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Abstract

Because most graphical user interfaces that we see nowadays consist of various buttons or
window building blocks, Prefab helps to recognize them by looking only at raw pixels. Prefab works
by reverse engineering an interface and building a tree structure representing that interface. This
application has a great potential for identifying the structure of interfaces and customizing themin
new ways. Most of the applications that we use on daily basis have many widgets and buttons, and
whenever we use them we operate very quickly by scrolling and switching from one window to
another. In order to identify all the parts of the interface correctly, the speed of this application is
very important.

1. Introduction and Motivation

Using Prefab we can now interpret pixels of an existing application and modify them
independently of their underlying implementation. This help researchers test and deploy their
interaction in the context of real applications. Pixels arefirst copied from a source window and
interpreted using Prefab. Then various enhancements can be added, with input then mapped back to
the source window [Figure 1]. Papers presented at CHI 2010 [1] and CHI 2011 [2] have
demonstrated many potential enhancements. dynamically expanding the motor space with bubble
cursor, visualizing state changes with phosphor, parameter spectrum previews with side views,
presenting software tutorials, adaptive GUI visualization, language trand ation, user interface
customization, and more. All these interaction techniques recognize widget layout in real time by
executing this pixel-based feature identification cycle multiple times.
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Figure l
Prefab’ s pixel-based widget identification cycle
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Successfully executing this cycle requires a method for rapidly finding features in an image.
Prefab’ s original implementation uses a decision tree [Figure 2]. This Build Tree approach first
chooses a non-transparent pixel hotspot pixel for each feature in the library. Then Prefab builds a
decision tree in which every node stores an offset relative to the hotspot and every edge represents
the color of the pixel at that offset.

[ = pixel color at the tested offset
(x,y) = current pixel offset to test

Figure2
Decision tree of a Build Tree implementation

During runtime this implementation scans through the image only once by checking if the
pixel isthe hotspot pixel of afeature. It moves through the image and traverses the tree until it finds
amatched feature. If the pixel doesn’t match a pixel in the decision tree, then tree traversal ends.
The multi-threaded version of thisimplementation divides a bitmap into segments and uses multiple
threads to look for features.

O . Y o . N
Before Runtime | During Runtime

*Find non-transparent hotspots for each feature in the library *Try to match the hotspot pixel int he decision tree. If it
e Build a decision tree where each node represents an offset matches then traverse the tree until the feature is found
relative to the hotspot and edges represent pixel colors
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2. Examining Strategiesfor Finding Features

It isdifficult to say how reliable the initial algorithm is because Prefab’s current library of
prototypesisrelatively small and there are no other a gorithms to compare with. Because
performance of feature detection is very important for Prefab’s functionality, we devel oped other
algorithms, benchmarking software, and alarger library.

2.1 Partially Matching

Before the execution all the features are converted into alinked list of pixels. The last node
of this structure is a match node that specifies that a feature was found. The program visits each
pixel in the main image and if a pixel matches the first pixel of the feature in the data structure then
thisfeature is added into the partial matches data structure. As we iterate through the image we add
more features to the partial matches and advance corresponding nodes in the partial matches.

Before Runtime \ ( During Runtime

e Convert every feature into a linked list of pixels (1) *Try to match next pixel in the image to next node in the
e Create empty list of partial matches (2) partial matches until we get to the end of linked list (4-9)

¢ If next pixel in the image is the same as the starting pixel
of the feature then add to Partial matches (10-16)

The goal of this approach was to visit each pixel in the image only once, therefore
improving the performance. Because the initial collection of linked list features could become very
large, we started using different data structures in order to improve retrieval time. Pseudo code
below describes the algorithm:

1 Build alist of features named START

2 Initialize alist of features named PARTIAL

3 FOR each pixel inimage

4 IF pixel matchesthe first pixel of featurein PARTIAL THEN
5 Move to the next node of linked list in PARTIAL

6 IF Feature.Next isaMatch THEN

7 We have amatch

8 ENDIF

9 ENDIF

10 IF pixel matchesthe first pixel of featurein START THEN
11 IF Feature.Next isaMatch THEN

12 We have amatch

13 ELSE

Orkhan Muradov 3



14 Add feature.Next from START to PARTIAL

15 ENDIF
16 ENDIF
17 ENDFOR

In order to improve the results, various data structures for START and PARTIAL were used:

List of list of features
Thiswasinitia structure that was used in the implementation but it appeared to behave very
slowly with alarger library of features.

Hashtable

In the first implementation of hashtable, the key was a pixel and the value was alist of linked
list of features that start with this pixel. This appeared to behave slowly because the partial matches
data structure was getting very large. The next implementation of hashtable included column asa
key and corresponding value was alinked list of features.

2D Array
This implementation was much faster than the hashtable because retrieval time was instant

comparing to the hashcode calculation in hashtable. This matrix has the same height and width as
the image. Each column/row corresponds to the column/row in the image and is linked to the list of
features

Later look ahead hotspot was added to this implementation, which improved the results
dramatically.

2.2 Integral Image
Integral image is an algorithm for quickly and efficiently generating the sum of valuesin a
rectangular subset of agrid [Figure 2]. Every row/column in the integral image is calculated by:
sum(z,y) = i(z,y) + sum(z — 1,y) 4+ sum(z,y — 1) — sum(z — 1,y — 1)

where each value in the image corresponds to the pixel value in the integer format.

This algorithm was very promising because most of the work is done
before the runtime execution, which includes calculating integral image
A 5 from the image and keeping featuresin alinked list data structure. Many

other features can be easily filtered out by calculating integral sum and
- comparing to the integral sum in the integral image.
D C

Figure3

Corners of rectangle
in the image for
integral sum calculation
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Before Runtime

 Find Hotspot

* Divide every feature into rectangles
 Calculate integral sum of every rectangle
e For a linked list from these rectangles

* Mark last node a match node

During Runtime

* Try to match first node by iterating through the image
e Calculate integral sum of this rectangle

¢ If Matches advance in a linked list until match node is
reached

 Exactly match

During the preprocessing, stage every feature is divided into rectangles and then combined
together asalinked list. In thislinked list the first node is a hotspot which points to check nodes.
The last node is a match node which links to the feature itself. The feature was divided into
rectangles by recursing to the left, up, right, and then down of the transparent pixel which asa
result gives usaminimal number of rectangles. Integral sum for each rectangleis calculated by

Z i(z',y) = sum(A) 4+ sum(C') — sum(B) — sum(D).

Alz)<z'<C(z)
Aly)<y'<Cly)

and then saved as a check node in the linked list. Asaresult our feature will look as follows;

Hotspot Check atch Feature
Node Node Node Class

During the runtime we go through the main image trying to match a hotspot pixel. If the
hotspot pixel matches the image pixel, then the next step isto calculate integral sum for the
rectangle in the image of the same area as the next check node. If integral sum of this rectangle
matches the value in the check node, we advance in the linked list until we get to the match
node. When we get to the match node we need to exactly match every pixel of the feature. This
happens because pixels might be in different order in the rectangle but the sum can stay the
same. In fact, throughout our experiment it was concluded that alarge number of false matches
arereported if the feature is not also exactly matched.
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2.3 Finding Hotspot and Exactly M atching

After matching integral sum of rectangles in the image, another similar but very simple
technique was used for finding features in the image. After matching hotspot pixel, instead of
calculating the integral sum of the rectangle, we can exactly match the feature right away. This
works because most of the featuresin the library are small and exactly matching works very fast
on small features. During pre-processing stage, the features were saved in the hashtable where
key corresponds to the hotspot pixel and the value is the list of features that start with this pixel.

'd

| Before Runtime During Runtime

*Find one or more Hotspots *Try to match first node by iterating

eLink to an actual feature through the image (1-2)

«Build a tree by combining similar *Match other hotspots if available (3)
hotspots _/ e|f rich the end then exactly match (4- 9)

Matching more than one hotspot and then exactly matching the feature proved to be amuch
faster method. After running various tests it was concluded that it usually takes around 2 hotspot
matches to filter out big number of features. Instead of using hashtable to contain all the
features, in this case, tree behaves faster. Every node in the tree is a hotspot and leaves are list of
features. Thistree is shallow and has height of three.

Pseudo-code for the two hotspot and exactly matching algorithm is shown below:

1 IFtree contains pixel onthefirst level THEN

2 Save next level pointed from this node as NEW,
3 IF any of the saved nodesin LIST contain pixel THEN
4 FOR every feature in the features

5 IF exactly match THEN

6 Delete from saved

7 Match was found

8 ENDIF

9 ENDFOR

10 ENDIF

11 Add NEW to the saved pointers LIST;

12 ENDIF
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2.4 Threshold of Previous Two Techniques

This algorithm combines above described algorithms in such away that it makes a
decision whether to calculate and check integral sum or not. From the results integral image
algorithm proved to behave very slowly with small features. Since the library of features mostly
consists of small features this algorithm has an advantage by not calculating integral sum. If the
feature’ ssize is greater than the limit then we do calculate integral sum.

" Before ; | During Runtime

Runtime *Try to match first
node by iterating
¢ Set a limit through the image
*If check node exists |
calculate integral

\\/\/ sum
/ eOtherwise exactly
\ _ match

/ If the size of a featureis |
less than the limit

(" If the size of a feature is
less than the limit

. F.Ind one or more Hotspots « Find Hotspot

s Link to an actual feature ¢ Divide every feature into

*Build a tree by combining rectangles
similar hotspots o Calculate integral sum of every
rectangle

e For a linked list from these
rectangles

\ | 10 Mark last node a match node

2.5 Aho - Corasick

The Aho—Corasick string matching algorithm is a dictionary-matching algorithm that
finds elements of afinite set of strings within an input text and matches all patterns
simultaneously. This agorithm constructs afinite state machine that look like atrie with
additional links between the various internal nodes. These extrainternal links alow fast
transitions between failed pattern matches to other branches of the trie that share a common
prefix [Figure 4]. This aids the automaton to transition between pattern matches without the
need for backtracking.
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Before Runtime During Runtime |
e Convert every feature into row e Search the trie for pixels by following the transitions (5)
o Select hot row by selecting the hotspot o If trie node contains results add them to corresponding
« Build a linked list from hot row and other rows data structures (5)
o Build the Trie ¢ Go through the hot rows and middle rows and try to

match them (6)

Thisagorithm lets us visit every pixel in the image only once and the performance
depends only on following the transitions in the trie. The trie and features are built before the
runtime, so during the runtime we just need to follow the pointersin thetrie. If we seea
result in the node then we found a feature. Because features most of the time have height
bigger than 1, they are divided in to the linked list of 1D features. At first this agorithm was
tested on artificially created features of height one.

For instance let’ s build a trie from the following features of height one: { blue, red},
{blue, red, green, green}, {blue, green, green}, { green, blue, red}.

?‘: {blue, green}

—

= = {blue, red} {blue, red, green , green}

red o green green

green [\\

- ~ {{blue, red}, {green, blue, red}}
~, \ \

red \ \

/ !

Figure4
Aho-Corasick Trie with transitions and fail-transitions

Trie includes the following features: {blue, red}, {blue, red, green, green}, {blue, green, green},
{green, blue, red}.
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The whole process can be represented as a pipeline process.
1) Divide each feature into 1D "mini-features’.
2) Put mini-features into the linked list where head node contains hotspot pixel.
3) Build Trie

5) Run Algorithm on the image by marking middle nodes in the 2D array and putting
head nodes into the queue. After running a few tests, one transition is made on average.
Using a binary search tree instead of hashtable gave faster results.

6) Go through the queue and calculate number of features that were found

In order to improve the performance during runtime the following data structure for hot
row results has been used instead of a queue. I n the beginning when a hot row was found, a
new instance of result class has been created and enqueued into the queue. This was slow
because the program was creating many result classes in order to save row and column of the
image. The new data structure is much faster because it uses only pointers. Before the
runtime a 2D array is created where every row/column is represent as a linked list node.
During runtime, when the hot row is found, the corresponding entry in the 2D array is
updated to point to the found hot rows.

Image representation of this data structure is shown below:

|
ARNEN

« Row
e Column
eHot rows

| eLink to next
Node

g

|
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3. Benchmarking T ool

In order to measure the performance of different algorithms, we needed a benchmarking tool
that captures the average times over several trials. Datasets that were selected included different
programs. Y ouTube video in Firefox, Microsoft Visual Studio, Calculator, Microsoft Word and
its dialog boxes, Microsoft Excel, Microsoft PowerPoint, Skype, Windows Live Messenger,
cs.washington.edu website in Internet Explorer, iTunes, PDF document in Acrobat Reader, and
the Solitaire game. People use these programs every day and we needed to confirm that
algorithms behave fast.

The benchmarking tool can be divided into two parts: afirst phase where the datasets are
created and the second phase for benchmarking the time it takes to run given functions over the
image. During the first phase thistool starts capturing screen shot images after the user specifies
the title of the window to be captured and name of the output xml file. User can stop the
screenshot capturing at any time by clicking stop button or wait until the time exceeds the limit.
The second phase uses a Wrapper Function class that contains all the function definitions that
are used to benchmark the image. Each function is run over the image according to its priority.

For instance, let’s say we have two functions in our wrapper class where the first one
represents Aho-Corasick algorithm with the highest priority and the second oneis the Build Tree
algorithm. Then when we run the benchmarking tool, it first uses the Aho-Corasick algorithm
over the image and then the Build Tree algorithm is run over the same image. As an input of the
second phase the program uses the same xml file for the image dataset which was created during
the first phase. Each xml file for each trial consists of average times for every function executed
during the trial and time spent on every function run on every image. Summary file includes
average timesin milliseconds for every function execution over all trials.

Benchmarking tool was used on various find features functions such as single-threaded and
multi-threaded Build Tree algorithm, Integral Sum with one hotspot match algorithm, Integral
Sum with one/two/three hotspot match and then exactly match algorithm and one hotspot match
with or without integral sum using threshold of previous algorithms. Please see appendix for the
table.

4. Building Bigger Library

In order to improve the functionality of existing software for library building, | have added the
following features:
o Software automatically detects whether a new prototype goes to positive or negative set of
examples.
0 Scroller feature that |ets the user browse images as agallery view. Thistool shows found
prototypes by running find features algorithm on every image shown.
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In order to get accurate results from our benchmark tool, Prefab needed alarger library of
prototypes. Most algorithms brought satisfactory results when using our existing small library.
But we were not sureiif it is always the case. Having alarger library of prototypes helped
identify bugs and determine disadvantages of new algorithms. The larger library | created
contains around 700 prototypes from various frequently used programs, such as Mozilla Firefox,
Google Chrome, Microsoft Office, Y ouTube, Calculator, and Microsoft Visual Studio.

5. Results

At firgt, theinitial Build Tree algorithm was tested on various datasets of a size of 500-4000
images with the interval of 10ms. These benchmark tests were tested using initial large library of
around 100 prototypes. The results showed that it takes much longer to find feature on Y ouTube
webpage and Visual Studio datasets. In our understanding, images from Visual Studio dataset
contain many buttons and widgets. On the other hand, an image’ s pixels from Y ouTube video
are more different than the image in the previous frame. [Table 1]

Dataset name Single-threaded Build Tree | Multi-threaded Build Tree
algorithm algorithm
Calculator 83ms 33ms
Visual Studio 265ms 159ms
YouTube Video in 237ms 138ms
Firefox Browser
Microsoft PowerPoint 67/ms 40ms
2007
Microsoft Word 2007 110ms 63ms
Table 1

Thefirst algorithm that was tested and compared to Build Tree approach was the Partially-
matching algorithm. But the results received were much slower than single threaded build tree
implementation. The bottle neck for this implementation is the number of comparisons we make
in order to get a match.

In order to reduce the number of pixel comparisons we started using Integral Image
algorithm which helped to filter out many features by calculating integral sum of a prototype.
We also had to exactly match because some features might have same pixels but in different
order, thus resulting with the same integral sum. Unfortunately we noticed that many features
are alike and have the same integral sum. This approach proved to be fast with the old large
library consisting of around 115 prototypes [Table 2]. But after building bigger library of
prototypes probability of having features with same integral sum increased as number of
prototypesin the library approached to 700 [Table 3].
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Benchmark results from running on quad-core machine using a library of size 115
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Our next approaches without checking integral sum gave very decent results. Results were
surprisingly fast compared to the integral sum implementation. Later two hotspots prior to exactly
matching approach was tested and the results were even faster than multithreaded build tree match
implementation [Table 2]. Asit was expected results became slower with 3 hotspot matching.
Matching hotspot requires 3 times more time than matching pixel one by one. Thisis because we
need to calculate offset and then match the pixel. We came to conclusion that this approach is not
very reliable because of the difficulty of optimizing how many hotspots we need to check before
exactly matching the whole feature. As we can see from Table 2, one hotspot matching is faster with
Firefox settings windows for OS X that two-hotspot matching algorithm.

Integral Image threshold approach was developed by combining above described two
approaches. It is not very efficient to calculate integral sum for very small features and it is much
faster to exactly match right away. So, this algorithm decides whether integral sum needs to be
calculated or not. We see some improvements from just plain integral image algorithm but it was a
little slower than exactly matching the image after one or two hotspot matches. This happens
because majority of the featuresin the library are very small, of asize less than 10 pixels.

So far we have tried to reduce number of pixel visitsin the image, reduce number of pixel
comparisons, and decide if we really need to compare every pixel for very small features. Aho-
Corasick implementation is based only on following transitions in the trie and going through each
pixel in theimage only once. This approach combines our previous goalsin order to improve
efficiency. Aho-Corasick algorithm is also very stable in away that we do not need to guess how
many hotspots we need to check before checking other pixels. Because most of the work is done
during pre-processing time, Aho-Corasick approach proved to bereally fast. Inthe Table 3, al of
the above algorithms were re-run on a six-core machine using library that contains 676 prototypes.
The results of this approach do not depend on the size of the library as much as above described
algorithms.,

6. Discussion and Conclusion

So far we have tried creating various algorithms that are very different from each other but
have the same goal: improve the performance of Prefab feature recognition. At first, wetried to
minimize number of pixel visitsin the image by putting partial matches into various data structures.
As aresult we had to make alarge number of comparisons, which slowed the whole process. In
order to reduce number of comparisons we started using so called integral image. It helped to filter
out many features and we were left only with features that contained the same number of pixels but
in different order. Thisimplementation was not as fast as we expected because the library consists
mostly of small features. Calculating integral image for small features was significantly slower than
matching pixel by pixel. Next we tried eliminating integral image cal culation and using threshold
algorithm with it. This gave us decent results but the approach was not very reliable because we
cannot really decide which feature is small or big. The next strategy was to use Aho-Corasick
algorithm, which uses a special trie structure with pointers and back-pointers. This helped us to
achieve our goals: visit each pixel in the image only once and decrease number of comparisons.
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Given what | have done | think it remains unseen which algorithm will prove to be faster at
large scale. Thiswork will help to understand if Prefab can find prototypes instantaneously in real
time using alarge library of features.

There are other approaches to be explored, such as reusing found features from previous
framein anew frame. This would significantly improve the performance because we do not need to
recal cul ate the same features over the same parts of the image. Since Aho-Corasick implementation
showed really good and stable results, we could try running it in parallel. The image could be
divided into segments and each thread can look for features in each segment using the same trie.
Also, if scaling is an issue then we could run Aho-Corasick algorithm in parallel with different
libraries. In other words, alarge library can be divided into many small ones and each thread would
build its own trie. This might eliminate alarge number of transitions while searching for features. At
the end results from all the threads can be added together. All thiswork and new modifications
would significantly help to get instantaneous widget recognition in applications using Prefab.
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