

Tagged Representations in WIL

by

Daria Craciunoiu

A senior thesis submitted in partial fulfillment of

the requirements for the degree of

Bachelor of Science
With Departmental Honors

Computer Science & Engineering
University of Washington

August 2007

Presentation of work given on January 18, 2006

Thesis and presentation approved by ___________________________________

Date ___________________________

Daria Craciunoiu

 1

Tagged Representations in WIL

1. Introduction

High level programming languages such as ML and Smalltalk have a multitude of

features designed to make a programmer’s life easier. One of the remarkable

foundational features is uniform data structure representation as heap-allocated

structures references indirectly via pointers - also known as boxed representations.

Among the advantages of boxed representations we can count:

 uniformity

Programmers can treat all first class objects uniformly as pointers. They can

implement generic data structures such as containers (e.g. stacks) that will

behave identically regardless of their content.

 subtyping

Programmers can implement generic mechanisms for handling data structures at

the top level of a hierarchy and then rely on dynamic dispatch if necessary to

specialize messages at any sublevel.

 sharing of mutable data

Program variables contain implicit references to objects. Assignment or

parameter passing preserve the identity of the target object because they copy

the reference instead of the referenced object.

There is however a price to pay in efficiency for these software engineering

advantages of boxed representations:

 cost of indirect access to objects via pointers

 cost of allocation and deallocation

 cost of storage space (overhead of a pointer for every object)

There is a more efficient data layout alternative to boxed representations: inline

representations also known as unboxed representations. In this case we can reverse

the discussion of advantages and disadvantages evaluated for boxed

representations without reaching the optimal result of preserving flexibility and

increasing efficiency.

Daria Craciunoiu

 2

The pursuit of this efficient flexibility goal has created languages with a hybrid

data model such as Java. Java allows the representation of pointers and objects

such as Integer objects alongside the representations of inline primitive values such

as int.

p

i: 10

class: Integer

i: 10

class: Integer

pointer

Values of type Integer are boxed.
Values of type int are unboxed.

Figure 1. Java memory model.

The hybrid data model has its benefits, but it also foregoes a generic way of

manipulating all data values and it makes generic code only conditionally reusable.

We cannot implement a Stack class with uniformly represented numeric content

regardless of the content type because an int value is not referred to by a pointer like

the Integer class or any other subclass of Object. We cannot take advantage of

dynamic dispatch for int values either. In order to address some of these issues Java

implemented autoboxing to automatically convert between primitive values and their

appropriate wrapper classes. This solution further complicates the data model and

reduces efficiency.

A different approach is the implementation of tagged representations which will

be discussed in this paper. Tagged representations aim to optimize the manipulation

of commonly occurring kinds of values such as integers by representing these

values inline in place of the pointer. In order to distinguish these kinds of values from

normal pointers the low order bits of a variable’s content are used to encode the

interpretation of the high order bits. Tag values can be chosen to minimize tag

manipulation overhead. In this research project the support for tagged (pointer and

integer) representations is implemented in the Diesel front end of the Whirlwind

compiler. The result was a significant increase in the efficiency of arithmetic

operations performed on integers. The following sections will present the

Daria Craciunoiu

 3

environment and implementation of the project, as well as discuss benchmarking

results and mention previous work related to tagged representations.

2. Tagged Representations

2.1. Environment: WIL/Whirlwind

The environment for studying tagged representations in this project is the

Whirlwind compiler developed by Dr. Craig Chambers and the WASP research

group at the University of Washington. Whirlwind is a multilingual optimizing

compiler written in the Diesel experimental programming language. The Java and

Diesel front ends shown in Figure 2. are currently functional, while the C++ front end

is used for illustration purposes at this point.

Whirlwind

Java Front End

*.exeDiesel Front End

C++ Front End

Java
byte
code

Diesel

C++

WIL

WIL

WIL

Figure 2. Whirlwind.

Whirlwind features an object-oriented explicitly typed intermediate language

named WIL into which other languages are first translated. In addition to the source

languages supported we can also write WIL code directly when working with

Whirlwind.

WIL has similar constructs to other programming languages such as C/C++,

including the following:

 primitives (integers, floats etc.)

Daria Craciunoiu

 4

 pointer types and operations

 records

 objects (which are records with an implicit class field)

 class declarations

class Point isa Object;

 variable declarations

decl p:Point* :== new_point(3,4) ;

 function declarations

fun f (x:int): void {…}

From the two source languages currently supported by Whirlwind, Diesel was the

ideal candidate for this project because it has a uniform pointer model. The following

example shows a sample Diesel to WIL translation simplified on the WIL side1:

Diesel WIL
abstract class Object;

2
class Cell isa Object;

 field contents(:Cell):int;

fun new_cell(x:int):Cell {
 new Cell { contents := x }
 }

let c := new_cell(10);

abstract class Object_class;
...

concrete class Cell_class inherits Object_class;
…
rep Cell_rep := * object Cell_class;

rep Cell_rep_fields :== {var
Cell_contents:oop_rep, ...};
…
rep Cell_rep_target :== object Cell_class
Cell_rep_fields;

fun new_cell_(generic _rep):generic_rep {
 decl t1 :== x;
 decl t2 :== new Cell_rep_target;
 *t2.Cell_contents :== t1;
 return t2;
}

decl c :== new_cell_(new_prim_int(10));

1Some complicated WIL syntax and constructs have been omitted. Among other things this code does not

reflect that WIL implements generic functions and methods along with functions for a dynamic dispatch

mechanism.

Daria Craciunoiu

 5

Diesel WIL
 --an int represented in boxed format

fun new_prim_int(v:1 word):generic_rep {
 decl r :== new G_prim_int_rep_target :==
 { G_prim_int_G_value :== v };
 return r;
}

The code example presented shows how we can declare and instantiate a simple

Cell class with an integer field. A sketch of the memory layout is presented in Figure 3:

p

contents
class: Cell

contents
class: Cell

value: 10
class: Integer
value: 10
class: Integer

Figure 3. Diesel pointers.

 The primitive value for the contents of this Cell object is represented indirectly in

boxed format. A more efficient approach would be to find a way for inlining the value.

The next section describes the tagging idea.

2.2. Tagging

Tagging in the context of this research project is focused on optimizing the data

layout and manipulation of integer values. For all WIL representations the two low-

order bits in the content of a variable indicate the interpretation of higher order bits.

Figure 4 revisits the original Diesel memory model, making the tag bits explicit:

x … x00
pointer to 32-bit

word-aligned data

x … x11

not pointers

x … x10

x … x01

contents
class: Cell

contents
class: Cell

value: 10
class: Integer
value: 10
class: Integer

Figure 4. Diesel pointers with tag bits explicit.

Daria Craciunoiu

 6

We can choose the three non-pointer formats to encode some kinds of values

inline, e.g. integers. In fact, we don’t need to use the 00 tag for pointers. In this work,

we choose to represent pointers with a 11 tag, and integers with a 00 tag, as

described below:

 pointers: 11

The low order bits of a pointer to 32-bit word-aligned data are 00 so using these

bits for a different purpose does not “steal” any bits from the address. When

accessing a field of an object pointed to by a tagged pointer, since field offsets

are known at compile time, we can subtract the tag from the offset at compile

time. This operation helps avoid any run-time tag manipulation overhead.

Example: p.x
• untagged: *(p + x.offset)

• tagged: *(p + (x.offset-tag))

 integers: 00

Integers that are 30-bits or shorter receive a 00 tag by a simple left shift.

Because tagging “steals” two bits from integer variables, the tagging code

detects overflow above the 30-bits length and encodes the numbers in boxed

format as tagged pointers to objects. The ability to combine data layout

representations according to need shows this project optimizes the common

case without losing any of the flexibility already existent in the Diesel memory

model. The choice of a 00 tag value for integers allows operations such as

addition, subtraction and comparisons to be performed without untagging. For

operations like division and multiplication untagging is implemented as a right

shift and it is fairly efficient.

2.3. Method/Implementation

Adding tagging support to Whirlwind was done in a minimally invasive way. The

Diesel front end was modified to emit slightly different WIL code, but no changes to

Whirlwind were necessary. The three components of the implementation are

discussed below:

Daria Craciunoiu

 7

 model for tagged data representation
A new declaration was added to represent and propagate tagged values

throughout the program. This is intuitively analogous to declaring a new type of

value:

 WIL support for manipulating tagged values
Originally Whirlwind used a file named prims.wil to store WIL code

implicitly included by any Diesel program translated to WIL. This file now has two

versions: the original version and the tagging specific version. The tagged

version of the file uses and propagates parameters of tagged_rep type. Similar

modifications had to be extended to a few files containing WIL primitives in the

Diesel standard library. Functions for tagging, untagging and manipulating tags

had to be added to the already existing WIL code library. The following example

is simplified WIL code used for tagging and untagging a pointer:

--number of low-order bits used to tag a value
fun num_tag_bits(): word {
 return 2;
}

--define a magic number derived from the number of tag bits
fun get_mask(): word {
 return (1 << num_tag_bits()) - 1;
}

--compute pointer tag (low-order bits = 11)
fun ptr_tag():word {
 return get_mask();
}

---test if value is tagged pointer (low-order bits = 11)
fun is_tagged_ptr(v: tagged_rep):bool{
 return (v & get_mask()) = ptr_tag();
}

--tag pointer (low-order bits = 11)
fun ptr_to_tagged(v: boxed_rep):tagged_rep{
 return (cast v as tagged_rep) | ptr_tag();
}

rep boxed_rep :== * class Object;

rep tagged_rep :== word;

Daria Craciunoiu

 8

The following sample code handles similar tag manipulations for integers:

 Diesel front end modifications for translating input to optimized WIL
The tag_values option added to the compiler can be enabled and it will indicate

to the Diesel front-end the generated WIL code needs to handle program

variables as tagged representations. The tag manipulation functions will get

inlined by Whirlwind, so there will be no function call overhead in the final code.

--retrieve value of tagged pointer by removing tag
fun tagged_to_ptr(v:tagged_rep):boxed_rep{
 if is_tagged_ptr(v) goto value;
 fatal "tagged value is not a pointer";
 label value;
 return cast (v & ~get_mask()) as boxed_rep;
}

--compute int tag (low-order bits = 00)
fun int_tag():word {
 return 0;
}

--test if value is tagged integer (low-order bits = 00)
fun is_tagged_int(v: tagged_rep):bool{
 return (v & get_mask()) = int_tag();
}

--create a tagged int or tagged pointer to int depending on size
fun new_prim_int(v:word):tagged_rep{
 decl result:tagged_rep :== (v << num_tag_bits()) | int_tag();
 decl orig:word :== tagged_to_int(result);

 if v = orig goto ok;
 return ptr_int_helper(v);
 label ok;
 return result;
}

--returns a tagged pointer to int object like the original model
fun ptr_int_helper(v:1 word):tagged_rep {
 decl r :== new G_prim_int_rep_target :== { G_prim_int_G_value :== v };
 return ptr_to_tagged(r);
}

--retrieve value of tagged int
fun tagged_to_int (v:tagged_rep):word{
 if is_tagged_int(v) goto value;
 fatal "tagged value is not an int";
 label value;
 return v +>> num_tag_bits();
}

Daria Craciunoiu

 9

Some of the main modifications for generating tagged WIL code are in the areas

of: objects creation (tag every object upon creation), class analysis (started by

tag examination to differentiate integers from pointers), field access (untag before

accessing fields through pointers).

3. Results

There is a significant speed-up in integer arithmetic operations when the tagging

optimization is used. The micro-benchmark discussed in this paper focuses on

measuring integer addition speed-up. If we consider a program that performs

addition a number of times n we can compare the performance of the program for

different values of n in tagged and untagged versions. A generic_rep type of value

has been declared to represent either tagged or boxed values, depending on an

optimization flag set at compile time to indicate whether or not the tagging

optimization should be used.

This is the WIL function used to perform integer addition:

In the case of tagged optimizations the addition operation can be optimized from

its generic format by forcing the elimination of untagging/tagging shifts:

In order to measure the cost of generic addition and ignore the overhead of

function calls etc., we can normalize results by performing tests calling the identity

function instead of additions for both tagged and untagged versions at each

considered value of n:

fun add(l:generic_rep, r:generic_rep):generic_rep {
return new_prim_int(

generic_to_int(l) + generic_to_int(r)
);

}

fun optimized_add(t1:tagged_rep, t2:tagged_rep):tagged_rep {
return (t1+t2);

}

fun identity(i:generic_rep):generic_rep {
return i;

}

Daria Craciunoiu

 10

The following tables present the results (reported in milliseconds) computed as

the median of 11 time test results for each of the function versions described:

Table 1. Untagged Operations (ms)

Iterations (x 10 000 000) 0 1 5 10 15 20
Untagged Identity 464 596 812 1108 1344 1652
Untagged Addition 464 1028 3408 6252 9080 11960
Untagged Addition Cost 0 423 2596 5144 7736 10308

Table 2. Tagged Operations (ms)

The results for addition cost are visually summarized in Figure 5.

0

2000

4000

6000

8000

10000

12000Time (ms)

5 10 15 20
Function Calls (x 10M)

Micro Benchmark Performance

Tagged/Optimized Add

Tagged

Untagged

Figure 5. Benchmarking Results

The cost of generic tagged addition is only about 8.7% of the cost of untagged

addition. This number is computed by comparing the slopes of linear fits computed for

each of the data series:

Iterations (x 10 000 000) 0 1 5 10 15 20
Tagged Identity 72 144 372 660 956 1234
Tagged Addition 72 176 584 1116 1648 2116
Tagged Addition Cost 0 32 212 456 692 882
Optimized Tagged Addition 72 144 400 740 1064 1400
Optimized Addition Cost 0 0 28 80 108 166

Daria Craciunoiu

 11

 the linear fit for untagged additions is time = 5.60 + 515.12*n

From the equation above we identify the slope muntagged = 515.12.

 the linear fit for tagged additions is time = -0.40 + 44.88*n

From the equation above we identify the slope mtagged = 44.88.

The ration of the slopes mtagged /muntagged = 0.0871.

From the graph in Figure 5 we can observe an even more dramatic speed-up

when tagged addition is optimized. The linear fit for optimized tagged additions is

time = -6.00 + 8.24*n thus motagged = 1.6. The cost of optimized tagged addition

is about 1.6% of the cost of untagged addition.

4. Future Work

More things to explore in this project would be:

 extend tagging to other kinds of values such as characters and floats

There are more tags available and it is possible to expand the set by extending

the tagging levels (2 level tagging etc.).

 move the implementation of tagging mechanisms from the Diesel front end

to the Whirlwind compiler back end to make this optimization available to all

source languages and integrate better with other Whirlwind optimizations such as

class analysis

5. Related Work

Various researchers have explored both the method for implementing and the

policy for applying representation optimizations before.

EuLisp implements an extensible model for describing data representations

(Quinnec & Cointe 88). It is the stated intention of the authors to replace Objects by

entities with a wider spectrum of physical representation. They define entities as

sequences of bits from which a unique type can be retrieved. In EuLisp instantiation is

possible either as entity (which actually allocates a manageable entity in memory) or as

slot (which is an encoding of the size needed to hold a value of the instantiated type).

Daria Craciunoiu

 12

The SchemeXerox compiler provides a user programmable interface for

describing data layouts (Adams et al. 93). To bypass the slow data structure operations

cost associated with the general and modular type system implementation the compiler

uses a series of optimization techniques among which are programmer supplied inlining

declarations.

Policy decisions explored before include local or intra-procedural dataflow

analysis to identity the possibility of representation optimizations such as the primitive

inlining mechanism implemented in the SELF programming language (Chambers et al.

89). A different approach is allowing user annotations to drive unboxing techniques

(Peyton Jones & Launchbury 91). Along with turning “unboxed” into a keyword at the

programmer’s disposal the authors extend a language and its type system to handle

unboxed values. Optimizations involving unboxed values become correctness

preserving program transformations.

6. Retrospect

Undergraduate research is the most valuable part of my Computer Engineering

education. I started working on research with the hope of finding my own definition of

success in a time when I didn’t seem to fit any definition of success in my

department. Knowing that I would always be more interested in the mechanisms of

international economy and the welfare effects of globalization than I will be

interested in architecting the next operating system, I chose to study Computer

Engineering with the main purpose of acquiring a new perspective and new skills to

analyze the business world with. My first Computer Engineering classes showed my

learning pace was too slow at times and my thoughts were not always well

technically articulated. By that time I liked everything I knew about Computer

Engineering enough to continue studying it regardless of the challenge, and my

results greatly improved by the end of my undergraduate career.

I chose my research project because I was particularly intrigued and intimidated

by my Programming Languages class and thus compilers by association. I wanted to

learn more about something I didn’t quite understand and I wanted to face the fear of

Daria Craciunoiu

 13

failure. My definition of success in research was shaped by every new concept that

became clear and every small milestone where some of my code produced a usable

result. Towards the end of my project I realized that in my eyes the greatest

accomplishment was not any individual result along the way, but simply the fact that

I never gave up and walked away. The greatest help was my research adviser’s

patience because he allowed me to come back and try again even when I didn’t

perform as expected. I am very grateful for everything I learnt about compilers,

programming languages and software engineering concepts, but even more grateful

for discovering my character managed to grow some roots of perseverance and

confidence in a vision of success as multifaceted as the world of students who ever

attempted to find their way around a research project.

7. References

[Adams et al. 93] Norman Adams, Pavel Curtis, and Mike Spreitzer. First-Class Data-Type

Representations in SchemeXerox. In Proceedings of the ACM SIGPLAN O93 Conference on
Programming Language Design and Implementation, pages 139-146, June 1993.

[Chambers et al. 89] Craig Chambers, David Ungar, and Elgin Lee. An Efficient Implementation of

Self, a Dynamically-Typed Object-Oriented Language Based on Prototypes. In Proceedings
of the 1989 ACM Conference on Object-Oriented Programming Systems, Languages and
Applications, pages 49-70, New Orleans, LA, October 1989.

[Chambers 99] Craig Chambers. Representation Specification and Optimization in Object-

Oriented Languages, November 1999.

[Peyton Jones & Launchbury 91] SimonPeyton Jones and John Launchbury. Unboxed Values as
First-Class Citizens. In Proceedings of the Fifth Conference on Functional Programming
Languages and Computer Architecture, pages 636-666, September 1991.

[Queinnec & Cointe 88] Christian Queinnec & Pierre Cointe. An Open-Ended Data

Representation Model for EuLisp. In Proceedings of the 1988 ACM Conference on LISP and
Functional Programming, pages 298-308, Snowbird, UT, July 1988.

