
Traceur: Inferring Variable Control Flow Using
Synoptic With Multiple Relation Types

Timothy Vega

Computer Science & Engineering
University of Washington

December 17, 2012

1 Abstract
Debugging systems from logged behavior is time consuming and obtuse. Synoptic
simplifies the task of inspecting a log by inferring and presenting the developer with
an event-based model that represents the logged behavior. Unfortunately, Synoptic
reasons about and represents the logged events exclusively in the time domain — two
events are related iff one of the events preceded the other event. We developed a
theoretical framework for extending Synoptic inference to models that capture non-
temporal relations between events. We focused on adding a single, arbitrary dependent
relation on top of the independent, temporal relation. The construction generalizes to
a variable number of dependent relations. We motivate the problem, and explain the
proposed solution.

2 Introduction

2.1 Synoptic

The purpose of Synoptic is to transform system logs into finite state machine models.
System logs are generally difficult for humans to parse and understand, and they are
even harder to use to identify the presence of bugs. On the other hand, finite state
machine models are easy for humans to parse and understand. Given an expected model
and an inferred model, a developer can identify either a flaw in the expected model or a
bug in the system.

To accomplish this task, Synoptic does the following (at a high level):

• Logs are modeled as traces
• Invariants are mined from the traces
• Traces are transformed into a partition graph
• Invariants are used to refine the partition graph through model checking

Figure 1: Synoptic

Figure 2: Modeling Logs As Traces

Figure 3: Invariant Mining

Unfortunately, Synoptic assumes that all logged events are only related to each
other through time. With multiple relations, the system can classify arbitrary event
realtionships as long as the information is available.

2.1.1 Modeling Logs As Traces

The first step in the process is to parse input logs. System logs consiste of one or more
totally ordered sets of events. These sets are denoted as traces and are modeled in the
system as chains. Chains are linear, directed acyclic graphs. Vertices in a chain are
logged events and edges connect a logged event to its immediate temporal successor.
The transitive closure of the edges in a chain is the toal ordering of the events in the
chain.

We hereafter use traces and chains to refer to the same concept.

2.1.2 Invariant Mining

The second step in the process is to mine invariants from the traces. The system mines
the following three invariant types:

• x Always Followed by y (x→ y). Whenever the event type x appears, the event
type y always appears later in the same trace.

• x Never Followed by y (x 6→ y). Whenver the event type x appears, the event type
y never appears later in the same trace.

• x Always Precedes y (x← y). Whenver the event type y appears, the event type
x always appears before y in the same trace.

2.1.3 Generating The Partition Graph

The third step in the process is to abstract the traces into a partition graph. Trace events
are partitioned into sets, and each set is represented as anode in the partition graph.
Edges are directly translated from the trace graph to the partition graph. In other words,
if an edge exists in at race from a node of type x to a node of type y, then a corresponding
edge exists in the partition graph from the x partition node to the y partition node.

2

Figure 4: Generating The Partition Graph

Figure 5: Motivating Example

2.1.4 Model Checking

The fourth step in the process is model checking. Upon construction, the partition graph
is the most compact or abstract model that can be generated from the logged traces. The
opposite end of the spectrum is the trace graph which is the least compact model. The
trace graph overfist the input traces and makes no generalizations. Synoptic aims to
present the user a model that strikes a balance between these two extremes. The initial
partition grpah over-generalizes the logs, so by a process of iterative refinement (model
checking), Synoptic produces a partition graph such that all paths through the graph
violate no invariants.

2.2 Motivating Example

Control flow in Java consists of method calls, returns, and exceptions. Given a log
containing this information, Synoptic overlooks it and only processes temporal structure.

Without multiple relations, Synoptic cannot mine invariants on non-temporal relation
types.

3 Multiple Relations Model

3.1 Traces

In Synoptic, all trace edges have an implicit relation type of time. In Traceur, each edge
has at least one explicit relation type with a maximum of two. Each edge has at least
one explicit relation type because Traceur chains are required to have a relation type that
is on every edge. We hereafter denote that relation as the independent relation. Each
edge can have a maximum of two edges because we allow an extra relation. These extra
relations are constrained to have the same type. We hereafter denote the extra relation
as the dependent relation. For all traces, independent relations have the same type, and
dependent relations have the same type as well. Relation types are specified by the user
input.

3.2 Invariants

Each trace contains a combination of independent and dependent type relation edges.
We denote this as the base trace, and from the base trace, we filter three subtraces for
multi-relation invariant mining.

3

Figure 6: Traces

• Independenent subtrace

– The independent subtrace consists of every edge with an independent rela-
tion and all nodes incident to those edges.

• Dependent subtrace

– The dependent subtrace consists of every edge with a dependent relation
and all nodes incident to those edges.

• Composite subtrace

– The composite subtrace consists of the dependent relation with additional
edges, of the dependent relation type, connecting disconnected, neareast
neighbors over the independent relation.

Given the subtraces, we mine indepenent, dependent, and composite invariants.

4 Formal Exposition

4.1 Definitions

Two special event types – INITIAL and TERMINAL are added internally by Synoptic to
keep track of initial and terminal events in the traces.

Definition 1 (Event Types). A set of event types is a finite set (alphabet) E ⊇{INITIAL,TERMINAL}.

An event instance is a logged event and has an event type that is identified by a tid
which is the trace that it occurred in and by an index which is its temporal position in
that trace.

Definition 2 (Event Instance). Let tid, index ∈ N, and e ∈ E be an event type. An event
instance is a 3-tuple, êindex = (e, index, tid). We say that the event type of êindex is e.

Definition 3 (Trace). A trace of length n with trace identifier tid, denoted as Ttid, is a set
of n event instances such that the first event instance has a type INITIAL and the last has a
type TERMINAL. Ttid = {(e, index, tid)|1 < i < n}∪{(INITIAL,1, tid),(TERMINAL,n, tid)}

4

Each trace contains a set of event instances that is totally ordered by the transitive
closure of the time relation, which is a strict total order.

Definition 4 (Time Relation). Let tid ∈N. Let Ttid be a trace such that |Ttid|= n. A time
relation ttid is a relation over Ttid such that ttid = {(êi, êi+1)|1≤ i < n,(êi, êi+1 ∈ Ttid)}

A chain is a totally ordered subset of a trace.

Definition 5 (Chain). Let ttid be a time relation. Let j,k∈N,1≤ j < k < n. A chain, c j,k,
is a relation that is a subset of ttid such that c j,k = {(êi, êi+1)| j ≤ i < k,(êi, êi+1) ∈ ttid}

Event instance relations consist of the set of distinct and non-overlapping chains of
a single relation in a trace. Event instance relations are partial orders.

Definition 6 (Event Instance Relation). Let ttid be a time relation. An event instance
relation, rtid, is a set of chains, such that (c j,k ∈ rtid)∧ (c j′,k′ ∈ rtid) =⇒ k < j′∨ k′ < j

The bridge pair takes two chains from an event instance relation and relates the
maximum element of one with the minimum element of the other with respect to the
relation. Equivalently, bridge pairs link together unordered chains in an event instance
relation.

Definition 7 (Bridge Pair). Let rtid be an event instance relation. Let ci, j,ck,l ∈ rtid. Let
s = supremum(ci, j)∧ t = infimum(ck,l). A bridge pair for ci, j,ck,l is bci, j ,ck,l = 〈s, t〉.

The bridge set is the set of bridge pairs such that there is no chain that is ordered
between the two elements of any bridge pair.

Definition 8 (Bridge Set). Let rtid be an event instance relation. The bridge set, btid, is
a relation such that btid = {bci, j ,ck,l |(6 ∃(ca,b ∈ rtid)) such that (j < a),(b < k)}

The composite relation is a totally ordered relation composed of an event instance
relation and its bridge set.

Definition 9 (Composite Relation). Let rtid be an event instance relation. The composite
relation is a strict total order, ctid = rtid ∪btid

The transitive closure of the composite relation is a strict total order.

Definition 10 (Log). A log L of size k is a set of k traces. L = {T1, . . . ,Tk}.

An event invariant is a property of a log that defines relationships between event
types.

Let a and b be event types. There are three types of temporal event invariants, they
are denoted as follows:

• a→ b : a is always followed by b
• a← b : a is always preceded by b
• a 6→ b : a is never followed by b

Definition 11 (Event Invariant). Let L be a log. Let Ttid ∈ L be a trace. Let i, j ∈N. Let
âi, b̂ j be event instances such that âi, b̂ j ∈ Ttid. Let s be a strict total order over Ttid. We
denote the strict total order, s, as <s. The three types of invariants are as follows:

• a→s b ⇐⇒ (∀Ttid ∈ L : êA ∈ Ttid =⇒ ∃êB ∈ Ttid such that êA <s êB)
• a←s b ⇐⇒ (∀Ttid ∈ L : êB ∈ Ttid =⇒ ∃êA ∈ Ttid such that êA <s êB)
• a 6→s b ⇐⇒ (∀Ttid ∈ L : êA ∈ Ttid =⇒ 6 ∃êB ∈ Ttid such that êA <s êB)

5

Figure 7: Invariant Sets Venn Diagram

Each of the three event invariants may relate any pair of event types. Thus, for a set
of event types E there can be at most 3|E|2 invariants.

The system mines the above invariants by collecting three kinds of counts across
the log for relation s. Each relation is traversed once in the forward and once in the
backward direction to count:

• ∀a, Occurrencess[a] : the number of event instances of type a
• ∀a,b, Followss[a][b] : the number of event instances of type a that are followed

by at least one event instance of type b
• ∀a,b, Precedess[a][b] : the number of event instances of type b that are preceded

by at least one event instance of type a

The invariants are mined from the following equivalences:

• a→s b ⇐⇒ Followss[a][b] = Occurrencesp[a]
• a 6→s b ⇐⇒ Followss[a][b] = 0
• a←s b ⇐⇒ Followss[a][b] = Occurrencesp[b]

4.2 Invariant Sets Intersection

Theorem:
We denote the set of invariants mined from relation s as Inv(s).
Let t be the time relation, r be a variable relation, and c be the composite relation of

r.
Consider Inv(r), Inv(t), and Inv(c) on some log L. Then the following seven claims

are true about any invariant, i, in these sets:

Claim 1 i ∈ Inv(t)∩ Inv(c)∩ Inv(r)
Claim 2 i ∈ Inv(t)∩ Inv(c)∧ i 6∈ Inv(r)
Claim 3 i ∈ Inv(c)∩ Inv(r)∧ i 6∈ Inv(t)
Claim 4 i ∈ Inv(t)∧ i 6∈ Inv(r)∪ Inv(c)
Claim 5 i ∈ Inv(r)∧ i 6∈ Inv(t)∪ Inv(c)
Claim 6 i ∈ Inv(c)∧ i 6∈ Inv(r)∪ Inv(t)
Claim 7 i ∈ Inv(t)∩ Inv(r) =⇒ i ∈ Inv(c)

Proof: Claims 1-6
Two logs will be used to demonstrate the claims by construction.

6

Consider the log:
Initial→t a→r b→t x→t b→r a→t Terminal
Initial→t b→t b→t Terminal

Inv(t) Inv(r) Inv(c)
a← b X
a← x X

Initial→ a X X
Initial→ b X X X

a 6→ a X

Initial→ b ∈ Inv(t)∩ Inv(c)∩ Inv(r) =⇒ Claim 1
Initial→ a ∈ Inv(c)∩ Inv(r)∧ Initial→ a 6∈ Inv(t) =⇒ Claim 3
a← x ∈ Inv(t)∧a← x 6∈ Inv(r)∪ Inv(c) =⇒ Claim 4
a 6→ a ∈ Inv(r)∧a 6→ a 6∈ Inv(t)∪ Inv(c) =⇒ Claim 5
a← b ∈ Inv(c)∧a← b 6∈ Inv(r)∪ Inv(t) =⇒ Claim 6

Consider the log:
Initial→t a→r b→t x→t b→r a→t Terminal

a← b satisfies Claim 2 because a← b ∈ Inv(c)∧a← b 6∈ Inv(r)∪ Inv(t)
�

Proof: Claim 7
Suppose i ∈ Inv(t)∩ Inv(r)

Lemma 1: Occurrencesr[a] = Occurrencesc[a]
1 ê ∈ r =⇒ ê ∈ c def. composite relation
2 ê ∈ c =⇒ ê ∈ r∨b def. composite relation
3 ê ∈ b =⇒ ê ∈ r def. bridge pair
4 ê ∈ c =⇒ ê ∈ r 3 and 4
5 ê ∈ r ⇐⇒ ê ∈ c 1 and 4

Let p = 〈a,b〉 Let q = 〈b,a〉

Lemma 2: Followsr[a][b]≤ Followsc[a][b]
1 p ∈ r =⇒ p ∈ c def. composite relation
1 |r| ≤ |c| def. composite relation
3 p ∈ r ≤ p ∈ c 1 and 2

Lemma 3: Precedesr[a][b]≤ Precedesc[a][b]
1 q ∈ r =⇒ q ∈ c def. composite relation
1 |r| ≤ |c| def. composite relation
3 q ∈ r ≤ q ∈ c 1 and 2

Lemma 4: Followsc[a][b]≤ Followst [a][b]
1 p ∈ c =⇒ p ∈ t def. composite relation
1 |c| ≤ |t| def. composite relation
3 p ∈ c≤ p ∈ t 1 and 2

Lemma 5: Precedesc[a][b]≤ Precedest [a][b]
1 q ∈ c =⇒ q ∈ t def. composite relation
1 |c| ≤ |t| def. composite relation
3 q ∈ c≤ q ∈ t 1 and 2

Lemma 6: a→r b =⇒ a→c b

7

1 Followsr[a][b] = Occurrencesr[a] def. a→r b
2 Followsr[a][b]≤ Followsc[a][b] lemma 2
3 Occurencesr[a]≤ Followsc[a][b] 1 and 2
4 Occurencesc[a]≤ Followsc[a][b] 3 and lemma 1
5 Occurrencesc[a]≥ Followsc[a][b] def. Follows
6 Followsc[a][b] = Occurrencesc[a] 4 and 5
7 a→c b 6 and def→c

Case 1: i is of type AFby
1 There exists a→r b for some a and b i ∈ Inv(t)∩ Inv(r)
2 a→c b exists 1 and lemma 6

Lemma 7: a←r b =⇒ a←r,t b
1 Precedesr[a][b] = Occurrencesr[a] def. a←r b
2 Precedesr[a][b]≤ Precedesc[a][b] lemma 3
3 Occurencesr[a]≤ Precedesc[a][b] 1 and 2
4 Occurencesc[a]≤ Precedesc[a][b] 3 and lemma 1
5 Occurrencesc[a]≥ Precedesc[a][b] def. Precedes
6 Precedesc[a][b] = Occurrencesc[a] 4 and 5
7 a←c b 6 and def←c

Case 2: i is of type AP
1 There exists a←r b for some a and b i ∈ Inv(t)∩ Inv(r)
2 a←c b exists 1 and lemma 7

Lemma 3: a 6→t b =⇒ a 6→r,t b
1 Followst [a][b] = 0 def. a 6→t b
2 Followst [a][b]≥ Followsc[a][b] lemma 4
3 0≥ Followsc[a][b] 1 and 2
4 0≤ Followsc[a][b] def. Follows
5 Followsc[a][b] = 0 3 and 4
6 a 6→c b 5 and def 6→c

Case 3: i is of type NFby
1 There exists a 6→t b for some a and b i ∈ Inv(t)∩ Inv(r)
2 a 6→c b exists 1 and lemma 8

i ∈ Inv(c)
�

5 Implementation

5.1 Log Parsing

User input to Traceur consists of a log file and regular expressions for parsing. The
regex is used to parse trace identifiers and event instances. Trace identifiers delimit
separate traces within the log. Event instances make up the traces. Each event instance
is required to have a timestamp and an event type. Event instances are also optionally
allowed to specify an immediate, dependent relation and a closure, dependent relation.
The immediate relates the instance, over the variable dependant realtion, as the successor
to its temporal predecessor. The closure relates the instance, over the variable dependent
relation, as the sucecssor to the last event instance identified as part of the dependent
subgraph.

We set time as the independent relation.

8

Figure 8: Traceur Transition Function

5.2 Invariant Finite State Machines

Invariants in Synoptic and Traceur are implemented as finite state machines. The
primary difference between the two is the transition function.

The partition graph is traversed during model checking. During traversal, input is
fed to the invariant FSMs.

For Synoptic, the transition function takes the destination node as input.
For Traceur, the transition function takes the destination node and the relation typ

eof the traversed edge.
In general, the Traceur FSMs have dual input transition functions, extra states to

identify subgraphs, and deterministic behavior. This is particularly useful since the
existing model checker implementation assumes deterministic FSMs. What this affords
is FSM modularity and thus, the Traceur FSMs can be plugged into Synoptic’s model
checker.

6 Discussion

6.1 Future Work

The foundation outlined here theoretically generalized to a variable number of dependent
relations. Implementing this requires simple extensions of the traces, partition graph,
and invariant FSMs. Edges in the traces and partition grpah must be extended to specify
a variable number of dependent relations. Additionally, the invariant FSMs should be
extended to check over a variable number of dependent relations while maintaining the
existing transition function.

The framework should also generalize to a variable number of indepenent relations.
Any relation can be treated as independent so as long as it exists on every edge of the
traces.

7 Related Work
All of Traceur is based on extending Synoptic to accomodate multiple-relations.

9

Ivan Beschastnikh and Yuriy Brun and Sigurd Schneider and Michael Sloan and
Michael D. Ernst, Leveraging existing instrumentation to automatically infer invariant-
constrained models, ESEC/FSE 2011: The 8th joint meeting of the European Software
Engineering Conference (ESEC) and the ACM SIGSOFT Symposium on the Foun-
dations of Software Engineering (FSE), 267-277, Szeged, Hungary, September 7–9,
2011.

10

Figure 9: Traceur AP

Figure 10: Traceur AFby

11

Figure 11: Traceur NFby

12

	Abstract
	Introduction
	Synoptic
	Modeling Logs As Traces
	Invariant Mining
	Generating The Partition Graph
	Model Checking

	Motivating Example

	Multiple Relations Model
	Traces
	Invariants

	Formal Exposition
	Definitions
	Invariant Sets Intersection

	Implementation
	Log Parsing
	Invariant Finite State Machines

	Discussion
	Future Work

	Related Work

