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Abstract

The goal of our research is to develop computer software capable
of automating the conversion of figures and diagrams in a book to a
tactile format readily understandable by blind persons. Among the
challenges this goal poses is the need to find and remove text from the
figures and diagrams for eventual conversion to Braille. Since conven-
tional optical character recognition (OCR) software is poorly suited
to the task of finding short pieces of text embedded within images, we
are exploring new methods based on machine learning. By exploiting
the consistent style of figures and diagrams in a book, we can improve
text recognition accuracy over that provided by OCR. The algorithm
described herein is able to recognize a high percentage of the text
once provided with a small training set from which to base its predic-
tions. We discuss the specifics of the algorithm, its effectiveness, and
its relationship with existing commercial OCR software.
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1 Introduction

John is an engineering undergraduate at a large university. He attends class
regularly, does his homework diligently, and meets with his friends in his spare
time. It takes John significantly more effort to interpret all the schematics,
figures, and diagrams in his textbooks than it does most students. Indeed,
before examining them himself, he must take the most important ones to the
university disabled student services office for translation to a tactile format.

You see, John is blind. In order for him to perceive an image, he must
be able to feel it. Since literature in nearly every field is designed with
the intention of being perceived by the eyes, it poses John and people like
him with a significant challenge—a challenge we are working to overcome by
combining new and existing technology.

Before delving into our solution to this problem, we will first briefly ex-
amine the state of the art: how people currently convert visual graphics into
tactile graphics—graphics that can be felt.

1.1 Current Practices

At present, hundreds of people are employed across the country who, often on
a part time basis, convert existing images into tactile graphics. Frequently,
they work for school districts or universities to assist students like John.

The techniques employed vary widely. Some tactile graphics specialists
use no modern technology whatsoever, employing instead materials such as
swellpaper, aluminum foil, and thermoform [6]. Others use modern tech-
nology, like the Viewplus Tiger Embosser, which functions as a standard
computer printer except it creates embossed bumps on the paper in place of
dark colors. Stuart Olsen, an employee in the Access Technology Labora-
tory at the University of Washington, creates tactile graphics by tracing the
existing image manually, inserting Braille in place of any text present, and
printing the result on a Tiger Embosser. A typical image might take several
hours to complete.

1.2 Future Practices

Because of the tremendous amount of manual work that goes into creating
a tactile graphic using existing technology, few such images can be created.
Consequently, blind people are often unable to access images used by sighted



people. We aim to improve this situation by automating the process of cre-
ating tactile graphics given existing digital images. Furthermore, instead
of providing software to ease creation of a single image at a time, we in-
tend to provide the means to convert an entire book to a tactile format.
This approach represents a fundamental shift in the way tactile graphics
are produced—a shift we feel is necessary for tactile graphic production to
outgrow its current scope.

An outline of the proposed system is diagrammed in Figure 1. First,
the tactile graphics specialist either scans a large set of scientific figures
and diagrams into the computer, or retrieves digital versions of these images
directly from the book’s publisher. Then, an algorithm developed by Sangyun
Hahn, a graduate student at the University of Washington, classifies these
images according to their type (bar chart, line graph, etc). Next, using the
algorithm developed in this paper, the text within these images is found and
extracted. Once the text is extracted, optical character recognition software
is used to convert the image of the text to an encoding such as Unicode.
The computer then converts this Unicode into Braille. At the same time,
the graphical parts of the image are simplified to facilitate easier tactual
perception. After scaling up the original image to ensure the Braille fits, the
Braille is then reintegrated with the simplified graphics to form the finished
product. Additional manual work may take place should errors have occurred
in this process.

1.3 Scope of This Work

Figures and diagrams found in high school and college textbooks are often
highly abstract. They include schematics, graphs, diagrams, and charts—
artificially generated images used to illustrate a point or clarify a concept.
These kinds of images stand in contrast to photographs, for example, which
consist of large numbers of continuously varying colors. In this work, we focus
on images in the former category, as those in the latter require a very different
approach to render successfully using technology like the Tiger Embosser.
Furthermore, because the general problem of converting complete science
and engineering textbooks to a tactile format consists of so many compo-
nents, this work will cover only the problem of separating text from graphics
within scientific figures and diagrams. We will examine a technique based on
connected components, its effectiveness, and some of its remaining problems.
Because this problem is similar to that solved by existing optical character
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Figure 1: This diagram outlines the process we are using to automate the
creation of tactile graphics [6].

recognition software, we will compare our technique with this technology.

2 Optical Character Recognition Software

With the rising popularity of document scanners, optical character recogni-
tion (OCR) technology has become increasingly pervasive. The goal of such
software is to read in a scanned image which contains text and/or graphics,
and convert the text to a form the computer can manipulate such as ASCII.
After performing OCR on a scanned document, the user may directly edit
the text within that document using a word processor.

Since our goal is to extract text from figures and diagrams and convert
it to Braille, we first examine the effectiveness of OCR software at this task.
Figure 2 shows an example bar chart from [3] that we would like to convert
to a tactile format. To be suitable, existing software must be able to extract
text from the figure without disrupting the rest of the graphic. Additionally,
it must maintain the location of the extracted text to allow for appropriate
reinsertion of the Braille.

Unfortunately, existing OCR software is unable to meet these demands.
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Figure 2: An example figure from a textbook.

Figures 3 and 4 show how poorly two leading OCR packages extract text
from the sample image. In the first figure, the bars on the right have been
truncated, and the text labels at the bottom of the image have been mis-
aligned. The software failed to recognize the labels along the y-axis as text,
thereby rendering it useless to a blind student examining a tactile version
of this image in which the characters must be converted to Braille. In the
second example (Figure 4), the OCR software recognized all the text in the
image, but its location was incorrectly recorded. Consequently, the labels
have been placed inappropriately. Furthermore, the bars have been distorted
or removed, rendering this graph completely useless to both sighted and blind
people. Clearly, commercially available software is insufficient for the task of
extracting short text labels from scientific figures and diagrams.

Despite these shortcomings, OCR software remains highly effective at
recognizing large blocks of text. Consider the example image in Figure 5.
Both of the commercial OCR packages used in the previous examples are
able to recognize the text within this image with perfect accuracy. The
algorithm we present below takes advantage of this strength to improve text
recognition accuracy in scientific figures and diagrams significantly. Instead
of providing the OCR software with the original image, our algorithm finds
the text, provides the OCR software with an image like that in Figure 5, and
lets the OCR software determine the actual characters.
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This image demonstrates the ineffectiveness of existing OCR, soft-
ware at recognizing text in images like bar charts. The text along the y-axis
was not recognized, the labels along the x-axis were misaligned, and the bars
themselves were inexplicably truncated.
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Figure 4: This image also shows how poorly modern OCR software recognizes
text in figures like this bar chart. The “Office” label was placed incorrectly,
many of the bars were either deleted or mysteriously converted to characters,
and the labels along the y-axis were misplaced.
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Figure 5: This figure is an image derived from the example bar graph. The
text includes all the labels from the bar graph arranged in such a way as
to facilitate high accuracy OCR using existing software. The algorithm pre-

sented in this paper extracts text from such figures as the bar chart and puts
it in this format.



3 Finding Characters of Text

In this section, we will examine the details of the character-finding algo-
rithm we use to find text in figures and diagrams like those seen above. The
technique is based on ideas first presented in [2] and [5].

3.1 Character Training

The first step in finding text within an image is finding the individual char-
acters. Accomplishing this task requires some understanding of the appear-
ance of the text. Consequently, the character-finding algorithm begins with a
training phase in which the user supplies examples of characters. With a font
database populated with details on the training characters, the character-
finding algorithm should be able to find characters in images that it has not
previously encountered with high accuracy. This assertion rests on the as-
sumption that the characters in one image are similar to those in another.
Fortunately, since the editors of textbooks often go to great lengths to ensure
the figures and diagrams in their textbooks are consistently formatted, this
assumption is probably safe.

The character-finding algorithm treats each image as an undirected graph.
Pixels are nodes, and undirected edges exist between pixels only if they are
adjacent horizontally, vertically, or diagonally, and are the same color. Figure
6 illustrates this idea. Therefore, most scientific figures and diagrams consist
of a large set of connected components, such as lines, x- and y-axes, and
individual characters.

Once the user has specified a set of training characters, the font database
is updated. This font database consists of details of all the selected connected
components.

3.2 Observation

Before discussing the technique used to find the characters given a training
set, we must consider an observation of the appearance of text like English.
Figure 7 is an example of such text. Note the relatively uniform color of the
text. The constituent characters all appear approximately the same; none
of the characters stand out or are otherwise distinguished. This appear-
ance is no accident: the designers of most typefaces endeavor to design their
fonts to achieve this appearance. The character-finding algorithm presented

10
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Figure 6: Definition of “connected.”

in the following section exploits this uniform appearance to find characters
accurately.

3.3 Character-Finding Algorithm

After the user trains the character-finding algorithm by providing it with ex-
amples of characters, it predicts which connected components in subsequent
images are characters. The principle idea is to compare each “candidate”
connected component in the new image with each connected component in
the database. If an individual pair is sufficiently similar, then the candidate
is marked as a character. If the pair is too different, the candidate may or
may not be a character. Only after finding that the candidate is unlike every
connected component in the database does the character-finding algorithm
conclude it is not a character.

We now examine the details of this algorithm. For each connected com-
ponent in the database and in the image being analyzed, the following pieces
of information are maintained:

e Width
e Height

e Bounding box area

Connected component color
e Pixel colors

Figure 8 shows an example connected component with labels indicating
the width and height. The bounding box area is the connected component’s

11
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Figure 7: This image demonstrates the uniform appearance of text. None of
the individual characters are significantly different from any of the others.

p—W/idth —

Height

Figure 8: Width and height are two characters used to determine whether a
given connected component is a character.
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width multiplied by its height, and the color is simply “gray.” The pixel
colors being maintained will be discussed at greater length in an upcoming
section. First, we will discuss how the character-finding algorithm uses this
information to find characters.

The comparison between a candidate connected component and one in
the font database consists of five steps. At each step, the character-finding
algorithm compares a single feature of the two connected components. If
the features are different enough, the test halts, and the algorithm begins
comparing the candidate with the next member of the database. If the
candidate passes all five of these tests, it is marked as a valid character since
it is relatively similar to a member of the font database. Otherwise, once the
algorithm has compared the candidate with every connected component in
the font database, the candidate is rejected and not marked.

The following list describes these five tests. The three parameters Ty,
Ty, and T4 are “magic numbers” used to tune performance of the character-
finding algorithm. A smaller value leads to more false negatives, in which
a character is incorrectly identified as a graphical element, while a larger
value leads to more false positives, where a graphical element is classified as
a character. W, H, A, and C represent the width, height, area, and color of
the candidate connected component, while W', H', A’, and C’ represent the
same quantities of the connected component stored in the font database.

L If [W — W’|/ min(W, W') > Ty, then reject.
2. If |H — H'|/ min(H, H') > Ty, then reject.
3. If |[A — A'|/ min(A, A") > T4, then reject.

4. If C' # ', then reject.

5. If the pixel color distribution of the two connected components is suf-
ficiently different, then reject. Since this test is more complex, it will
be discussed separately.

Therefore, if the candidate passes all five of these tests, it is probably
a character and is marked accordingly. Similarly, if a candidate is unable
to pass all five tests when compared with any element of the database, the
candidate is probably not a character and is ignored.

13
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Figure 9: By dividing each connected component into several slices, the
character-finding algorithm better captures its uniform appearance.

3.3.1 The Pixel Color Test

We now discuss the fifth and final comparison made to determine if a candi-
date connected component is sufficiently similar to one in the database. First,
each of the two connected components is divided into several “pie slices,” as
shown in Figure 9. The point of intersection between these slices is the cen-
troid of the connected component, calculated by averaging the coordinates
of all the constituent pixels. Then, the character-finding algorithm counts
the number of pixels of each color in each slice. In the example figure, some
of the pixels are gray, and others are white. Once each connected component
is divided in this way, the algorithm executes the following test on each pair
of corresponding slices:

c c’
1| - 1%
slice with the color of the connected component, A is the area of the connected
component, and n is the number of slices. €’ and A’ are the respective
values for the connected component in the font database. In Figure 9, the
“e” is divided into eight slices. By dividing the connected components into
slices, the character-finding algorithm captures the uniform appearance of
each character.

> T, then reject. C'is the count of pixels in a particular

14



Hof oI O prd

0 O e O iy M A i e

Figure 10: Character-finding algorithm example.

3.3.2 Example

Figure 10 shows an example run of the character-finding algorithm. By com-
paring each of the connected components in the image with those stored in the
font database, the character-finding algorithm achieves a high degree of ac-
curacy, as this example shows. The red boxes in this image denote connected
components that the character-finding algorithm classified as characters. All
other connected components in this image were classified as graphical ele-
ments. The font database for this example was constructed using another,
similar image. Note that the plus sign (‘+’) was incorrectly classified as a
graphical element; the small training set used is the most likely explanation
for this error.

3.4 Problems With This Approach

Unfortunately, the simplicity of this character-finding algorithm renders it
vulnerable to several common and unavoidable problems like that seen in
the previous example. In this section, we examine these problems in detail.
First, we discuss the problem of noise in an image: what happens when a
user wishes to find text in a scanned image? Second, we examine the effect
of individual characters joining with each other or other graphical elements

15



Figure 11: Noise can be a major problem with the character-finding
algorithm. Fortunately, a variety of straightforward solutions exist as
workarounds.

as a result of noise or ink spread. Finally, we consider cases in which certain
connected components are ambiguous and cannot be classified as either a
character or a graphical element.

3.4.1 Noise

When an image is scanned into a computer, noise is inevitably introduced.
Figure 11 provides an example of this effect. As a result, our original de-
finition of “connected component” breaks down: every pixel becomes dis-
connected from its neighbors because their colors are all slightly different.
Running the character-finding algorithm on such an image is ineffective be-
cause it would simply mark individual pixels as “characters” on the basis of
their color.

Fortunately, solutions to this problem exist. One is to execute one of
the many existing noise reduction algorithms. Another is to find the char-
acters on a separate black and white image, kept separate from the original
scanned image. This black and white image could be derived through a sim-
ple “thresholding” technique which forces every pixel to take on either of two
colors. Once the characters are found in this modified image, the image could
be discarded. A third solution is to modify the definition of “connected” to
include similar colors, not merely the same color.

3.4.2 Character Joining

Another set of detrimental effects are those of ink spread and low resolution
scanning equipment. Problems such as those illustrated in Figures 12 and

16



Figure 12: Ink spread and low resolution scans may cause several characters
to become connected.

Figure 13: Characters may also become connected with graphical elements.

13 are consequences of these effects. In the first figure, several individual
characters have joined together to form a single, large, connected compo-
nent. Because of the unusual width and color distribution of this connected
component, the character-finding algorithm may have difficulty concluding
it is, in fact, a set of characters. In Figure 13, the number 25 is connected
to the circle surrounding it. Since the character-finding algorithm does not
attempt to split a connected component into graphical and textual subcom-
ponents, connected components like these will never be handled properly.
A third, related problem is shown in Figure 14, in which an underline has
caused the characters with descenders, namely the Ps and Qs, to be joined
into a single large connected component. Because this component is so large,
the character-finding algorithm will probably never mark it for extraction.
Several solutions to these problems exist. One such technique, known
as a mathematical morphology [7], appears to be well suited to solving the
problems shown in Figures 12 and 13. The basic idea of that approach is to
“erode” all the connected components such that they become disconnected.
We have not yet considered a workable solution for the problem in which the

17
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Figure 14: Underlining is a particularly troublesome piece of formatting
which can prevent the character-finding algorithm from properly identify-
ing all the characters in the image.

text is underlined.

3.4.3 Ambiguous Connected Components

The final problem is also among the hardest to solve. In most cases, given
an example connected component, a human is able to tell whether it is a
character or something else. However, certain characters are ambiguous be-
cause their classification depends on the context in which they are used. For
example, a symbol like the letter “O” should usually be treated as a charac-
ter and extracted. This symbol may also be used as a graphic, however, in
which case it should be left as is. Similarly, small dots like periods are used
frequently in both text and graphics.

These types of problems are likely unavoidable with the current character-
finding algorithm, as determining the appropriate course of action relies on
the situation’s context. Since such context is not considered, these kinds of
problems are inevitable.

3.5 Results

Despite the various problems with this approach, the character-finding al-
gorithm does exhibit reasonably high accuracy. This section discusses two
closely related experiments to test this assertion. The first test is intended
to reflect real world usage, in which a user trains an implementation of the
character-finding algorithm with the first few images in a book and then
has it find the characters automatically in the remaining images. The second
test represents ideal conditions because the training images were chosen more
carefully and the images used included only bar charts.

3.5.1 Test 1: Real World Usage

In this test, the character-finding algorithm was trained using the first three
figures and diagrams in [3] to create a font database consisting of 475 con-

18
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Figure 15: An image used for training (Chl-fig01 from [3]). This particular
image contains 234 connected components, 160 of which are characters or
small groups of characters.

nected components. These three images are all line graphs. Figure 15 shows
one of the images used in the training set.

The character-finding algorithm was then run on the 25 remaining figures
and diagrams in the first two chapters. These images include line graphs,
bar charts, and diagrams.

Table 2 summarizes the character recognition accuracy of the character-
finding algorithm by showing the total number of connected components in
the image, the number classified as characters, the number of false positives,
and the number of false negatives. The last column provides an error per-
centage, calculated by adding the number of false positives and negatives and
dividing by the total number of connected components in the image. The last
line in the table provides various summary statistics. The parameters used
to achieve these results are Ty = 1.0, Ty = 1.0, T4y = 1.0, and T = 1.0.

19



Training image ‘ Total CCs ‘ Character CCs

Chl-fig0l 234 160
Ch1-fig05 205 140
Ch1-fig06 1561 175

Table 1: Images used for training (test 1). These are the first non-
photographic images in [3] and thus represent a very basic selection of images
to use for training.

Furthermore, the character-finding algorithm divided each character into 5
pie slices.

Most of the false positives were nearly the same in every image; they
consisted of small black boxes surrounding shaded regions in the image’s
legend. These boxes share many of the characteristics of the letter “O”
which explains why they were consistently marked as characters.

The performance of the character-finding algorithm on Ch2-fig01 also
warrants additional explanation. This figure contains a number of decora-
tive dot-like graphics. The algorithm incorrectly classified all these dots as
characters, resulting in the high error rate.

The false negatives present in Ch2-fig24 and Ch2-figd1 occurred because
the graphic used a different font for some of the text: the character-finding
algorithm missed the decimal points and the dots on the lowercase letter i.
The false negatives in Ch2-fig27 consisted exclusively of 3 equal signs. In all
three of these cases, the false negatives could be eliminated by employing a
better (larger) training set.

3.5.2 Test 2: Ideal Usage

In this test, three images were again used for training, but these three were
chosen more carefully because they better reflect the appearance of the re-
mainder of the images. Furthermore, the images used include only bar charts,
in contrast to the first experiment in which bar charts, line graphs, and mis-
cellaneous diagrams were all included. The training set included 515 charac-
ters.

After training, the character-finding algorithm was run on 19 more bar
charts from the first three chapters. Other than the training set and the
images used, the same parameters were used as in the previous test. Table
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Figure # CCs | Char. CCs | False (+) | False (-) | % Error
Ch1-fig10 293 287 0 0 0
Ch1-figl9 786 298 2 0 0.25
Ch1-fig20 1326 293 2 0 0.15
Ch1-fig22 986 336 2 0 0.2
Ch1-fig23 1130 305 2 0 0.18
Ch1-fig25 275 182 ) 0 0.87
Ch1-fig26 599 183 ) 0 0.83
Ch1-fig27 519 177 ) 0 0.96
Ch1-fig28 832 173 0 0 0
Ch2-fig01 193 183 39 0 20.21
Ch2-fig07 274 273 0 0 0
Ch2-fig08 1263 190 0 0 0
Ch2-fig09 174 172 2 0 1.15
Ch2-fig10 1396 200 0 0 0
Ch2-fig12 197 195 2 0 1.02
Ch2-fig19 195 193 2 0 1.03
Ch2-fig20 1130 185 0 0 0
Ch2-fig22 257 255 2 0 0.78
Ch2-fig23 482 476 3 0 0.62
Ch2-fig24 667 664 0 2 0.3
Ch2-fig26 328 326 4 0 1.22
Ch2-fig27 o957 547 1 6 1.26
Ch2-fig34 417 413 10 0 2.4
Ch2-fig38 227 225 4 0 1.76
Ch2-figd1 1342 166 0 9 0.67
Total 16145 6897 92 17 0.68

Table 2: Character recognition results (test 1). “CC” stands for “connected
component,” and “Char.” is an abbreviation for “Character.” In this exper-
iment, the user trained the character-finding algorithm using the first three
images in the book, and then ran it on all the figures and diagrams in the
first two chapters.
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Training image ‘ Total CCs ‘ Character CCs

Chl-figl9 840 240
Ch1-fig25 606 117
Ch1-fig08 228 158

Table 3: Tmages used for training (test 2). These images were chosen on the
basis of their similarity to the remainder of the images being processed, and
thus represent a better choice than the first three bar charts.

4 summarizes the results. Clearly, performance improved very little over the
first test. Despite the fact that there were no false negatives, the same false
positives were present.

4 Grouping Characters Into Labels

Although finding the existing characters is a major step toward automatically
converting an image to a tactile format, inserting a set of Braille characters
in their place would be difficult if done one at a time. Because Braille is
generally several times the width and height of normal text in order to be
legible, simply replacing the original text with Braille is not viable as the
Braille characters would overlap.

Therefore, we have developed a companion label-finding algorithm which,
when presented with a set of isolated characters (the connected components
classified as characters by the character-finding algorithm) and their loca-
tions, will group them into short labels. Once in this form, their management
becomes much simpler. Furthermore, we can take advantage of the technique
shown in Figure 5 on page 9 to convert images of these labels into Braille
using conventional OCR software.

This section presents the details of the label-finding algorithm. As before,
we begin with a training phase in which the user provides the algorithm with
some examples of appropriate labels. Then, once trained, the label-finding
algorithm groups characters in subsequent images similarly.
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Figure # CCs | Char. CCs | False (+) | False (-) | % Error
Ch1-fig20 1326 293 2 0 0.15
Ch1-fig22 986 336 2 0 0.2
Ch1-fig23 1130 305 2 0 0.18
Ch1-fig26 599 183 ) 0 0.83
Chl1-fig27 519 177 ) 0 0.96
Ch1-fig28 832 173 0 0 0
Ch2-fig09 174 172 2 0 1.15
Ch2-fig19 195 193 2 0 1.03
Ch2-fig22 257 255 2 0 0.78
Ch2-fig26 328 326 4 0 1.22
Ch2-fig38 227 225 4 0 1.76
Ch3-fig09 309 307 2 0 0.65
Ch3-figlh 377 375 3 0 0.8
Ch3-figl7 199 198 0 0 0
Ch3-fig3b 146 145 0 0 0
Ch3-fig39 233 231 ) 0 2.15
Ch3-fig40 277 275 3 0 1.08
Ch3-fig42 232 230 6 0 2.59
Ch3-figd4 200 198 4 0 2
Total 8546 4597 53 0 0.62

Table 4: Character recognition results (test 2). In this experiment, the
user trained the character-finding algorithm using three specific bar graphs
which, subjectively, seemed to represent the bar graphs best. Then, the user
ran the character-finding algorithm on all the bar graphs in the first two
chapters plus the first several in the third chapter. This scenario represents
ideal conditions.
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Figure 16: By forming the minimum spanning tree that connects the cen-
troids of each character in a label, the label-finding algorithm can derive
the distance between the centroids of each character. In this example, the
trailing “ce” is treated as a single character because they are connected.

4.1 Label Training

The first step is to train the label-finding algorithm with some examples
of character labels. This step is accomplished quickly with an appropri-
ate graphical user interface. Once trained with some example labels, the
label-finding algorithm examines several defining characteristics of each la-
bel. These defining characteristics include:

e The angle of the line of best fit
e The mean squared error of the line of best fit

e The spacing between the adjacent characters

The line of best fit is calculated using the centroids of each of the char-
acters in the label. The centroid is essentially the “center of mass:” the
average location of all the points making up the character. Because text
may be aligned vertically, perpendicular regression (a kind of principal com-
ponent analysis) [4] is used to find the equation of the line. Perpendicular
regression is similar to linear regression, except instead of minimizing the
sum of the squares of the vertical distances of points to the line, it minimizes
the sum of the squares of the perpendicular distances.

In addition to the line through the characters, the label-finding algorithm
maintains information on the distances between characters within the label.
These numbers are obtained by calculating a minimum spanning tree using
the centroids of each character as nodes. The lengths of the edges are the
distances between the centroids of the characters. Figure 16 provides an
example of this step.
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4.2 Label-Finding Algorithm

Once trained with a representative set of labels, the label-finding algorithm
can mark similar labels in subsequent images. It considers only those con-
nected components previously marked as characters because it would not
make sense to group them with graphical elements.

After the training phase, the label-finding algorithm consists of the fol-
lowing steps:

1. Form a minimum spanning tree which connects the centroids of every
character in the image.

2. Remove edges whose lengths and angles are sufficiently different from
the gaps between adjacent characters seen previously.

3. Remove edges which are inconsistent with surrounding edges.

4. Form labels from all characters which are themselves connected with
each other via an edge in this resultant graph, and then merge them if
the result is sufficiently similar to a label in the training set.

The following four subsections discuss the details of these steps.

4.2.1 Minimum Spanning Tree

The first step of this process is straightforward. Using the centroids of the
characters as nodes, the label-finding algorithm forms a minimum spanning
tree [1]. An example of such a formation is shown in Figure 17.

4.2.2 Prune Invalid Edges

The second step is to remove edges which could never represent an adjacent
pair of characters. This process involves iterating over every edge in the tree,
and comparing it with pairs of adjacent characters in the training set. A
comparison consists of the following calculations:

1. Calculate the absolute value of the x- and y-distances between the
pair of characters in the database and the pair being examined in the
minimum spanning tree. Denote the values for the characters stored in
the database as Dz, and Dy, and the values for the characters under
examination as Dx,. and Dy..
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Figure 17: Finding labels step 1. The minimum spanning tree.

2. Calculate the angle of the line connecting each pair of characters. De-
note the angle between the stored characters as 65 and the angle be-
tween the candidate characters as 6..

3. Calculate the absolute value of the difference between these distances.
Denote these values as ADx and ADy.

4. Calculate the absolute value of the difference between the angles. De-
note this value as A6.

5. If ADx/Dxy < T,, and ADy/Dys < T,, and A < T, then these two
characters may belong to the same label and the edge should be left in
place. As in the character-finding algorithm, the parameters 7T, and
T, are “magic numbers” tunable by the user.

If the label-finding algorithm compares the current pair with every pair in
the database, and the test fails in every case, then it concludes that this pair
of characters could never be members of the same label and it removes the
edge connecting them from the minimum spanning tree. Figure 18 continues
with the previous example, showing the resultant graph after performing this
edge removal step. All the long edges have been removed: since no labels
in the training set have adjacent characters so far apart, the label-finding
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Figure 18: Finding labels step 2. The reduced graph.

algorithm can conclude that the characters are not members of the same
label.

4.2.3 Prune Inconsistent Edges

The third step in this process is to remove edges “inconsistent” with their
neighbors. The label-finding algorithm accomplishes this step by iterating
over every edge of each vertex. For a particular edge, it tests whether the
edge is consistent with at least one other edge around the current vertex, and
one other edge around the vertex to which it is connected. This consistency
check compares only the angles of the two edges. If the test is successful,
the label-finding algorithm leaves the edge in place. Otherwise the edge is
discarded.

The purpose of this test is to remove edges connecting pairs of characters
which could be members of the same label when examined in isolation, but are
likely not when looked at in context. For example, vertical edges frequently
appear connecting two characters on adjacent lines of text. These edges
are typically not consistent with surrounding edges, which connect pairs of
characters on the same line. Figure 19 continues with the same example.
The label-finding algorithm has removed the vertical edges on the left and
right of the diagram—these edges were inconsistent with their surroundings.
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Figure 19: Finding labels step 3. The consistent graph.

4.2.4 Regroup If the Result Is Consistent

The final step is to treat the remaining groups of characters as labels, and
then merge them if the result is consistent with a label in the training set. A
pair of characters are members of a label at this stage if they are connected
via some path in the graph outputted during the previous step.

The idea is simple: compare every label with every other label and merge
them only if the result is similar to a label in the training set. The label-
finding algorithm determines this similarity by examining the line of best fit.
If the angle and mean squared error of this line is sufficiently close to that
of a label in the training set, the label is kept. Otherwise, the label-finding
algorithm attempts to merge the current label with a different label. Figure
20 shows the final labels achieved after executing this step.

4.3 Results

Table 5 summarizes the results obtained for label creation. Using the same
first three figures and diagrams in [3] as a training set, we supplied the
label-finding algorithm with 126 examples of character labels. These images
contained only horizontal and diagonal labels. Using parameters 7, = .5
(angle tolerance) and T, = .7 (distance tolerance), we then ran the label-
finding algorithm on the remaining images.
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Image Labels | Actual # | Mis-grouped CCs | False (+) | False (-)
Ch1-fig10 39 39 0 0 0
Chl-figl9 48 48 0 0 0
Ch1-fig20 93 93 0 0 0
Chl-fg22 44 45 0 1 0
Chl-fig23 42 42 0 0 0
Chl-fig25 20 20 0 0 0
Chl-fig26 20 20 0 0 0
Chl-fig27 19 19 0 0 0
Ch1-fig28 19 21 0 2 0
Ch2-fig01 12 12 0 0 0
Ch2-fig07 46 44 0 0 2
Ch2-fig08 31 31 0 0 0
Ch2-fig09 19 19 0 0 0
Ch2-fig10 32 32 2 0 0
Ch2-fig12 24 24 0 0 0
Ch2-fig19 18 18 0 0 0
Ch2-fig20 35 35 0 0 0
Ch2-fig22 28 28 1 0 0
Ch2-fig23 40 40 0 0 0
Ch2-fig24 35 35 0 0 0
Ch2-fig26 32 32 0 0 0
Ch2-fig27 40 40 1 0 0
Ch2-fig34 65 65 4 0 0
Ch2-fig38 35 35 0 1 1
Ch2-figd1 28 2% 0 0 2
Total 824 823 8 4 D

Table 5: Label formation results.
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Figure 20: Finding labels step 4. The final labels.

The first column in the table is the image name. The second is the
number of labels the label-finding algorithm created, and the third is the
actual number of labels in the image. The fourth column is the number of
characters assigned to one group which should have been assigned to another.
Therefore, the value in this column could exceed the number of labels in the
image under the right circumstances. The fifth and sixth columns are the
number of false positives and negatives: situations in which two labels were
incorrectly joined (a false positive) or left unjoined (a false negative).

Overall, the accuracy was quite high. In 16 of the 25 images, the label-
finding algorithm made no errors of any kind. Given the characters in these
images, the label-finding algorithm grouped them all in the most appropriate
fashion.

The images in which the characters were placed in the wrong label often
contained areas in which several short labels existed on adjacent horizontal
lines of text. The label-finding algorithm mistakenly concluded these char-
acters should be joined into diagonal groups.

False positives occurred when several labels along the x-axis of a graph
were long enough to be near each other: the label-finding algorithm assumed
that since the gap between the labels was not much greater than a couple
of spaces, the labels should be merged. This kind of error would likely not
affect OCR accuracy or the ability to reinsert the text as Braille because the
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gap between the two groups of characters is maintained whether the label is
split in two or not.

False negatives often appeared in which the dot on a lowercase letter i or
j was left in its own label, when it should have been merged. Such an error
would not affect OCR accuracy, as both versions of the software that we
have worked with can recognize such characters even if the dots are missing.
The label-finding algorithm chose not to group the dot with the rest of the
label because doing so would significantly increase the mean squared error
of the line of best fit. A possible solution to this problem would be to assign
less weight to smaller characters during the mean squared error calculation,
thereby preventing a dot from inappropriately skewing the quality of the fit.

5 Erasing and Outputting Text

Once the text has been grouped into labels, it needs to be erased and output
in a format better suited to existing OCR software.

Erasing the text is relatively straightforward. Since the text is simply
a set of connected components, the only problem is choosing the color with
which to replace each connected component. The strategy employed is to find
the most frequently occurring color in each “slice” aside from the color of the
connected component itself. The same slices are used here as in the character-
finding algorithm for determining whether a given connected component is a
character. Then, all the connected component pixels in that slice are replaced
with the new color. Better algorithms likely exist for this problem, but given
the small number of colors present in most scientific figures and diagrams,
this method works fine.

To output the text in a format usable by OCR software, the all the labels
in the image are concatenated into a single, large bitmap. The algorithm
outputs the location of the text within the image separately. With this
information, the OCR software can accurately determine the text in the
labels, and another algorithm under development by Satria Krisnandi, an
undergraduate at the University of Washington, can effectively place the
Braille into the image.
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6 Conclusion and Future Work

With software to automate the process of finding and grouping characters
in scientific figures and diagrams, creating tactile graphics becomes much
simpler. Instead of tracing single images and manually inserting text, these
algorithms process large batches of images simultaneously. They finds the
text, group it, remove it from the image, and prepare it for input into existing
optical character recognition software. The user need only briefly train the
software, a process which takes just a few minutes.

In the future, we plan several significant enhancements to the algorithms
described herein. First, applying a formal machine learning technique such
as support vector machines should improve character recognition accuracy
further and simplify the user’s task by eliminating the need to fine tune para-
meters to the character-finding algorithm. Since support vector machines are
well suited to classification problems, they are a natural technique to apply.
Second, through refinement of the user interface for our implementation of
these algorithms, it should be possible to simplify the work flow and increase
efficiency. In particular, our current implementation does not allow the user
to correct errors easily, a shortcoming that prevents this tool from being
truly useful. Other problems remain, including placement of the Braille after
optical character recognition and automatic recognition of mathematical for-
mulae, but solutions to these problems are also under development by other
students.

Over the next several years, blind students will no longer need to waste so
much time trying to gain access to their textbooks. By employing software
like that described here, tactile graphics specialists around the country will be
able to increase their productivity considerably. They will finally be able to
provide students like John with complete access to exactly the same literature
as everyone else.
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