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3. Benchmarking Tool 

    In order to measure the performance of different algorithms, we needed a benchmarking tool 
that captures the average times over several trials.  Datasets that were selected included different 
programs: YouTube video in Firefox, Microsoft Visual Studio, Calculator, Microsoft Word and 
its dialog boxes, Microsoft Excel, Microsoft PowerPoint,  Skype, Windows Live Messenger, 
cs.washington.edu website in Internet Explorer, iTunes, PDF document in Acrobat Reader, and 
the Solitaire game. People use these programs every day and we needed to confirm that 
algorithms behave fast. 

   The benchmarking tool can be divided into two parts: a first phase where the datasets are 
created and the second phase for benchmarking the time it takes to run given functions over the 
image.  During the first phase this tool starts capturing screen shot images after the user specifies 
the title of the window to be captured and name of the output xml file. User can stop the 
screenshot capturing at any time by clicking stop button or wait until the time exceeds the limit. 
The second phase uses a Wrapper Function class that contains all the function definitions that 
are used to benchmark the image.  Each function is run over the image according to its priority.  

     For instance, let’s say we have two functions in our wrapper class where the first one 
represents Aho-Corasick algorithm with the highest priority and the second one is the Build Tree 
algorithm. Then when we run the benchmarking tool, it first uses the Aho-Corasick algorithm 
over the image and then the Build Tree algorithm is run over the same image. As an input of the 
second phase the program uses the same xml file for the image dataset which was created during 
the first phase. Each xml file for each trial consists of average times for every function executed 
during the trial and time spent on every function run on every image. Summary file includes 
average times in milliseconds for every function execution over all trials.  

 Benchmarking tool was used on various find features functions such as single-threaded and 
multi-threaded Build Tree algorithm, Integral Sum with one hotspot match algorithm, Integral 
Sum with one/two/three hotspot match and then exactly match algorithm and one hotspot match 
with or without integral sum using threshold of previous algorithms. Please see appendix for the 
table.  

4. Building Bigger Library  

In order to improve the functionality of existing software for library building, I have added the 
following features: 

o Software automatically detects whether a new prototype goes to positive or negative set of 
examples.   

o Scroller feature that lets the user browse images as a gallery view. This tool shows found 
prototypes by running find features algorithm on every image shown. 
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In order to get accurate results from our benchmark tool, Prefab needed a larger library of 
prototypes. Most algorithms brought satisfactory results when using our existing small library.  
But we were not sure if it is always the case. Having a larger library of prototypes helped 
identify bugs and determine disadvantages of new algorithms. The larger library I created 
contains around 700 prototypes from various frequently used programs, such as Mozilla Firefox, 
Google Chrome, Microsoft Office, YouTube, Calculator, and Microsoft Visual Studio. 

5. Results 

At first, the initial Build Tree algorithm was tested on various datasets of a size of 500-4000 
images with the interval of 10ms. These benchmark tests were tested using initial large library of 
around 100 prototypes. The results showed that it takes much longer to find feature on YouTube 
webpage and Visual Studio datasets. In our understanding, images from Visual Studio dataset 
contain many buttons and widgets. On the other hand, an image’s pixels from YouTube video 
are more different than the image in the previous frame. [Table 1] 
 

Dataset name Single-threaded Build Tree 
algorithm 

Multi-threaded Build Tree 
algorithm 

Calculator 83ms 33ms 
Visual Studio 265ms 159ms 
YouTube Video in 
Firefox Browser 

237ms 138ms 

Microsoft PowerPoint 
2007 

67ms 40ms 

Microsoft Word 2007 110ms 63ms 
 

Table 1 

The first algorithm that was tested and compared to Build Tree approach was the Partially-
matching algorithm. But the results received were much slower than single threaded build tree 
implementation. The bottle neck for this implementation is the number of comparisons we make 
in order to get a match. 

 In order to reduce the number of pixel comparisons we started using Integral Image 
algorithm which helped to filter out many features by calculating integral sum of a prototype. 
We also had to exactly match because some features might have same pixels but in different 
order, thus resulting with the same integral sum. Unfortunately we noticed that many features 
are alike and have the same integral sum. This approach proved to be fast with the old large 
library consisting of around 115 prototypes [Table 2]. But after building bigger library of 
prototypes probability of having features with same integral sum increased as number of 
prototypes in the library approached to 700 [Table 3].   
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Table 2 

Benchmark results from running on quad-core machine using a library of size 115 
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Table 3 

Benchmark results from running on six-core machine using a library with a size of 676 prototypes 
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Our next approaches without checking integral sum gave very decent results.  Results were 
surprisingly fast compared to the integral sum implementation. Later two hotspots prior to exactly 
matching approach was tested and the results were even faster than multithreaded build tree match 
implementation [Table 2]. As it was expected results became slower with 3 hotspot matching. 
Matching hotspot requires 3 times more time than matching pixel one by one. This is because we 
need to calculate offset and then match the pixel. We came to conclusion that this approach is not 
very reliable because of the difficulty of optimizing how many hotspots we need to check before 
exactly matching the whole feature. As we can see from Table 2, one hotspot matching is faster with 
Firefox settings windows for OS X that two-hotspot matching algorithm. 

Integral Image threshold approach was developed by combining above described two 
approaches. It is not very efficient to calculate integral sum for very small features and it is much 
faster to exactly match right away. So, this algorithm decides whether integral sum needs to be 
calculated or not. We see some improvements from just plain integral image algorithm but it was a 
little slower than exactly matching the image after one or two hotspot matches. This happens 
because majority of the features in the library are very small, of a size less than 10 pixels.    

So far we have tried to reduce number of pixel visits in the image, reduce number of pixel 
comparisons, and decide if we really need to compare every pixel for very small features.  Aho-
Corasick implementation is based only on following transitions in the trie and going through each 
pixel in the image only once. This approach combines our previous goals in order to improve 
efficiency. Aho-Corasick algorithm is also very stable in a way that we do not need to guess how 
many hotspots we need to check before checking other pixels. Because most of the work is done 
during pre-processing time, Aho-Corasick approach proved to be really fast.  In the Table 3, all of 
the above algorithms were re-run on a six-core machine using library that contains 676 prototypes. 
The results of this approach do not depend on the size of the library as much as above described 
algorithms.  

6. Discussion and Conclusion 

 So far we have tried creating various algorithms that are very different from each other but 
have the same goal: improve the performance of Prefab feature recognition. At first, we tried to 
minimize number of pixel visits in the image by putting partial matches into various data structures. 
As a result we had to make a large number of comparisons, which slowed the whole process. In 
order to reduce number of comparisons we started using so called integral image. It helped to filter 
out many features and we were left only with features that contained the same number of pixels but 
in different order. This implementation was not as fast as we expected because the library consists 
mostly of small features. Calculating integral image for small features was significantly slower than 
matching pixel by pixel. Next we tried eliminating integral image calculation and using threshold 
algorithm with it. This gave us decent results but the approach was not very reliable because we 
cannot really decide which feature is small or big. The next strategy was to use Aho-Corasick 
algorithm, which uses a special trie structure with pointers and back-pointers. This helped us to 
achieve our goals: visit each pixel in the image only once and decrease number of comparisons.  
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 Given what I have done I think it remains unseen which algorithm will prove to be faster at 
large scale. This work will help to understand if Prefab can find prototypes instantaneously in real 
time using a large library of features. 

 There are other approaches to be explored, such as reusing found features from previous 
frame in a new frame. This would significantly improve the performance because we do not need to 
recalculate the same features over the same parts of the image. Since Aho-Corasick implementation 
showed really good and stable results, we could try running it in parallel. The image could be 
divided into segments and each thread can look for features in each segment using the same trie. 
Also, if scaling is an issue then we could run Aho-Corasick algorithm in parallel with different 
libraries. In other words, a large library can be divided into many small ones and each thread would 
build its own trie. This might eliminate a large number of transitions while searching for features. At 
the end results from all the threads can be added together.  All this work and new modifications 
would significantly help to get instantaneous widget recognition in applications using Prefab. 
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