

Improving performance of prototype
recognition in Prefab

By

Orkhan Muradov

A senior thesis submitted in partial fulfillment of

The requirements for the degree of

Bachelor of Science

With Departmental Honors

Computer Science & Engineering

University of Washington

June 2011

Thesis and presentation approved by

Date

Orkha

Abst

windo
by rev
applic
new w
whene
anothe
very im

1. In

indepe
interac
interpr
the sou
demon
cursor
presen
custom
execut

an Muradov

tract

Because m
ow building b
verse enginee
ation has a g

ways. Most o
ever we use t
er. In order t
mportant.

ntroducti

Using Pref
endently of t
ction in the c
reted using P
urce window
nstrated man
r, visualizing
nting softwar
mization, and
ting this pixe

most graphica
blocks, Prefa
ering an inte
great potenti
of the applica
them we ope
to identify al

on and M

fab we can n
their underly
context of re
Prefab. Then
w [Figure 1].
ny potential e
g state chang
re tutorials, a
d more. All t
el-based feat

Prefab

al user interf
ab helps to r
erface and bu
al for identif
ations that w
erate very qu
ll the parts o

Motivatio

now interpret
ying impleme
eal applicatio
n various enh
. Papers pre
enhancemen

ges with pho
adaptive GU
these interac
ture identific

b’s pixel-ba

faces that we
recognize the
uilding a tree
fying the stru

we use on dai
uickly by scr
f the interfac

on

t pixels of an
entation. Th
ons. Pixels a
hancements
sented at CH

nts: dynamic
sphor, param

UI visualizati
ction techniq
cation cycle

Figure

ased widge

e see nowada
em by lookin
e structure re
ructure of int
ily basis hav
rolling and s
ce correctly,

n existing ap
his help resea
are first copie
can be adde

HI 2010 [1] a
ally expandi

meter spectru
ion, languag
ques recogni
multiple tim

1

et identific

ays consist o
ng only at ra
epresenting t
terfaces and

ve many wid
switching fro
, the speed o

pplication an
archers test a
ed from a so
d, with inpu
and CHI 201
ing the moto
um previews

ge translation
ze widget la

mes.

ation cycle

of various bu
aw pixels. Pr
that interfac
customizing

dgets and but
om one wind
of this applic

nd modify th
and deploy t
ource window
ut then mapp
11 [2] have
or space with
s with side v
n, user interf
ayout in real

e

1

uttons or
refab works
e. This
g them in
ttons, and
dow to
cation is

hem
their
w and
ed back to

h bubble
views,
face
time by

Orkha

Prefab
choose
decisio
the co

pixel i
a matc
The m
thread

Befo
•Find
•Buil

rela

an Muradov

Successfully
b’s original i
es a non-tran
on tree in wh
lor of the pix

During run
is the hotspo
ched feature.

multi-threade
ds to look for

ore Runtime
d non-transparent
ld a decision tree w
ative to the hotspo

y executing t
mplementati
nsparent pixe
hich every n
xel at that of

De

ntime this im
ot pixel of a f
. If the pixel
d version of
r features.

t hotspots for each
where each node
ot and edges repre

this cycle re
ion uses a de
el hotspot pi

node stores a
ffset.

ecision tree

mplementatio
feature. It m
 doesn’t mat

f this implem

h feature in the lib
represents an offs

esent pixel colors

quires a met
ecision tree
ixel for each
n offset rela

Figure 2

of a Build Tr

on scans thro
moves through

tch a pixel in
mentation div

brary
set

Du
•T

m

thod for rapi
[Figure 2]. T

h feature in th
ative to the h

2

Tree impleme

ough the ima
h the image
n the decisio
vides a bitma

uring Runtime
Try to match the h
matches then trav

idly finding
This Build T
he library. T

hotspot and e

entation

age only onc
and traverse

on tree, then
ap into segm

hotspot pixel int he
erse the tree unti

features in a
Tree approach
Then Prefab b
every edge re

ce by checkin
es the tree un
tree traversa

ments and use

e decision tree. If i
l the feature is fou

2

an image.
h first
builds a
epresents

ng if the
ntil it finds
al ends.
es multiple

it
und

Orkha

2. Ex

prototy
perfor
algorit

2.1 P

of this
pixel i
this fe
more f

improv
large,
below

B
•C
•C

an Muradov

xamining

It is difficu
ypes is relati

rmance of fea
thms, benchm

Partially

Before the
s structure is
in the main i
eature is adde
features to th

The goal o
ving the per
we started u
 describes th

1 Bui
2 Init
3 FO
4
5
6
7
8
9
10
11
12
13

efore Runtime
Convert every feat
Create empty list o

g Strateg

ult to say how
ively small a
ature detecti
marking soft

Matchin

execution a
a match nod

image and if
ed into the p
he partial ma

of this appro
formance. B

using differen
he algorithm

ild a list of f
tialize a list

OR each pixe
IF pixel

ENDIF
IF pixel

e
ture into a linked
of partial matches

gies for Fi

w reliable th
and there are
ion is very im
ftware, and a

ng

all the feature
de that speci
f a pixel matc
partial match
atches and ad

oach was to v
Because the i
nt data struc

m:

features nam
of features n
l in image
l matches the
Move to the
IF Feature.N
 We h
ENDIF

l matches the
IF Feature.N
 We h
ELSE

list of pixels (1)
s (2)

inding F

he initial algo
e no other al
mportant for
a larger librar

es are conve
ifies that a fe
ches the firs

hes data struc
dvance corre

visit each pi
nitial collect

ctures in orde

med START
named PART

e first pixel
e next node o
Next is a Ma
have a match

e first pixel
Next is a Ma
have a match

Du
•T

p
•If

o

eatures

orithm is bec
lgorithms to
r Prefab’s fun
ary.

erted into a li
eature was fo
t pixel of the
cture. As we
esponding n

xel in the im
tion of linke
er to improv

TIAL

of feature in
of linked list
atch THEN
h

of feature in
atch THEN
h

uring Runtime
Try to match next
partial matches un
f next pixel in the

of the feature then

cause Prefab
compare wi
nctionality,

inked list of
ound. The pr
e feature in t

e iterate throu
odes in the p

mage only on
ed list feature
ve retrieval ti

n PARTIAL
t in PARTIA

n START TH

pixel in the image
ntil we get to the e

image is the same
n add to Partial ma

b’s current li
ith. Because
we develope

f pixels. The
rogram visit
the data stru
ugh the imag
partial match

nce, therefor
es could bec
ime. Pseudo

THEN
AL

HEN

e to next node in th
end of linked list (4
e as the starting pi
atches (10-16)

3

ibrary of

ed other

last node
ts each
ucture then
ge we add
hes.

re
come very
o code

he
4-9)
ixel

Orkha

In ord

List of

slowly

Hashta

list of
data st
key an

2D Ar

compa
the im
feature

Later l
drama

2.2 I

Int
rectan

where

Corne
 in th
 integr

an Muradov

14
15
16
17 EN

er to improv

f list of featu
This was in

y with a larg

able
In the first

features that
tructure was
nd correspon

rray

This imple
aring to the h

mage. Each co
es

look ahead h
atically.

Integral I

tegral image
gular subset

 each value

Figure 3
ers of rectang
he image for
ral sum calc

ENDIF

NDFOR

ve the results

ures
nitial structu
er library of

implementa
t start with t
 getting very

nding value w

ementation w
hashcode cal
olumn/row c

hotspot was

Image

e is an algori
t of a grid [F

in the image

bef
fro
oth
com

gle
r
ulation

 Add
ENDIF

s, various da

ure that was u
f features.

ation of hash
this pixel. Th
y large. The
was a linked

was much fas
lculation in h
corresponds

added to this

thm for quic
igure 2]. Ev

e correspond

 This algor
fore the runt

om the image
her features c
mparing to t

feature.Nex

ata structures

used in the i

htable, the ke
his appeared
next implem

d list of featu

ster than the
hashtable. T
to the colum

s implement

ckly and effi
ery row/colu

ds to the pixe

rithm was ve
time executio
e and keepin
can be easily
the integral s

xt from STA

s for START

implementat

ey was a pix
d to behave s
mentation of
ures.

 hashtable b
This matrix h
mn/row in the

tation, which

iciently gene
umn in the in

el value in th

ery promisin
on, which in

ng features in
y filtered out
sum in the in

ART to PART

T and PARTI

tion but it ap

xel and the va
slowly becau
f hashtable in

because retrie
has the same
e image and

h improved t

erating the su
ntegral imag

he integer for

g because m
ncludes calcu
n a linked lis
t by calculat
ntegral imag

TIAL

IAL were us

ppeared to be

alue was a li
use the partia
ncluded colu

eval time wa
height and w

d is linked to

the results

um of values
ge is calculat

rmat.

most of the w
ulating integ
st data struct
ting integral
e.

4

sed:

ehave very

ist of linked
al matches
umn as a

as instant
width as
the list of

s in a
ted by:

work is done
gral image
ture. Many
sum and

Orkha

tog
Th
rec
res

an

ho
rec
ma
no
ha
sam
are

an Muradov

During the
gether as a li
he last node i
ctangles by r
sult gives us

d then saved

 During the
otspot pixel m
ctangle in th
atches the va

ode. When w
appens becau
me. In fact, t
e reported if

Befo
• Find
• Divi
• Calc
• For a
• Mar

Hotspot
Node

e preprocessi
inked list. In
is a match no
recursing to
 a minimal n

d as a check

runtime we
matches the i
e image of th
alue in the ch

we get to the m
use pixels mi
throughout o

f the feature i

re Runtime
 Hotspot
de every feature into
ulate integral sum of
a linked list from the
k last node a match n

t Ch
N

ing, stage ev
n this linked
ode which li
the left, up,

number of re

node in the

go through t
image pixel,
he same area
heck node, w
match node
ight be in dif
our experime
is not also ex

o rectangles
f every rectangle
se rectangles
node

heck
ode

very feature i
list the first
inks to the fe
right, and th

ectangles. In

linked list. A

the main ima
, then the ne
a as the next

we advance i
we need to e
fferent order
ent it was co
xactly match

Du
• Tr
• Ca
• If

re
• Ex

Check
Node

is divided in
node is a ho

eature itself.
hen down of
ntegral sum f

As a result ou

age trying to
xt step is to
t check node
in the linked
exactly matc
r in the recta
oncluded tha
hed.

uring Runtime
ry to match first nod
alculate integral sum
Matches advance in

eached
xactly match

k
e

M

nto rectangle
otspot which
 The feature

f the transpar
for each recta

ur feature w

o match a ho
calculate int

e. If integral
d list until we
ch every pix
angle but the
at a large num

de by iterating throug
m of this rectangle
n a linked list until ma

Match
Node

es and then c
h points to ch
e was divided
rent pixel wh
angle is calc

will look as fo

otspot pixel.
tegral sum fo
sum of this
e get to the m

xel of the fea
e sum can sta
mber of false

gh the image

atch node is

Feat
Cla

5

combined
heck nodes.
d into
hich as a
culated by

ollows:

If the
for the
rectangle

match
ature. This
ay the
e matches

ure
ss

Orkha

2.

tec
cal
wo
on
ke

fas
ma
fea
fea

Ps

1
2
3
4
5
6
7

 8
 9
 10
 11
 12

an Muradov

.3 Findin

 After matc
chnique was
lculating the
orks because
n small featur
y correspond

Matching m
ster method.
atches to filt
atures, in thi
atures. This t

eudo-code f

IF tree con
 Sav
 IF a

0 EN
 Ad

2 ENDIF

ng Hotspo

ching integra
used for fin

e integral sum
e most of the
res. During p
ds to the hot

more than on
 After runnin

ter out big nu
is case, tree b
tree is shallo

for the two h

ntains pixel o
ve next level
any of the sa

FOR ev

 ENDFO

NDIF
dd NEW to t

Before R
•Find one o
•Link to an
•Build a tre

hotspots

ot and Ex

al sum of rec
nding feature
m of the rect
e features in
pre-processi
tspot pixel an

ne hotspot an
ng various te
umber of fea
behaves fast
ow and has h

hotspot and e

on the first le
l pointed fro
aved nodes i
very feature i
IF exactly m
 Dele
 Matc
ENDIF

OR

the saved po

untime
or more Hotspots
 actual feature

ee by combining si

xactly M

ctangles in th
es in the ima
tangle, we ca
the library a

ing stage, the
nd the value

nd then exac
ests it was co
atures. Instea
ter. Every no
height of thre

exactly match

evel THEN
m this node
n LIST cont
in the featur

match THEN
ete from save
ch was found

inters LIST;

imilar

atching

he image, an
age. After ma
an exactly m
are small and
e features we

e is the list of

ctly matchin
oncluded tha
ad of using h
ode in the tre
ee.

hing algorith

as NEW;
tain pixel TH
res

N
ed
d

;

During Run
•Try to matc

through the
•Match othe
•If rich the e

nother simila
atching hotsp

match the fea
d exactly ma
ere saved in
f features tha

ng the feature
at it usually
hashtable to
ee is a hotspo

hm is shown

HEN

ntime
ch first node by ite
e image (1-2)
er hotspots if avail
nd then exactly m

ar but very si
pot pixel, in

ature right aw
atching work

the hashtab
at start with

e proved to b
takes around
contain all t
ot and leave

n below:

erating

able (3)
match (4- 9)

6

imple
stead of
way. This
ks very fast
le where
this pixel.

be a much
d 2 hotspot
the
s are list of

Orkha

2.4

de
alg
co
fea

an Muradov

4 Thresh

This al
cision wheth
gorithm prov
nsists of sma
ature’s size i

2.5 Aho
 The Ah
finds elem
simultaneo
additional
transitions
prefix [Fig
need for ba

If the size of
less than the
•Find one or m
•Link to an act
•Build a tree b

similar hotsp

old of Pr

lgorithm com
her to calcul
ved to behav
all features t
is greater tha

o - Corasi
ho–Corasick
ents of a fini

ously. This a
links betwee
between fai

gure 4]. This
acktracking.

a feature is
e limit
more Hotspots
tual feature
by combining
ots

Before
Runtim
• Set a li

revious T

mbines above
ate and chec

ve very slowl
this algorithm
an the limit t

ick
string match
ite set of stri

algorithm con
en the variou
iled pattern m
aids the aut

me
mit

If th
less
• Fin
• Div

rec
• Cal

rec
• For

rec
• Ma

Two Tech

e described a
ck integral su
ly with smal
m has an adv
then we do c

hing algorith
ings within a
nstructs a fin
us internal n
matches to o
omaton to tr

he size of a featu
s than the limit
d Hotspot
vide every feature in
tangles
culate integral sum o
tangle

r a linked list from th
tangles

ark last node a match

hniques

algorithms i
um or not. F
ll features. S
vantage by n
calculate inte

hm is a dictio
an input text
nite state ma

nodes. These
other branche
ransition bet

ure is

nto

of every

ese

h node

in such a way
From the resu
Since the libr
not calculatin
egral sum.

onary-match
t and matche
achine that lo

extra intern
es of the trie
tween pattern

During Ru
•Try to matc
node by ite
through the

•If check no
calculate in
sum

•Otherwise
match

y that it mak
ults integral
rary of featu
ng integral s

hing algorith
es all pattern
ook like a tri

nal links allow
e that share a
n matches w

untime
ch first

erating
e image
de exists

ntegral

exactly

7

kes a
image

ures mostly
sum. If the

hm that
ns
ie with
w fast

a common
without the

Orkha

Trie

an Muradov

 T
depends on
runtime, so
result in th
bigger than
tested on a
 Fo
{blue, red,

e includes th

Before R
• Convert
• Select ho
• Build a li
• Build the

his algorithm
nly on follow
o during the
he node then
n 1, they are
artificially cr
or instance le
 green, green

 Aho-Cora

he following

Runtime
every feature into ro

ot row by selecting th
nked list from hot ro

e Trie

m lets us vis
wing the tran
runtime we
we found a
divided in t

reated featur
et’s build a t
n}, {blue, gr

sick Trie wit

features: {b

ow
he hotspot
ow and other rows

it every pixe
nsitions in th
just need to
feature. Bec

to the linked
es of height
trie from the
reen, green}

Figure 4
th transition

blue, red}, {b
{green, b

Dur
• Sea
• If tr

dat
• Go

ma

el in the ima
he trie. The t

follow the p
cause feature
d list of 1D fe

one.
 following f
, {green, blu

4
ns and fail-tr

blue, red, gre
blue, red}.

ring Runtime
arch the trie for pixel
rie node contains re
ta structures (5)
through the hot row
tch them (6)

age only once
trie and featu
pointers in th
es most of th
eatures. At f

features of he
ue, red}.

ransitions

een, green},

ls by following the tr
esults add them to co

ws and middle rows

e and the per
ures are built
he trie. If we
he time have
first this algo

eight one: {b

{blue, green

ransitions (5)
orresponding

and try to

8

rformance
t before the
e see a
 height
orithm was

blue, red},

n, green},

Orkha

an Muradov

The whole

1) Divi

2) Put m

3) Buil

5) Run
head no
Using a

6) Go t

In orde
row results
new instan
because th
image. The
runtime a 2
During run
updated to

Image repr

e process can

ide each feat

mini-feature

ld Trie

n Algorithm o
odes into the
a binary sear

through the q

er to improve
s has been us
nce of result
e program w
e new data s
2D array is c
ntime, when

point to the

resentation o

n be represen

ture into 1D

es into the lin

on the image
e queue. Aft
rch tree inste

queue and ca

e the perform
sed instead o
class has be

was creating
tructure is m
created wher
the hot row
 found hot ro

of this data s

nted as a pip

"mini-featur

nked list whe

e by marking
er running a
ead of hashta

alculate num

mance during
of a queue. I
en created an
many result

much faster b
re every row
is found, the
ows.

tructure is sh

eline proces

ures".

ere head nod

g middle nod
a few tests, o
able gave fa

mber of featu

g runtime th
In the beginn
and enqueued
t classes in o
because it us

w/column is r
e correspond

hown below

ss:

de contains h

des in the 2D
one transition
aster results.

ures that wer

he following
ning when a
d into the qu

order to save
ses only poin
represent as
ding entry in

w:

hotspot pixe

D array and p
n is made on

re found

data structu
hot row was

ueue. This w
row and col

nters. Before
a linked list

n the 2D arra

9

l.

putting
n average.

ure for hot
s found, a
as slow
lumn of the
e the

node.
ay is

Orkhan Muradov 10

3. Benchmarking Tool

 In order to measure the performance of different algorithms, we needed a benchmarking tool
that captures the average times over several trials. Datasets that were selected included different
programs: YouTube video in Firefox, Microsoft Visual Studio, Calculator, Microsoft Word and
its dialog boxes, Microsoft Excel, Microsoft PowerPoint, Skype, Windows Live Messenger,
cs.washington.edu website in Internet Explorer, iTunes, PDF document in Acrobat Reader, and
the Solitaire game. People use these programs every day and we needed to confirm that
algorithms behave fast.

 The benchmarking tool can be divided into two parts: a first phase where the datasets are
created and the second phase for benchmarking the time it takes to run given functions over the
image. During the first phase this tool starts capturing screen shot images after the user specifies
the title of the window to be captured and name of the output xml file. User can stop the
screenshot capturing at any time by clicking stop button or wait until the time exceeds the limit.
The second phase uses a Wrapper Function class that contains all the function definitions that
are used to benchmark the image. Each function is run over the image according to its priority.

 For instance, let’s say we have two functions in our wrapper class where the first one
represents Aho-Corasick algorithm with the highest priority and the second one is the Build Tree
algorithm. Then when we run the benchmarking tool, it first uses the Aho-Corasick algorithm
over the image and then the Build Tree algorithm is run over the same image. As an input of the
second phase the program uses the same xml file for the image dataset which was created during
the first phase. Each xml file for each trial consists of average times for every function executed
during the trial and time spent on every function run on every image. Summary file includes
average times in milliseconds for every function execution over all trials.

 Benchmarking tool was used on various find features functions such as single-threaded and
multi-threaded Build Tree algorithm, Integral Sum with one hotspot match algorithm, Integral
Sum with one/two/three hotspot match and then exactly match algorithm and one hotspot match
with or without integral sum using threshold of previous algorithms. Please see appendix for the
table.

4. Building Bigger Library

In order to improve the functionality of existing software for library building, I have added the
following features:

o Software automatically detects whether a new prototype goes to positive or negative set of
examples.

o Scroller feature that lets the user browse images as a gallery view. This tool shows found
prototypes by running find features algorithm on every image shown.

Orkhan Muradov 11

In order to get accurate results from our benchmark tool, Prefab needed a larger library of
prototypes. Most algorithms brought satisfactory results when using our existing small library.
But we were not sure if it is always the case. Having a larger library of prototypes helped
identify bugs and determine disadvantages of new algorithms. The larger library I created
contains around 700 prototypes from various frequently used programs, such as Mozilla Firefox,
Google Chrome, Microsoft Office, YouTube, Calculator, and Microsoft Visual Studio.

5. Results

At first, the initial Build Tree algorithm was tested on various datasets of a size of 500-4000
images with the interval of 10ms. These benchmark tests were tested using initial large library of
around 100 prototypes. The results showed that it takes much longer to find feature on YouTube
webpage and Visual Studio datasets. In our understanding, images from Visual Studio dataset
contain many buttons and widgets. On the other hand, an image’s pixels from YouTube video
are more different than the image in the previous frame. [Table 1]

Dataset name Single-threaded Build Tree
algorithm

Multi-threaded Build Tree
algorithm

Calculator 83ms 33ms
Visual Studio 265ms 159ms
YouTube Video in
Firefox Browser

237ms 138ms

Microsoft PowerPoint
2007

67ms 40ms

Microsoft Word 2007 110ms 63ms

Table 1

The first algorithm that was tested and compared to Build Tree approach was the Partially-
matching algorithm. But the results received were much slower than single threaded build tree
implementation. The bottle neck for this implementation is the number of comparisons we make
in order to get a match.

 In order to reduce the number of pixel comparisons we started using Integral Image
algorithm which helped to filter out many features by calculating integral sum of a prototype.
We also had to exactly match because some features might have same pixels but in different
order, thus resulting with the same integral sum. Unfortunately we noticed that many features
are alike and have the same integral sum. This approach proved to be fast with the old large
library consisting of around 115 prototypes [Table 2]. But after building bigger library of
prototypes probability of having features with same integral sum increased as number of
prototypes in the library approached to 700 [Table 3].

Orkhan Muradov 12

Table 2

Benchmark results from running on quad-core machine using a library of size 115

N
ot

ep
a

d-
in

it

12
8m

s

85
m

s

14
2m

s

10
7m

s

75
m

s

77
m

s

12
3m

s

Ch
ro

m
e-

se
tt

in
gs

-
di

al
og

24
7m

s

13
7m

s

29
1m

s

21
5m

s

14
7m

s

15
3m

s

26
0m

s

Go
og

le

ta
lk

80
m

s

50
m

s

95
m

s

71
m

s

49
m

s

50
m

s

82
m

s

N
ot

ep
ad

13
0m

s

87
m

s

14
1m

s

10
8m

s

75
m

s

77
m

s

12
5m

s

M
ac

-
fir

ef
ox

83
m

s

51
m

s

53
m

s

42
m

s

47
m

s

44
m

s

52
m

s

Fi
re

fo
x

74
m

s

54
m

s

65
m

s

50
m

s

44
m

s

48
m

s

57
m

s

Ca
lc

ul
at

or

53
m

s

37
m

s

47
m

s

35
m

s

32
m

s

36
m

s

42
m

s

Im
ag

e
na

m
e

/
im

pl
em

en
ta

ti
on

O

ve
r

3
tr

ia
ls

 in
 m

s

Si
ng

le
th

re
ad

ed

Bu
ild

Tr
ee

M
ul

ti
Th

re
ad

ed

Bu
ild

Tr
ee

1
ho

ts
po

t m
at

ch
 +

In

te
gr

al
Su

m
 m

at
ch

 +

ex
ac

tly
 m

at
ch

1
ho

ts
po

t m
at

ch
 +

ex

ac
tly

 m
at

ch

2
ho

ts
po

t m
at

ch
 +

ex

ac
tly

 m
at

ch

3
ho

ts
po

t m
at

ch
 +

ex

ac
tly

 m
at

ch

Th
re

sh
ol

d
ho

ts
po

t m
at

ch

w
it

h/
w

it
ho

ut

In
te

gr
al

Su
m

 m
at

ch
 +

ex

ac
tly

 m
at

ch

Orkhan Muradov 13

N
ot

ep
ad

-in
it

44
m

s

25
m

s

14
2m

s

40
m

s

38
m

s

77
m

s

40

Ch
ro

m
e-

se
tt

in
gs

-
di

al
og

93
m

s

52
m

s

18
1m

s

14
6m

s

12
4m

s

17
2m

s

97
m

s

Go
og

le

Ta
lk

27
m

s

17
m

s

21
m

s

19
m

s

22
m

s

24
m

s

30
m

s

N
ot

ep
ad

46
m

s

25
m

s

45
m

s

42
m

s

41
m

s

47
m

s

43
m

s

M
ac

-
fir

ef
ox

83
m

s

36
m

s

65
m

s

62
m

s

47
m

s

67
m

s

88
m

s

Fi
re

fo
x

93
m

s

50
m

s

20
2m

s

16
1m

s

44
m

s

18
3m

s

87
m

s

Ca
lc

ul
at

or

61
m

s

37
m

s

87
m

s

63
m

s

48
m

s

78
m

s

55
m

s

Im
ag

e
na

m
e

/
im

pl
em

en
ta

ti
on

O

ve
r

3
tr

ia
ls

 in
 m

s

Si
ng

le
th

re
ad

ed
 B

ui
ld

Tr
ee

M
ul

ti
Th

re
ad

ed
 B

ui
ld

Tr
ee

1
ho

ts
po

t m
at

ch
 +

In

te
gr

al
Su

m
 m

at
ch

 +

ex
ac

tly
 m

at
ch

1
ho

ts
po

t m
at

ch
 +

 e
xa

ct
ly

m

at
ch

2
ho

ts
po

t m
at

ch
 +

 e
xa

ct
ly

m

at
ch

Th
re

sh
ol

d
ho

ts
po

t m
at

ch

w
it

h/
w

it
ho

ut

In
te

gr
al

Su
m

 m
at

ch
 +

ex

ac
tly

 m
at

ch

Ah
o-

 C
or

as
ic

k

Table 3

Benchmark results from running on six-core machine using a library with a size of 676 prototypes

Orkhan Muradov 14

Our next approaches without checking integral sum gave very decent results. Results were
surprisingly fast compared to the integral sum implementation. Later two hotspots prior to exactly
matching approach was tested and the results were even faster than multithreaded build tree match
implementation [Table 2]. As it was expected results became slower with 3 hotspot matching.
Matching hotspot requires 3 times more time than matching pixel one by one. This is because we
need to calculate offset and then match the pixel. We came to conclusion that this approach is not
very reliable because of the difficulty of optimizing how many hotspots we need to check before
exactly matching the whole feature. As we can see from Table 2, one hotspot matching is faster with
Firefox settings windows for OS X that two-hotspot matching algorithm.

Integral Image threshold approach was developed by combining above described two
approaches. It is not very efficient to calculate integral sum for very small features and it is much
faster to exactly match right away. So, this algorithm decides whether integral sum needs to be
calculated or not. We see some improvements from just plain integral image algorithm but it was a
little slower than exactly matching the image after one or two hotspot matches. This happens
because majority of the features in the library are very small, of a size less than 10 pixels.

So far we have tried to reduce number of pixel visits in the image, reduce number of pixel
comparisons, and decide if we really need to compare every pixel for very small features. Aho-
Corasick implementation is based only on following transitions in the trie and going through each
pixel in the image only once. This approach combines our previous goals in order to improve
efficiency. Aho-Corasick algorithm is also very stable in a way that we do not need to guess how
many hotspots we need to check before checking other pixels. Because most of the work is done
during pre-processing time, Aho-Corasick approach proved to be really fast. In the Table 3, all of
the above algorithms were re-run on a six-core machine using library that contains 676 prototypes.
The results of this approach do not depend on the size of the library as much as above described
algorithms.

6. Discussion and Conclusion

 So far we have tried creating various algorithms that are very different from each other but
have the same goal: improve the performance of Prefab feature recognition. At first, we tried to
minimize number of pixel visits in the image by putting partial matches into various data structures.
As a result we had to make a large number of comparisons, which slowed the whole process. In
order to reduce number of comparisons we started using so called integral image. It helped to filter
out many features and we were left only with features that contained the same number of pixels but
in different order. This implementation was not as fast as we expected because the library consists
mostly of small features. Calculating integral image for small features was significantly slower than
matching pixel by pixel. Next we tried eliminating integral image calculation and using threshold
algorithm with it. This gave us decent results but the approach was not very reliable because we
cannot really decide which feature is small or big. The next strategy was to use Aho-Corasick
algorithm, which uses a special trie structure with pointers and back-pointers. This helped us to
achieve our goals: visit each pixel in the image only once and decrease number of comparisons.

Orkhan Muradov 15

 Given what I have done I think it remains unseen which algorithm will prove to be faster at
large scale. This work will help to understand if Prefab can find prototypes instantaneously in real
time using a large library of features.

 There are other approaches to be explored, such as reusing found features from previous
frame in a new frame. This would significantly improve the performance because we do not need to
recalculate the same features over the same parts of the image. Since Aho-Corasick implementation
showed really good and stable results, we could try running it in parallel. The image could be
divided into segments and each thread can look for features in each segment using the same trie.
Also, if scaling is an issue then we could run Aho-Corasick algorithm in parallel with different
libraries. In other words, a large library can be divided into many small ones and each thread would
build its own trie. This might eliminate a large number of transitions while searching for features. At
the end results from all the threads can be added together. All this work and new modifications
would significantly help to get instantaneous widget recognition in applications using Prefab.

Acknowledgements

I want to thank James Fogarty, Morgan Dixon and Daniel Leventhal for all the help and
discussions related to this work. This work was generously supported by the National Science
Foundation under an REU supplement to award IIS-0812590.

Orkhan Muradov 16

References

[1] Dixon, M. and Fogarty, J. (2010). Prefab: Implementing Advanced Behaviors Using
Pixel-Based Reverse Engineering of Interface Structure. Proceedings of the ACM
Conference on Human Factors in Computing Systems (CHI 2010), pp. 1525-1534.

[2] Dixon, M., Daniel Leventhal and Fogarty, J. (2011). Content and Hierarchy in Pixel-
Based Methods for Reverse-Engineering Interface Structure. Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems. (CHI 2011), pp. 969-978.

[3] Wikipedia, Summed Area Table, http://en.wikipedia.org/wiki/Summed_area_table

[4]Wikipedia, Aho-Corasick String Matching Algorithm,
http://en.wikipedia.org/wiki/Aho%E2%80%93Corasick_string_matching_algorithm

[5] Kilpeläinen P. (2005 Spring). Set matching and Aho-Corasick Algorithm,
http://www.cs.uku.fi/~kilpelai/BSA05/lectures/slides04.pdf

