
Simulating Hand Interaction in a Virtual
Environment with Open Dynamics Engine

and CyberGlove

By

Nick Nunley

A senior thesis submitted in partial fulfillment of
the requirements for the degree of

Bachelor of Science
With Departmental Honors

Computer Science & Engineering

University of Washington

June 2009

Presentation of work given on _______ June 12, 2009___________

Thesis and presentation approved by ___Miro Enev_____________________

Date _June 16th, 2009_____________________

Simulating Hand Interaction in a Virtual

Environment with Open Dynamics Engine
and CyberGlove

Nick Nunley

Honors Thesis

Department of Computer Science and Engineering

University of Washington

Abstract

The CyberGlove and Open Dynamics Engine (ODE) are two
technologies that can be used to simulate hand interaction in a virtual
environment. ODE is an open source physics simulation framework
and CyberGlove is a data glove that provides precise finger and palm
orientation measurements. The combination of these technologies
would produce a tool that could be used to collect measurements in
the virtual environment to obtain a better understanding of the
techniques of hand control during object interaction. This paper
discusses the best approach to implement the integration of a virtual
hand into a simulated rigid body physics environment with ODE and
CyberGlove. The steps and explanation of implementation are
explained, and then the results are provided with accompanying
discussion on the uses, limitations, and possible next steps.

1. Introduction

Open Dynamics Engine (ODE) and the CyberGlove are both instruments used within
the general field of digital data collection and virtual simulation for realistic physical
situations. The CyberGlove is a human-wearable data glove that is capable of
obtaining precise finger joint angle measurements as well associated data such as
palm and wrist flexion. Data gathered with the CyberGlove is often exported for use
in related software applications. ODE is a physics simulation library that provides a
framework for emulating real-life physical interactions.

The goal of this project was to integrate the real-time data collection capabilities of
the CyberGlove into a virtual environment simulated with ODE. Objects within this
simulated environment would be manipulable through a virtual hand object
controlled via the human-operated CyberGlove. This environment would then be a
suitable place to conduct experiments and collect data on hand interactions. For
example, this could be used to observe the physical forces exerted when an object is
picked up.

The motivation for this project is that scientists currently do not have a good
understanding of the strategies and techniques of the brain during object
manipulation. This tool would provide a sandbox to enable a dynamic interaction
environment to collect precise contact and collision force data to recognize
important events and actions that underlie dexterous manipulation.

This paper explores the approaches to best connect the two technologies together in
order to achieve the desired functionality and in doing so assesses the viability of
using this tool, as well as discussing potential next steps to improve upon this
project.

2. Background

2.1 ODE

ODE is “a free, industrial quality library for simulating articulated rigid body
dynamics [1].” ODE was designed to provide an interactive, stable, real-time
environment to simulate rigid body object interactions. It includes support for
primitive geometric shapes as well as more complicated triangle meshes, and has a
built-in collision detection engine. The physics simulation library is written in C++
but the provided interface to the code is in C.

Within an ODE environment objects are usually represented internally as a rigid
body attached to a geometric object. A rigid body contains object state such as
position, velocity, and mass, while the geometry provides information on its shape
to interact with other objects through the collision detection engine. Objects can be
connected through joints to affect and constrain interactions between them.

Using ODE in a program typically involves:

 Creating an initial world configuration and populating it with objects and
joints

 Entering into a simulation loop where:
o State-modifying input can be received from external sources
o Collision detection between objects and the environment is

performed
o The simulation state is advanced one time step based on collision

data, object and environment state, etc.
o The new environment and object positions can be extracted and

displayed visually

2.2 CyberGlove

The Immersion CyberGlove is a data glove able to capture measurements from joint
angle sensors. The data is available to arbitrary software applications through a C++
device connection API provided in the VirtualHand SDK. With this driver and API it
is possible to read angle measurements directly from the CyberGlove from within a
program. Figure 1 shows the 22-sensor CyberGlove model similar to the one used in
this project.

Figure 1. CyberGlove with sensor locations.

3. Method

This section describes some of the approaches to best integrate the CyberGlove with
an ODE simulated virtual environment in order to obtain the desired functionality.
Getting the CyberGlove working with ODE is not as simple of a process as it may
seem. There were many unique requirements to consider. For example, because the
state of the virtual hand should only reflect the data from the glove, and not react in
interactions with other objects, the hand and finger positions are constantly
corrected.

Environment setup

The environment setup followed the typical formula for initializing an ODE
simulated program. The virtual world is initialized with standard parameters and
the hand and other objects are placed in the environment. Object dimensions and

location can be specified with a text file. Figure 2 shows the syntax for the lines of
the file.

Figure 2.

Hand Representation

The hand is modeled using basic geometric shapes - the palm is represented as a flat
block and finger segments are represented as capped cylinders.

The fingers and thumb are connected to the palm through joints. The mid-finger
joints are implemented with hinge joints (see Figure 4). The joint connecting the
lower finger segment to the palm is a universal joint (Figure 5). Universal joints are
like a ball and socket joints in that they allow for abduction (“sideways”)
movements, but restricts the additional degree of rotational freedom.

The finger- and palm-specific data are stored in corresponding data structures.
Figure 3 shows the structure used to contain all the data needed to represent the
fingers and thumb. Pointers to the contained body and geometry objects are
present, in addition to pointers to the joints used to connect the finger segments and
palm together. The most recently read CyberGlove angle measurements are stored
here as well. Finally, a structure to store object interaction data is contained here.
The palm data is represented with a similar structure although it lacks joint
information and contains position and orientation information.

Figure 3.

struct Finger {

dBodyID bodyUpper, bodyLower;

dGeomID geomUpper, geomLower;

dJointID hingeUpper, universalLower;

 dReal angleUpper, angleLower1, angleLower2;

 ContactFeedback upperFeedbacks, lowerFeedbacks;

};

sphere xPos yPos zPos radius

box xPos yPos zPos length width height

cylinder xpos ypos zpos length radius

Figure 4.

Figure 5.

Connection to CyberGlove

Collection of the joint angle data from the CyberGlove device is available through the
API provided with the VirtualHand SDK. In the early stages of program initialization
a connection is opened to the device where upon data can be read in subsequent
simulation time steps. In this program, after the data is read from the glove it is
transferred to and stored in the data structures for the associated hand part.

Figure 6.

Simulation Loop

Like world initialization the simulation loop in this program is representative of a
typical ODE simulation loop. Collision detection is performed and the environment
state is advanced one time step. During each simulation loop angle data is also read
in from the glove. The data from the glove is used to determine how much to adjust
the joints angles. The hand and objects are redrawn. Figure 7 shows an image
capture of the simulation.

gloveDict = vhtIOConn::getDefault(vhtIOConn::glove);

glove = new vhtCyberGlove(gloveDict);

...

glove->update();

Figure 7.

Contact Data

Each finger and palm object stores a data structure holding the collision information
from the most recent interaction with an object. These are updated every time step
and should be read out if the data is intended to be saved. Interactions between
parts of the hand are ignored.

Figure 8.

Joint motors

struct ContactFeedback {

 dJointFeedback feedbacks[MAX_CONTACTS];

 int numContacts;

};

Each time step the joints are adjusted to match the readings from the CyberGlove.
This is accomplished with a servomechanism that applies a variable force through
an angular motor based on the necessary correction value. The maximum force as
well as the gain can be adjusted to tune the operation of the movement.

Figure 9.

4. Results

The virtual hand exhibits mostly realistic hand movement and the ability for basic
interaction with other objects. With just the standard settings for the rigid body
collision detection provided with ODE, though, the hand is not currently able to
perform complicated tasks like grasping an object. The hand size and mass as well
as object specifics have not yet been adjusted to emulate precise realistic scenarios.

5. Discussion

These results are expected given the configuration of the standard rigid body
simulation parameters. With modifications to the collision detection parameters a
more realistic grasping mechanism should be accomplishable. ODE also supports
the ability to easily integrate with alternative collision detection libraries if the
provided ODE collision engine provides insufficient customizability to achieve the
ideal configuration.

Currently this program uses a rudimentary method for displaying a graphical
representation of the simulation environment. This feature could be replaced with a
more advanced display library without much difficulty.

A 3-dimensional position and orientation sensor would also be a useful addition to
this project. Gathering and integrating this data in a manner similar to the
CyberGlove data collection would allow for a more powerful and intuitive control
scheme for the virtual hand.

The implementation successfully overcomes the major difficulties in integrating the
CyberGlove sensor data into a realistic physical simulation environment. For simple
object interactions the virtual hand affects the simulated environment in a realistic
manner. With the additions or expansions to the features described above the tool
should be even more effective in obtaining useful information on the techniques of

dReal truePosition = dJointGetHingeAngle(currentFinger->hingeUpper);

dReal desiredPosition = (currentFinger->angleUpper + calibration[i][0])

* calibration[i][1] * DTOR;

dReal error = truePosition - desiredPosition;

dReal desiredVelocity = -error * gain;

dJointSetHingeParam(currentFinger->hingeUpper, dParamFMax, maxForce);

dJointSetHingeParam(currentFinger->hingeUpper, dParamVel,

desiredVelocity);

dexterous object manipulation.

6. Conclusion

The integration of the CyberGlove into an ODE simulated virtual environment was
described and evaluated. The results were discussed and improvements to the tool
were proposed. Using and improving on the results of this project should allow for
an environment where research and experiments can be conducted to better
understand human hand control during object manipulation.

References

[1] ODE Manual. http://opende.sourceforge.net/wiki/index.php/Manual , 2009.

