significant research potential down the path of
domain-specialization in symbolic compilation, particularly towards increased interoperability and
reliability of different symbolic abstractions.
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