
 
 
 

 
Tagged Representations in WIL 

 
by 
 

Daria Craciunoiu 
 
  

 
 
 
 
 
 

A senior thesis submitted in partial fulfillment of 
 

the requirements for the degree of 
 
 
 

Bachelor of Science 
With Departmental Honors 

Computer Science & Engineering 
University of Washington 

August 2007 
 
 
 
 
 
Presentation of work given on January 18, 2006 
 
 
Thesis and presentation approved by ___________________________________ 
 
 
Date ___________________________ 

 
 

 



Daria Craciunoiu 

 1

Tagged Representations in WIL 
 
 

1. Introduction 
 

 
High level programming languages such as ML and Smalltalk have a multitude of 

features designed to make a programmer’s life easier. One of the remarkable 

foundational features is uniform data structure representation as heap-allocated 

structures references indirectly via pointers - also known as boxed representations. 

Among the advantages of boxed representations we can count:  

 uniformity 

Programmers can treat all first class objects uniformly as pointers. They can 

implement generic data structures such as containers (e.g. stacks) that will 

behave identically regardless of their content.    

 subtyping 

Programmers can implement generic mechanisms for handling data structures at 

the top level of a hierarchy and then rely on dynamic dispatch if necessary to 

specialize messages at any sublevel.  

 sharing of mutable data  

Program variables contain implicit references to objects. Assignment or 

parameter passing preserve the identity of the target object because they copy 

the reference instead of the referenced object. 

There is however a price to pay in efficiency for these software engineering 

advantages of boxed representations: 

 cost of indirect access to objects via pointers 

 cost of allocation and deallocation 

 cost of storage space (overhead of a pointer for every object) 

There is a more efficient data layout alternative to boxed representations: inline 

representations also known as unboxed representations. In this case we can reverse 

the discussion of advantages and disadvantages evaluated for boxed 

representations without reaching the optimal result of preserving flexibility and 

increasing efficiency. 
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The pursuit of this efficient flexibility goal has created languages with a hybrid 

data model such as Java. Java allows the representation of pointers and objects 

such as Integer objects alongside the representations of inline primitive values such 

as int.   

p

i: 10

class: Integer

i: 10

class: Integer

pointer
 

Values of type Integer are boxed. 
Values of type int are unboxed. 

 

Figure 1. Java memory model. 

 

The hybrid data model has its benefits, but it also foregoes a generic way of 

manipulating all data values and it makes generic code only conditionally reusable.  

We cannot implement a Stack class with uniformly represented numeric content 

regardless of the content type because an int value is not referred to by a pointer like 

the Integer class or any other subclass of Object. We cannot take advantage of 

dynamic dispatch for int values either. In order to address some of these issues Java 

implemented autoboxing to automatically convert between primitive values and their 

appropriate wrapper classes. This solution further complicates the data model and 

reduces efficiency. 

A different approach is the implementation of tagged representations which will 

be discussed in this paper. Tagged representations aim to optimize the manipulation 

of commonly occurring kinds of values such as integers by representing these 

values inline in place of the pointer. In order to distinguish these kinds of values from 

normal pointers the low order bits of a variable’s content are used to encode the 

interpretation of the high order bits. Tag values can be chosen to minimize tag 

manipulation overhead.  In this research project the support for tagged (pointer and 

integer) representations is implemented in the Diesel front end of the Whirlwind 

compiler.  The result was a significant increase in the efficiency of arithmetic 

operations performed on integers. The following sections will present the 
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environment and implementation of the project, as well as discuss benchmarking 

results and mention previous work related to tagged representations. 

 

2. Tagged Representations 
 

2.1. Environment: WIL/Whirlwind 
 

The environment for studying tagged representations in this project is the 

Whirlwind compiler developed by Dr. Craig Chambers and the WASP research 

group at the University of Washington. Whirlwind is a multilingual optimizing 

compiler written in the Diesel experimental programming language. The Java and 

Diesel front ends shown in Figure 2. are currently functional, while the C++ front end 

is used for illustration purposes at this point. 

 

Whirlwind

Java Front End

*.exeDiesel Front End

C++ Front End

Java 
byte 
code

Diesel

C++

WIL

WIL

WIL
 

 

Figure 2. Whirlwind. 

 

Whirlwind features an object-oriented explicitly typed intermediate language 

named WIL into which other languages are first translated. In addition to the source 

languages supported we can also write WIL code directly when working with 

Whirlwind.  

WIL has similar constructs to other programming languages such as C/C++, 

including the following: 

 primitives (integers, floats etc.) 
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 pointer types and operations 

 records 

 objects (which are records with an implicit class field) 

 class declarations 

class Point isa Object; 

 variable declarations 

decl p:Point* :== new_point(3,4) ; 

 function declarations 

fun f (x:int): void {…} 

  

From the two source languages currently supported by Whirlwind, Diesel was the 

ideal candidate for this project because it has a uniform pointer model. The following 

example shows a sample Diesel to WIL translation simplified on the WIL side1: 

 

Diesel WIL 
abstract class Object; 
 
2 
class Cell isa Object; 
 
 
 
 field contents(:Cell):int; 
   
 
 
 
 
fun new_cell(x:int):Cell { 
      new Cell { contents := x }  
 } 
 
 
 
 
let c := new_cell(10); 

abstract class Object_class; 
... 
 
concrete class Cell_class inherits Object_class; 
… 
rep Cell_rep := * object Cell_class; 
 
rep Cell_rep_fields :== {var    
Cell_contents:oop_rep, ...}; 
… 
rep Cell_rep_target :== object Cell_class 
Cell_rep_fields; 
 
fun new_cell_(generic _rep):generic_rep { 
    decl t1 :== x; 
    decl t2 :== new Cell_rep_target; 
    *t2.Cell_contents :== t1; 
    return t2; 
} 
 
decl c :== new_cell_(new_prim_int(10)); 

 

1Some complicated WIL syntax and constructs have been omitted. Among other things this code does not 

reflect that WIL implements generic functions and methods along with functions for a dynamic dispatch 

mechanism.  
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Diesel WIL 
 --an int represented in boxed format 

fun new_prim_int(v:1 word):generic_rep { 
    decl r :== new G_prim_int_rep_target :==  
                    { G_prim_int_G_value :== v }; 
    return r; 
} 

 

The code example presented shows how we can declare and instantiate a simple 

Cell class with an integer field. A sketch of the memory layout is presented in Figure 3: 

p

contents
class: Cell

contents
class: Cell

value: 10
class: Integer
value: 10
class: Integer

 
 

Figure 3. Diesel pointers. 

 
 The primitive value for the contents of this Cell object is represented indirectly in 

boxed format. A more efficient approach would be to find a way for inlining the value. 

The next section describes the tagging idea.   

 
2.2. Tagging 

 

Tagging in the context of this research project is focused on optimizing the data 

layout and manipulation of integer values. For all WIL representations the two low-

order bits in the content of a variable indicate the interpretation of higher order bits.  

Figure 4 revisits the original Diesel memory model, making the tag bits explicit: 

x … x00
pointer to 32-bit 

word-aligned data

x … x11

not pointers

x … x10

x … x01

contents
class: Cell

contents
class: Cell

value: 10
class: Integer
value: 10
class: Integer

 
Figure 4. Diesel pointers with tag bits explicit. 
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We can choose the three non-pointer formats to encode some kinds of values 

inline, e.g. integers. In fact, we don’t need to use the 00 tag for pointers. In this work, 

we choose to represent pointers with a 11 tag, and integers with a 00 tag, as 

described  below:  

 pointers: 11 

The low order bits of a pointer to 32-bit word-aligned data are 00 so using these 

bits for a different purpose does not “steal” any bits from the address. When 

accessing a field of an object pointed to by a tagged pointer, since field offsets 

are known at compile time, we can subtract the tag from the offset at compile 

time. This operation helps avoid any run-time tag manipulation overhead. 

Example: p.x 
• untagged:  *( p + x.offset) 

• tagged:   *( p + (x.offset-tag) ) 

 integers: 00 

Integers that are 30-bits or shorter receive a 00 tag by a simple left shift. 

Because tagging “steals” two bits from integer variables, the tagging code 

detects overflow above the 30-bits length and encodes the numbers in boxed 

format as tagged pointers to objects. The ability to combine data layout 

representations according to need shows this project optimizes the common 

case without losing any of the flexibility already existent in the Diesel memory 

model. The choice of a 00 tag value for integers allows operations such as 

addition, subtraction and comparisons to be performed without untagging. For 

operations like division and multiplication untagging is implemented as a right 

shift and it is fairly efficient.   

 

2.3. Method/Implementation 
 

Adding tagging support to Whirlwind was done in a minimally invasive way. The 

Diesel front end was modified to emit slightly different WIL code, but no changes to 

Whirlwind were necessary. The three components of the implementation are 

discussed below: 
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 model for tagged data representation 
A new declaration was added to represent and propagate tagged values 

throughout the program. This is intuitively analogous to declaring a new type of 

value:  

 

 

 

 WIL support for manipulating tagged values 
Originally Whirlwind used a file named prims.wil to store WIL code 

implicitly included by any Diesel program translated to WIL. This file now has two 

versions: the original version and the tagging specific version. The tagged 

version of the file uses and propagates parameters of tagged_rep type. Similar 

modifications had to be extended to a few files containing WIL primitives in the 

Diesel standard library. Functions for tagging, untagging and manipulating tags 

had to be added to the already existing WIL code library. The following example 

is simplified WIL code used for tagging and untagging a pointer: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

--number of low-order bits used to tag a value 
fun num_tag_bits(): word { 
 return 2; 
}  
 
--define a magic number derived from the number of tag bits 
fun get_mask(): word { 
 return (1 << num_tag_bits()) - 1; 
} 
 
--compute pointer tag (low-order bits = 11) 
fun ptr_tag():word { 
 return get_mask(); 
} 
 
---test if value is tagged pointer (low-order bits = 11) 
fun is_tagged_ptr(v: tagged_rep):bool{ 
 return (v & get_mask()) = ptr_tag(); 
} 
 
--tag pointer (low-order bits = 11) 
fun ptr_to_tagged(v: boxed_rep):tagged_rep{ 
 return (cast v as tagged_rep) | ptr_tag(); 
} 

rep boxed_rep :== * class Object; 

rep tagged_rep :== word; 
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The following sample code handles similar tag manipulations for integers: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Diesel front end modifications for translating input to optimized WIL 
The tag_values option added to the compiler can be enabled and it will indicate 

to the Diesel front-end the generated WIL code needs to handle program 

variables as tagged representations. The tag manipulation functions will get 

inlined by Whirlwind, so there will be no function call overhead in the final code. 

--retrieve value of tagged pointer by removing tag 
fun tagged_to_ptr(v:tagged_rep):boxed_rep{ 
 if is_tagged_ptr(v) goto value; 
 fatal "tagged value is not a pointer"; 
 label value; 
 return cast (v & ~get_mask()) as boxed_rep; 
} 

--compute int tag (low-order bits = 00) 
fun int_tag():word { 
 return 0; 
} 
 
--test if value is tagged integer (low-order bits = 00) 
fun is_tagged_int(v: tagged_rep):bool{ 
 return  (v & get_mask()) = int_tag(); 
} 
 
--create a tagged int or tagged pointer to int depending on size 
fun new_prim_int(v:word):tagged_rep{ 
 decl result:tagged_rep :== (v << num_tag_bits()) | int_tag(); 
 decl orig:word :== tagged_to_int(result); 
  
 if v = orig goto ok; 
 return ptr_int_helper(v); 
 label ok; 
 return result; 
} 
 
--returns a tagged pointer to int object like the original model 
fun ptr_int_helper(v:1 word):tagged_rep { 
      decl r :== new G_prim_int_rep_target :== { G_prim_int_G_value :== v }; 
     return ptr_to_tagged(r); 
} 
 
--retrieve value of tagged int 
fun tagged_to_int (v:tagged_rep):word{ 
 if is_tagged_int(v) goto value; 
 fatal "tagged value is not an int"; 
 label value; 
 return v +>> num_tag_bits(); 
}
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Some of the main modifications for generating tagged WIL code are in the areas 

of: objects creation (tag every object upon creation), class analysis (started by 

tag examination to differentiate integers from pointers), field access (untag before 

accessing fields through pointers). 

 

3. Results 
 

 
There is a significant speed-up in integer arithmetic operations when the tagging 

optimization is used. The micro-benchmark discussed in this paper focuses on 

measuring integer addition speed-up. If we consider a program that performs 

addition a number of times n we can compare the performance of the program for 

different values of n in tagged and untagged versions. A generic_rep type of value 

has been declared to represent either tagged or boxed values, depending on an 

optimization flag set at compile time to indicate whether or not the tagging 

optimization should be used.   

This is the WIL function used to perform integer addition: 

  

 

 

 

In the case of tagged optimizations the addition operation can be optimized from 

its generic format by forcing the elimination of untagging/tagging shifts: 

 

 

 

In order to measure the cost of generic addition and ignore the overhead of 

function calls etc., we can normalize results by performing tests calling the identity 

function instead of additions for both tagged and untagged versions at each 

considered value of n:  

 

fun add(l:generic_rep, r:generic_rep):generic_rep { 
return new_prim_int( 

generic_to_int(l) + generic_to_int(r) 
); 

} 

fun optimized_add(t1:tagged_rep, t2:tagged_rep):tagged_rep { 
return (t1+t2); 

} 

fun identity(i:generic_rep):generic_rep { 
return i; 

} 
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The following tables present the results (reported in milliseconds) computed as 

the median of 11 time test results for each of the function versions described:   
 

Table 1. Untagged Operations (ms) 

Iterations (x 10 000 000) 0 1 5 10 15 20 
Untagged Identity 464 596 812 1108 1344 1652
Untagged Addition 464 1028 3408 6252 9080 11960
Untagged Addition Cost 0 423 2596 5144 7736 10308
 

Table 2. Tagged Operations (ms) 

 

The results for addition cost are visually summarized in Figure 5. 

0

2000

4000
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8000

10000

12000Time (ms)

5 10 15 20
Function Calls (x 10M)

Micro Benchmark Performance

Tagged/Optimized Add

Tagged

Untagged

 
Figure 5. Benchmarking Results 

The cost of generic tagged addition is only about 8.7% of the cost of untagged 

addition. This number is computed by comparing the slopes of linear fits computed for 

each of the data series: 

Iterations (x 10 000 000) 0 1 5 10 15 20 
Tagged Identity 72 144 372 660 956 1234
Tagged Addition 72 176 584 1116 1648 2116
Tagged Addition Cost 0 32 212 456 692 882
Optimized Tagged Addition 72 144 400 740 1064 1400
Optimized Addition Cost 0 0 28 80 108 166
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 the linear fit for untagged additions is time = 5.60 + 515.12*n 

From the equation above we identify the slope muntagged = 515.12. 

 the linear fit for tagged additions is time = -0.40 + 44.88*n 

From the equation above we identify the slope mtagged = 44.88.  

The ration of the slopes mtagged /muntagged = 0.0871. 

From the graph in Figure 5 we can observe an even more dramatic speed-up 

when tagged addition is optimized. The linear fit for optimized tagged additions is 

time = -6.00 + 8.24*n thus motagged = 1.6. The cost of optimized tagged addition 

is about 1.6% of the cost of untagged addition. 

 
4. Future Work 
 
More things to explore in this project would be:  

 extend tagging to other kinds of values such as characters and floats 

There are more tags available and it is possible to expand the set by extending 

the tagging levels (2 level tagging etc.). 

 move the implementation of tagging mechanisms from the Diesel front end 

to the Whirlwind compiler back end to  make this optimization available to all 

source languages and integrate better with other Whirlwind optimizations such as 

class analysis  

 

5. Related Work 
 
Various researchers have explored both the method for implementing and the 

policy for applying representation optimizations before.  

EuLisp implements an extensible model for describing data representations 

(Quinnec & Cointe 88). It is the stated intention of the authors to replace Objects by 

entities with a wider spectrum of physical representation. They define entities as 

sequences of bits from which a unique type can be retrieved. In EuLisp instantiation is 

possible either as entity (which actually allocates a manageable entity in memory) or as 

slot (which is an encoding of the size needed to hold a value of the instantiated type). 
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The SchemeXerox compiler provides a user programmable interface for 

describing data layouts (Adams et al. 93).  To bypass the slow data structure operations 

cost associated with the general and modular type system implementation the compiler 

uses a series of optimization techniques among which are programmer supplied inlining 

declarations. 

Policy decisions explored before include local or intra-procedural dataflow 

analysis to identity the possibility of representation optimizations such as the primitive 

inlining mechanism implemented in the SELF programming language (Chambers et al. 

89). A different approach is allowing user annotations to drive unboxing techniques 

(Peyton Jones & Launchbury 91). Along with turning “unboxed” into a keyword at the 

programmer’s disposal the authors extend a language and its type system to handle 

unboxed values. Optimizations involving unboxed values become correctness 

preserving program transformations. 

 
6. Retrospect 

 

Undergraduate research is the most valuable part of my Computer Engineering 

education. I started working on research with the hope of finding my own definition of 

success in a time when I didn’t seem to fit any definition of success in my 

department. Knowing that I would always be more interested in the mechanisms of 

international economy and the welfare effects of globalization than I will be 

interested in architecting the next operating system, I chose to study Computer 

Engineering with the main purpose of acquiring a new perspective and new skills to 

analyze the business world with. My first Computer Engineering classes showed my 

learning pace was too slow at times and my thoughts were not always well 

technically articulated. By that time I liked everything I knew about Computer 

Engineering enough to continue studying it regardless of the challenge, and my 

results greatly improved by the end of my undergraduate career. 

I chose my research project because I was particularly intrigued and intimidated 

by my Programming Languages class and thus compilers by association. I wanted to 

learn more about something I didn’t quite understand and I wanted to face the fear of 
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failure. My definition of success in research was shaped by every new concept that 

became clear and every small milestone where some of my code produced a usable 

result. Towards the end of my project I realized that in my eyes the greatest 

accomplishment was not any individual result along the way, but simply the fact that 

I never gave up and walked away. The greatest help was my research adviser’s 

patience because he allowed me to come back and try again even when I didn’t 

perform as expected.  I am very grateful for everything I learnt about compilers, 

programming languages and software engineering concepts, but even more grateful 

for discovering my character managed to grow some roots of perseverance and 

confidence in a vision of success as multifaceted as the world of students who ever 

attempted to find their way around a research project.  
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