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Abstract

Communication complexity seeks to characterize the complexity of computation by mea-
suring the amount of communication that must be used by players computing the output
of some function f, each of whom have only partial information about the inputs to f. The
past thirty years have seen the development of a number of lower-bound techniques in com-
munication complexity, which fall roughly into two categories: rectangle-based techniques,
which rely on combinatorial properties of the lookup table for f, and information-based
techniques, which rely on bounds on the entropy in a communication protocol.

Recently, [JK|BW12| |KLL—ilZH have drawn a close-to-complete picture of the relation-
ships among the various lower-bound techniques in the two-party communication model,
concluding that information-based techniques are at least as good as almost all known
rectangle-based techniques. Meanwhile, in the multiparty model, where, thus far, in-
formation bounds have not been used, it seems that new methods are required to prove
nontrivial lower bounds when the number of players is large (logarithmic in the input size).
Such bounds are important for one of the key applications of communication complexity—
circuit lower bounds. Furthermore, it is conjectured that current techniques are insufficient
to tightly characterize the complexity of some functions important both within communi-
cation complexity and for various applications, in particular the set disjointness function.

In this thesis, we will investigate the possibility of extending information-based tech-
niques to the case of more than two players. We prove the first nontrivial lower bounds
on the information in a k-player protocol for £ > 2, introducing a new sensitivity-based
method to lower-bound information. We discuss progress towards extending our technique
to randomized multiparty communication models.
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SAM HOPKINS

Chapter 1

Introduction and Background

1.1 Introduction

Communication complexity seeks to characterize the difficulty of computation by mea-
suring the number of messages that must be passed between parties jointly computing
the output of some function, each party holding only partial information about the input.
First introduced by Andrew Yao in [Yao79], the communication model has been successful
in two respects: (i) thirty years of work has produced a wealth of interesting upper and
lower bounds on the complexity of a variety of communication problems and (ii) those
bounds often transfer readily to other computation models. In addition to applications
where communication is obviously relevant (distributed computing, for example), results
have been transfered to space bounds for data stream algorithms, circuit size and depth
lower bounds, time-space tradeoffs for Turing machines, area-time tradeoffs for VLSI, lower
bounds for algebraic query complexity (used in [AWOS] to prove a striking new barrier
result), and communication lower bounds for combinatorial auction algorithms, among
others (see [KNI7| for details).

We will study a number of variations on the basic communication model. In par-
ticular, we distinguish between two-party and multiparty models. In two-party models,
two players, Alice and Bob, hold inputs z and y respectively to a function f and must
communicate to jointly compute f(z,y). In multiparty models, k players 1,...,k each
hold some fraction of the input to a function whose output they will jointly compute.
In particular, we will be concerned with number-on-forehead (NOF) multiparty models,
which are characterized by information overlap between players: player ¢ has an input x;
on her forehead, so that player i sees all inputs except x;.

Past work has produced a variety of general-purpose techniques for proving commu-
nication lower bounds in both two-party and multiparty models. These techniques fall
roughly into two categories: rectangle-based and information-based. A recent series of
results relate rectangle-based lower-bound techniques to each other and the best
rectangle-based techniques to information-based ones in the two-party setting [BWI2,
[KLL*12]. In this thesis, we will survey this recent work, with an eye towards adapting it
to multiparty models, and prove the first nontrivial multiparty information lower bounds.

This work was completed while the author was an undergraduate student in math-
ematics and computer science at the University of Washington under the advisement of
Paul Beame.
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1.1.1 Intended Audience and Other Resources

Most of this thesis should be comprehensible to senior undergraduates with standard
courses in computational complexity theory and discrete probability and (that magical
catch-all) appropriate mathematical maturity. Basic background in complexity can be
found in [Sip]; a more modern but somewhat more difficult resource is [AB09]. We will
provide some motivation for the results we present here, but the breadth of applicability
of communication complexity makes drawing a complete picture in this thesis impossible.
The reader is encouraged to consult [KN97] and the many expository works on
communication complexity available on the Internet for further discussion of applications
and references to the research literature. In particular, see [LS] for a thorough discussion
of many of the lower-bound techniques we are only able to mention here in passing,
and [CP] for background on set disjointness, the most important explicit function in the
communication model.

1.2 Background

1.2.1 Notation

The notation f: S — T denotes a function from a set S to a set T'. Given a set S, we use
S™ to denote n-tuples of elements in S. We let S x T' = {(s,t) : s € S,t € T'}.

We will generally employ capital letters X, Y, Z, ... for random variables and lower-case
letters x, 9, z, . .. for values of those variables. We use standard notation for conditioning,
expectation, etc. All random variables considered in this thesis are discrete.

Very often we will concern ourselves with vectors in 5 (where Fy denotes the field
with two elements, as usual). Usually we will write this interchangeably with {0,1}",
except when we occasionally find it convenient to use {—1,1}" instead. Which we intend
is usually clear from context. For a vector x € {0,1}", we write x; for the i-th component
of x and z_; for every component of x but the i-th (so the i-th slot is “empty”). We write
2 for x + ej, where e; is the j-th standard basis vector. (So 27 is x with the j-th bit
flipped.) 0 and 1 denote the all-0’s vector and the all-1’s vector, respectively.

For a function p, we write suppp for the set of inputs on which p is nonzero.

We will have occasion to employ the discrete Hellinger distance, a metric on the space
of distributions on a fixed probability space. For random variables X, Y distributed ac-
cording to vx and vy, respectively, the Hellinger distance between X and Y, denoted
interchangeably by h(X,Y) or h(vx,vy), is given by

(Vox@ —Vir(@)

\/_ \/xEsupp XUsupp Y

The Hellinger distance is a metric, so the triangle inequality applies: for distributions
o, V1, V2,

h(l/(], 1/1) + h(l/l, 1/2) > h(l/o, 1/2).
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1.2.2 The Communication Model

In this section we survey the basic two-party and multiparty communication models with
various forms of randomness. Readers familiar with e.g. [KN97] can skip this section
without consequence. For more examples, exercises, and fuller proofs, see [KN97].

Deterministic Two-Party Communication

The most basic model is as follows. Two players, Alice and Bob, wish to compute the
output of some function f : X x ) — Z. Each has unlimited computational power (for
example, either may compute the answer to the Halting problem if they so desire). Alice
receives an input z € X and Bob receives y € ). They will compute according to a
protocol II which tells them at each step of the computation what message to send as a
function of their input and previous messages sent. At the end of the protocol, each player
must know the value f(x,y).

Definition 1.2.1. A two-player deterministic communication protocol is a binary tree
where every internal node v is labeled either by a function a, : X — {0,1} or a function
by : Y — {0,1}, every internal node has precisely two children, with one outgoing edge
labeled 1 and the other 0, and every leaf node is labeled with an output in Z.

To execute a protocol, players walk down the tree, starting at the root and ending at
a leaf. At each step, the owner of the current node v (Alice if the label is a,, Bob if b,)
evaluates the function at v on their input and sends the resulting value as a message. The
players then walk down the edge incident to the current node labeled with that message.
At the end of the execution the players output the label of the terminating leaf node.

Definition 1.2.2. The transcript of the execution of a protocol II on an input (x,y), is
the sequence of edge-labels in the players’ tree traversal. We write II(z,y). We assume
that the output of the protocol is the last bit of the transcript. When we mean the output
of IT run on (x,y), we write out II(x, y).

Definition 1.2.3. The communication cost CC(II) of a protocol II is the length of the
longest of any II(x,y) over all (z,y) € X x Y. Equivalently, CC(II) is the height of the
protocol tree for II.

Note that we are interested here only in the worst-case complexity (i.e. transcript
length) of the protocol.

If for some function f : X x Y — Z and for all (z,y) € X x ) it is the case that
outIl(z,y) = f(x,y), we say that II computes f with zero error (later we will allow
protocols to err on some inputs).

Definition 1.2.4. The deterministic zero-error communication complexity of f, denoted
D(f), is the minimum of CC(II) over all IT computing f with zero error.

Usually (in complexity generally) we are not interested in a function f : {0,1}" —
{0,1} for fixed n; rather n is a parameter in both the definition of f and the complexity
of f. So we think of D(f) as a function of n.

Note that every function f admits a trivial protocol in which Alice sends Bob her input
x, Bob computes f(x,y), and sends it back to Alice. Thus we have
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Theorem 1.2.5. For all f : X x Y — Z, D(f) <log|X|+ log|Z]|.

If f:{0,1}" x {0,1}" — {0, 1}, this becomes D(f) < n+ 1. Because of this, we think
of efficient computation in the communication model as requiring O(logn) or perhaps
logo(l)(n) communication. In order for the model to be of interest, there must actually
be some efficiently-computable functions. The following examples give two such functions

Example 1.2.6 (taken from [KN97]). Suppose Alice and Bob have as input « C [n] and
y C [n], respectively, and they wish to compute max(xUy). Alice computes the maximum
m over z and sends it to Bob (we model this as all nodes of depth at most logn in the
protocol tree belonging to Alice). Bob then computes the maximum over {m} Uy and
sends it back to Alice, again requiring log n bits of communication. Thus the depth of the
protocol tree II corresponding to this protocol is 2logn, and so D(max) < 2logn.

Example 1.2.7 (taken from [KN97]). Alice and Bob again have inputs =,y C [n], and
they wish to compute median(z Uy), where we now think of x Uy as a multiset. We will
give a communication protocol using binary search. In order to run a binary search, Alice

and Bob must be able to decide whether the median is above or below some number m.
To do so, they can use the following procedure ABOVE-OR-BELOW (m):

1. Alice sends the number of elements in her input below m.
2. Bob sends 0 if m < median(z Uy) and 1 otherwise.

Clearly ABOVE-OR-BELOW (m) has communication cost O(logn), and it must be run
log n times, so D(median) € O(log?(n)).

Functions of Note

In this section we give a brief tour of some noteworthy and natural functions whose
communication complexity is of interest. See [KN97] for details.

EQ The equality function, EQ : {0,1}" x {0,1}" — {0,1} is given by EQ(z,y) = 1 if
x =y and 0 otherwise.

IP The inner product IP : {0,1}" x {0,1}" — {0, 1} is given by
IP(z,y) = Z:pl Ay; mod 2.
GIP The generalized inner product GIP : {0,1}* — {0, 1} is given by

GIP(x1,...,2p) = Z /\ x;; mod 2.

i<n j<k

GIP counts the parity of the number of all-1 rows in the input matrix (where the columns
are x; € {0,1}*). We also write GIP = XOR o AND.
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DISJ We define the disjointness problem DISJ as follows in both the two-party and
multiparty context. Consider the input vectors z; € {0,1}" to be characteristic vectors of
subsets of [n]. Then DISJ(z) = 0 if (x; = &. and 1 otherwise. We often find it useful to
express DISJ as DISJ = ORo AND.

Applications of Communication Complexity

As a natural model of computation, two-player communication is of some inherent in-
terest. Motivation to study it is also provided by a wide range of applications to other
computation models. It turns out to be fairly natural to identify within a computation
a need for information to flow between distinct parts of a model, which induces a re-
duction to communication complexity. Two-player communication has applications in
streaming algorithms, combinatorial auctions, data structures, and time-space tradeoffs,
among other places. As an example of such a reduction, we describe a connection be-
tween two-player communication and area-time tradeoffs for very-large-scale integrated
circuits (VLSI). (Another such connection, which we describe in brief below, gives a key
motivation to study lower-bound techniques in the multiparty model.)

The VLSI model, which is closely-related to the real-world problem of laying out
transisters and wires in silicon, is as roughly as follows. We wish to lay out on a chip a
circuit computing some function f of n inputs and n outputs. We are concerned with the
area occupied by the resulting circuit and the amount of time the circuit takes to compute
f- Available to us are processing elemements which each take some number of inputs d
and output d bits, which compute some d-ary function and are assumed to be of area
proportional to d?, and wires, which connect inputs and outputs of processing elements.
Wires are laid out in a two-dimensional grid with unit spacing and transmit one bit per
unit length per unit time. Wires may bend and cross each other at grid points but may
only connect at via processing elements. Each unit of wire cost a unit of area.

Input and output occurs at processing elements: n of the processing elements are
designated as inputs and n (not necessarily distinct) processing elements are designated
as outputs.

To a VLSI layout there is naturally an associated graph where nodes are processing
elements and edges are wires. That graph has some minimum bisection width (that is, the
minimum size cut so that exactly half the nodes lie on each side of the cut). The following
geometric theorem first appears in [Tho79].

Theorem 1.2.8. The area A of a VLSI circuit is at least w? /4, where w is the minimum
bisection width of the associated graph.

Observe that a bisection of the circuit induces a communication problem: Alice gets
the inputs on side A of the cut and must produce the outputs on side A, and, respectively,
Bob gets inputs on side B of the cut and must produce the outputs on side B. For some
fixed function f, suppose we can prove a communication lower bound of C across all the
communication problems induced by all possible bisections of the inputs and outputs.
Then the time T required by the circuit is at least C'/w. Together with

Theorem 1.2.9. Consider a VLSI circuit with area cost A and time cost T', which com-
putes a function f. Suppose that C is a lower bound on the communication complexity of
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all possible communication problems induced by partitioning the inputs and outputs of f.
Then

2
AT? > C—.
4

Example uses of theorem [[2.9 are an area-time tradeoff of AT? > N?2/16 for the
discrete Fourier transform of a length-N vector in [Tho79] and a tradeoff of AT? > n?/64
for the product of two n-bit integers in [AASQ].

Multiparty Communication

In the multiparty setting, we have k players pq,...,pr. Writing X = A1 x ... x A}, the
players wish to compute the output of some f : X — Z. Again, players have unlimited
computational power. Instead of passing messages to each other, they write the messages
on a shared blackboard, so that all players can see all messages.

There are two models of interest. One, the number-in-hand model, is the most straight-
forward generalization from two parties—player p; receives the input z; € A;. We will
be concerned almost entirely with the number-on-forehead model, where player p; places
input x; € &; on his forehead, so that p; can see all inputs x_; € X_; and not z;.

Definition 1.2.10. A k-party (or k-way) deterministic multiparty number-on-forehead
protocol II is a binary tree where each node is labeled by a function f; : X—; — {0,1} for
some 1 < i < k. Protocols are executed exactly as in the two-party case.

Applications and Barriers for Multiparty Communication

In addition to being a natural model of communication with overlapping information, NOF
multiparty communication has wide-ranging applications. Probably the most important
of these is that proving that some function requires super-polylogarithmic communication
for super-polylogarithmically-many players would separate NP and ACC®, the class of
poly-size constant-depth boolean circuits with unbounded fan-in and MOD,, gates. It
would suffice to prove such a bound for a very restricted class of protocols: simultaneous
protocols, where players do not interact at all, instead each sending one message to an
external referee who computes the output.

However, as we will see, current techniques seem unable to prove a nontrivial lower
bound for even k = w(logn) players (the so-called log(n) barrier), even for simultaneous
protocols. This brings us to the purpose of this thesis: to seek new lower bound techniques
for multiparty communication.

The seeming insurmountability of the logn barrier is not the only reason to believe
that new lower-bound methods are needed in multiparty communication complexity. The
set disjointness function, DISJ, has received a great deal of attention in both the two-
party and multiparty models: it is a complete problem for the two-player communication
complexity analogue of NP, and many of the applications of communication complexity
to other models go via disjointness.

In the two-player case we know CC(DISJ) = ©(
well understood. The best known upper bound is

. Multiparty set disjointness is less

n)
O(n/2%). A recent series of papers
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by Sherstov and others, culminating in [Shel3|, improves the best known lower bound to
Q(v/n/2Fk). However, the techniques used for this lower bound also apply to quantum
communication complexity, where the best known upper bound is O(y/n/2F). Thus,
existing techniques cannot improve the classical bound to €2(n). Indeed, even in the
simultaneous model it is not known whether DISJ = Q(n?®) for any o > % Any new
lower bound method in the multiparty case would be of interest, even if it only applied to
a weakened computation model.

Randomized Protocols

An understanding of the communication model (or indeed any model of computation) is
not complete without understanding its behavior when randomness is introduced.

There are several ways we might introduce randomness to the communication model.
Intuitively, we think of players being able to flip evenly-weighted coins whenever they like
and allow their computations to branch on the outcomes of those flips. The question is,
who sees the coins?

In the two-party case we only have two options, fully-public and fully-private random-
ness. A protocol in which Alice and Bob can both see all coins is public-coin; one in which
both have their own coins not visible to the other we call private-coin. In the multiparty
case we can have fully-public coins and fully-private coins; we might also have coins seen
by some other number of players—here we will have occasion to discuss protocols in which
for each player i there is a source of random coins visible to p_;, all players except i. We
call these coins on the forehead.

For convenience, our formalism will model public-coin and private-coin protocols some-
what differently.

Definition 1.2.11. A public-coin (two-party, multiparty) protocol II is a distribution
over some set of deterministic protocols II,.

Definition 1.2.12. A private-coin (two-party, multiparty) protocol II is a (two-party,
multiparty) protocol in which each tree node v is labeled with functions that have as
input the inputs visible to the player owning v and a random string r; sampled from a
distribution v; specific to player i.

Definition 1.2.13. A multiparty protocol with coins on the forehead is a protocol in
which nodes belonging to player i are labeled with functions that have, in addition to the
usual inputs, a (partial) tuple r_; of random strings drawn from a distribution v_;.

We will often have occasion to work with protocols that have coins at multiple levels
of privacy; we leave it as an exercise to the reader to modify the definitions accordingly.
Protocols with Nonzero Error

Once we introduce randomness, we need not require that protocols compute functions
exactly. We say that a randomized protocol Il computes f with € error if for every input
(z,y), or input vector z, in the multiparty case,

PI‘[H(Q?,y) = f(xvy)] >1-e
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We write Rf“b( f) for the communication cost of the least-cost protocol computing f with
error € and public-coin randomness. For private-coin randomness we simply write R¢(f),
and for NOF randomness we write RYOT(f).

1.2.3 Combinatorial Lower Bounds on Communication
Rectangles and Cylinder Intersections

We begin with the two-player case. Now that we have formulated the model quite generally,
we will drop the X', ), Z notation and assume we are dealing with functions f : {0,1}" x
{0,1}™ — {0,1}. In general this reduces our technical burden but does not fundamentally
change any of the results, so we leave the most general formulations to the reader.

To f:{0,1}" x {0,1}" — {0,1} we associate a matrix M; with dimensions 2" x 2",
whose rows and columns are indexed by elements of {0,1}", so that M¢[x,y] = f(z,y).
(Thus My is a sort of function table for f.)

Definition 1.2.14. A rectangle in M/ is a subset S of the entries of My so that S = Ax B,
where A, B C {0,1}". A rectangle R C My is f-monochromatic (or just monochromatic if
f is clear from context) if there is b € {0, 1} so that for all (z,y) € R we have f(x,y) = b.

Theorem 1.2.15. A deterministic protocol II with complexity ¢ computing [ with zero
error partitions My into at most 2° f-monochromatic rectangles.

See [KNO7] for a proof. Theorem provides us with a way to lower-bound the
complexity of a protocol computing a function f with zero error—lower bound size of any
partition of My into f-monochromatic rectangles.

Before we see how to produce such a bound, however, let us see the appropriate
multiparty generalization. Let f : {0,1}" — {0,1}. We associate to f a k-dimensional

tensor Ty of size n so that T¢[z1]... [xr] = f(x1, ..., zp).

Definition 1.2.16. An i-cylinder in T is a subset S C T so that membership in S does

not depend on the i-th coordinate; that is, for any =, 2’ € {0,1}", if x1, ..., 21,2, Tiy1, ..., Tk €
S then xq,...,x;_1,2',...,2, € S.

Definition 1.2.17. A cylinder intersection in T is a subset S C T so that S = S; for
some family {S;} of cylinder intersections.

The following theorem is the direct multiparty analogue of theorem [[L.2.15

Theorem 1.2.18. A deterministic k-player protocol 11 with complexity ¢ computing f
with zero error partitions Ty into at most 2° f-monochromatic cylinder intersections.

As before, theorem [L2.I8] provides us with a way to lower-bound the complexity of a
protocol computing f with zero error.
Distributional Complexity

In order to use this rectangle/cylinder-intersection paradigm to bound randomized com-
plexity, we need a way to bound randomized complexity by working strictly with deter-
ministic protocols. The following result provides just that.
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It says roughly that the complexity of computing a function with an e-error randomized
protocol is the same as the complexity of computing a function with a deterministic
protocol that can be wrong on an e-fraction of the inputs.

For a distribution v on the inputs X x ) to a function f, let DY(f) be the communica-
tion cost of the least-cost deterministic protocol II so that Pr,[Il(z,y) = f(z,y)] > 1 —e.
The measure DY(f) is the distributional complezity of f. We write D, (f) for the maximum
of D¥(f) over all v.

Lemma 1.2.19 (Yao’s Lemma).

RP(f) = max D?(f).

v

The proof of lemma[ZITlis easy in the direction we care about (RP"*(f) > max, D (f))
by a counting argument. The other direction employs the Von Neumann minimax theo-
rem. See [KN97] for a full proof.

Discrepancy

With a little additional cleverness, theorems and [[2.I8 give us a technique (actually,
several) to lower-bound DY (f). We present the two-party version; the multiparty version
is entirely analogous.

Suppose that some (deterministic) protocol II computes f with low error under v.
Since II partitions M into 2¢ rectangles so that on each rectangle its output is constant,
there must be such a partitioning in which all rectangles are either small (i.e. low-weight
under v) or almost-monochromatic, so that they do not introduce too much error. This
leads to the method of discrepancy:

Definition 1.2.20. Let f: {0,1}" x {0,1}" — {0, 1}, let v be a distribution on M. Let
R be a rectangle in My. Then

Dise, (f, ) = [v(R O f71(1) = v(RN f7H(0))]
and
Disc, (f) = max{Disc, (f, R) : R a rectangle in My}
and finally
Disc(f) = min{Disc, (f) : v a distribution on M }.

Replacing rectangles with cylinder intersections and M; with Ty gives the multiparty
version of discrepancy.

The following theorem captures our intuitive discussion above. For a proof see [KN97].

Theorem 1.2.21.
1—2¢

D(f) > log m

10
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Theorem [.2.2T] allows us to prove linear lower bounds on communication for functions
with exponentially-small discrepancy. In the two-player case, discrepancy can often be
bounded correctly. (However, not all functions for which we want to prove linear lower
bounds have exponentially-small discrepancy. DISJ is one such. A better rectangle-based
technique, corruption, gets around the too-large discrepancy of DISJ. See e.g. for a
thorough discussion.)

The BNS-Chung Criterion for Multiparty Discrepancy

Discrepancy is more difficult to bound in the multiparty model. All known uses of dis-
crepancy go via the following theorem, which bounds discrepancy in terms of a much
more easily computed quantity. We give a heavily condensed version of the presentation
in [Raz00], to which the reader is referred for details and proofs.

Fix a k-way function f with inputs in X} X ... X X} with &; = {0,1}" and outputs in
{=1,1}. A cube D is a multi-set {a1,b1} X ...{ag, by} where a;,b; € X;. Define the sign
of the cube D with respect to f as

S¢D)y=I[ - I fldr,....dp).
di€f{a1,b1} dipe{ay by}

Let

E(f) = Ep[Sy(D)]

where D is sampled uniformly at random from all possible cubes. The following is the key
bound.

Theorem 1.2.22.

E(f) > Disc(f)*"

The 2* in the exponent arises from k uses of Cauchy-Schwarz (one for each layer of the
product in the definition of S¢(D)). It is also the reason that current techniques are unable
to break the logn barrier: setting k = log n we see that the resulting communication bound
degrades badly unless £(f) is very small indeed.

1.2.4 Information Complexity
A Crash Course in Information Theory

This section is a light-speed tour of information theory. See e.g. [CT06] for intuition and
full proofs.

In what follows, let X,Y, Z be random variables and px, py,pz be the corresponding
probability mass functions (and pxy,px,z, etc., be the probability mass functions for
the joint distributions (X,Y"), (X, Z), etc.) We will occasionally drop the subscripts when
they are clear from context.

11
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Definition 1.2.23. The entropy of X, denoted H(X) is
HX)= Y px(x)logpx(z).
TEsupp px
Definition 1.2.24. The mutual information between X and Y, denoted I(X;Y), is

px,y (%, y)

I(X;Y) = Z px,y (z,y)log m

(z,y)Esupp px,y

These quantities have conditional versions. Conditioning on specific events works as
follows:

Definition 1.2.25. For z € supppz,

HX|Z=2)= Y px(alZ =2)logpx(alZ = 2).

TESUPP Px

I(X;Y|Z =2) = > pxy(wylZ =z)log

(z,y)Esupppx,y

pX,Y(-Z}y)
px(x|Z = 2)py (y|Z = 2)

Often, we want to condition not on the specific event Z = z but on the value of the
random variable Z, whatever it may be.

Definition 1.2.26.
H(X|Z)=E,.z[H(X|Z = z)]
I(X;Y|Z) = E.uzg[I(X;Y|Z = 2)]
The following theorem is central to our use of entropy to bound communication com-
plexity.

Theorem 1.2.27. H(X) < log|supppx|. Thus, if X takes values in {0,1}", it has
entropy at most n. Conversely, if H(X) > n and we know X takes values in {0,1}" for
some n', then n’ > n.

Our route to a bound on H(X) goes via a bound on I(X;Y'), enabled by the following
theorem

Theorem 1.2.28. H(X) > I(X;Y'), with equality if and only if X andY are independent.

Information cannot increase by computing a function of a random variable. For random
variables X, Y and a function g, the data processing inequality says

I(X;Y) > I(X;9(Y)).

We state without proof the following result which relates Hellinger distance to mutual
information. For a proof, see [Lin91].

Lemma 1.2.29 (Lin’s Lemma). Let X be a random variable which is uniform on {0,1},
and let Z be any random variable. Then

I(X;2)>h(Z|X =0,Z|X =1).

12
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Two-Party Information Complexity

In what follows, let II be a two-party communication protocol whose input (X,Y) is
distributed according to v.

Definition 1.2.30. The information cost of IT is
1C,(I1) = I(XGTICY, YY) + I(V3TI(X, Y)[X).

Definition 1.2.31. For a function f : {0,1}" x {0,1}" — {0,1}, a distribution v on
{0,1}™ x {0,1}", and € > 0 we define the e-error information cost of f to be

ICS(f) = min IC,(II)
where the minimum is taken over protocols II computing f with e-error under v.

This notion is first implicit in [BYJKS04]. The following theorem relates information
cost to communication complexity.

Theorem 1.2.32. Let f:{0,1}" x {0,1}" — {0,1}". For any €, v,
Dy (f) = IC5(f).
Proof. Special case of theorem 2.3.3] which we prove independently. O

1.3 Owur Contributions
We provide a natural generalization of the definition of information cost to the multiparty
case and prove that it is a lower-bound on the communication cost.

Definition 1.3.1. Let II be a k-party NOF (randomized) communication protocol with
inputs X = X; ... X} sampled from a distribution v. Then the information cost of II is

IC,(I) = > I(X3 TI(X)|X_y).

Our main new theorem computes the NOF information cost of ANDj, the AND
of k single bits. Where DIC(f) and RP*IC(f) are the deterministic and public-coin
information cost of f (see definitions in the next chapter), we prove

Theorem 1.3.2.

DIC,(ANDy) =

RPICH(ANDy) >

Note that in both cases there is a trivial bound of k/2*~! simply from considering
the mutual information between the output and the inputs. Our main contribution is
therefore the additional 1/2%~1, which is information that much be revealed in the course
of computing the AND.

We also prove partial results towards extending theorem to the case of private
randomness. We are unable to prove a general result; instead, we prove a result when the
number of messages sent is bounded.

13
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Theorem 1.3.3. Let I1 be a protocol with r rounds exactly computing AN Dy, with private
coins. Then

< 1 . k

- 8(1{77‘)22k_l 9k—1"

1C)(IT)
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Chapter 2

Multiparty Information Complex-
ity

2.1 Introduction and Two-Party Background

In the two-party setting, the relationships among the various lower-bound techniques are
relatively well-understood. We will not present the whole picture here (in particular we
will omit discussions of various known gaps between techniques), but what follows is what
is necessary to provide context for our coming discussion of the multiparty setting.

The authors of [JK] exploit linear-programming formulations of all known two-party
rectangle-based techniques to characterize relationships among them. In particular, they
formulate a new technique, the partition bound, expressed as the optimum of a linear
program (where the LP instance is dependent on the function f for which we want a
lower-bound, as well as an error parameter €). They prove that the partition bound beats
all other known combinatorial bounds (discrepancy, as presented in the previous chapter,
and several stronger rectangle-based bounds).

Since [BW12], it has been known in the two-party case that that information com-
plexity is at least as good a lower bound as discrepancy (in particular, the discrepancy
of a function f provides a lower bound on f’s information complexity). In [KLLT12],
a modification of the partition bound (the relazed partition bound), which still beats all
known combinatorial bounds with the exception of the partition bound itself, is shown to
be a lower bound on information complexity. Thus, in the two-party setting, all known
lower bound techniques (except for the partition bound, which has never been used to
bound an explicit function) are beaten by information complexity.

These results inspire the idea that a multiparty generalization of information complex-
ity could aid in the search for the new lower bound techniques that seem to be required
to break the log(n) barrier and tighten DISJ lower bounds.

In this section, we show that, despite a major pitfall arising if number-on-forehead ran-
domness is not avoided, there is indeed hope for a useful theory of multiparty information
complexity. We do this by proving the first nontrivial lower bounds on the information
complexity of a multiparty function in several variants of the multiparty communication
model.

Before we can understand the importance of the pitfall, however, we need some further
two-party background.

15
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2.2 The Direct-Sum Paradigm

In general, a direct-sum theorem says if computing f has cost C, then computing n
independent copies of f has cost Q(nC'). Information-theoretic quantities have nice direct
sum properties (the entropy of n i.i.d. variables is n times the entropy of one of them).

The direct sum problem, of interest in its own right, is whether computing n inde-
pendent copies of a function f requires n times the resources to compute one copy. The
general direct sum problem for communication complexity is addressed in [BBCRI0].

Direct-sum-based techniques can be used to prove bounds on communication prob-
lems that are not merely n copies of some simple function. Beginning with the work in
BYJKS04], in the two-player case information-based lower bounds for a function f are
proved roughly as follows:

1. Express f as a composition of two simple functions, f = goh. For example, DISJ =
ORo AND.

2. Show that h has information cost at least J.

3. Show that a protocol for f can be used as a black box in a protocol to compute h
in n independent ways (one for each copy of h being computed).

4. Conclude that f has information cost at least n.J.

Item (3) above is tricky. For example, consider the problem of designing a protocol
for AN D using a protocol for DISJ as a black box. Alice and Bob receive single bits
a,b respectively and need to generate an input (z,y) to DISJ so that DISJ(z,y) =
AND(a,b). For a fixed position i, they will set z; = a and y; = b, and they need to
generate x_; and y_; so that there is no j # i where AND(xj,y;) = 1. Naively, this
could be done by setting x;,y; to 0 for j # 4, but the resulting distribution is not “hard”
enough (leaving aside the details) to give the direct sum. There is a good deal of subtlety
to the technique employed in [BYJKS04] to generate inputs (z,y) from a sufficiently-hard
distribution. We refer the reader there for details—the key point is the generation of the
input (z,vy).

How might this be extended to the multiparty setting? All players but the i-th must
agree on an input place on player i’s forehead. Furthermore, to keep everything sufficiently
“hard,” it would seem that player ¢ must not know that input. The only way we know
of to accomplish this is to use coins on player i’s forehead to sample those input bits.
But this, as we will see, is a big problem. We proceed to define multiparty information
complexity, after which point we will be able to discuss why NOF randomness is disastrous
for multiparty information.

2.3 Multiparty Information Complexity

Here is the definition we’ve been waiting for:

Definition 2.3.1 (restatement of [L3.1]). Let II be a k-party NOF (randomized) commu-
nication protocol with inputs X = X; ... X} sampled from a distribution v. Then the
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information cost of II is

IC,(IM) = " I(X3 (X)X )

Definition 2.3.2. Let f : {0,1}"* — {0,1} and let v be a distribution on {0,1}"*. We
define a few different notions of e-error information complexity for f, depending on where
we allow randomness in the protocol. First of all, the deterministic information cost of f
is

DIC,(f) = mHin I1C,(10)

where the minimum is taken over deterministic protocols II computing f with zero error.
Now let € > 0. The public-randomness e-error information cost of f is

RPUTCE(f) = min [C, (IT)

where the minimum is across protocols II with public randomness computing f with e-error
under v. The private-randomness e-error information cost of of f is

RIC:(f) = mri[n I1C,(10)

where the minimum is now across protocols with public and private randomness computing
f with e-error under v.
Finally, the NOF-randomness e-error information cost of f is

RNOEICE(f) = min /G, (IT)

where the minimum is across protocols with public, private, and NOF randomness com-
puting f with e-error under v.

In the two-party setting, information cost is an absolute lower bound on communication
cost. In the multiparty setting we lose a factor of & — 1 (which of course disappears
at k = 2) because the same bit of information in the transcript might contribute to
shared information with both X; and X, for some ¢ # i’. At the cost of extra technical
complication the resulting loss can generally be avoided; a discussion of how to do so
follows the next theorem.

Theorem 2.3.3. Let 11 be a k-party protocol and let v be a distribution on the input to
II. Then

1C,(I0) < (k — 1)CC(I).
Proof. We adapt the proof in [BRII]. Let II; be the ¢-th bit of II. By definition and the

chain rule for mutual information,
IC,(I) = Y I(XTI(X)| X))
co(m)

k
= ZI(XZ-;H]-(X)|X_Z',H1(X)-'-Hj—l(X))
=0 =0

17
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For v € {0,1}'7!, let E, be the event that the first i — 1 bits of II(X) are 7. We have

co()

k
IC,(I) = > N B [I(Xs LX) By, X)),
j=0 i=0
where II; is the jth message of II. Observe that Z?:o I(X;;1L(X)| By, X—i) < k—1, since
each term is at most 1 (since II;(X) is just one bit), and if ~ requires player i’ to speak
message II; then (X, ;IL;(X)[E,, X_;) must be 0. Thus, IC,(II) < (k — 1)CC(II) as
desired. O

The proof of this theorem actually shows something slightly more: if for each stage j
of a protocol II we can identify a small set S of players (where we think of |S| as small
relative to k) for whom we can lower-bound

ZI(XZ,HJ(X)’X_Z,Hl(X) . e Hj_l(X))
€S

then we do not lose the factor (k — 1). Most of the bounds that we prove will actually
proceed by such a technique, but we will trade the factor of (k — 1) for simplicity and not
bother to make this explicit.

2.4 Secure Multiparty Computation

We can now discuss why NOF randomness is disastrous for multiparty information: in
the NOF-randomness setting, all functions can be computed with zero information.

In [BOGWSS], a surprising protocol is given to compute any k-way function in such
a fashion that after the protocol is run, no player can compute anything about any other
player’s input except what is already available by virtue of the output’s dependence on
the inputs. The computation model in question is, however, crucially different from ours:
each pair of players may communicate on an untappable private channel. We refer the
reader to [BOGWSS| for details on the protocol; the key question here is whether the
result applies to our multiparty model, which has blackboard communication.

Unfortunately, if NOF randomness is present, the answer is yes.

Theorem 2.4.1. For all f,v,e,
RYOPICH(f) = Y 1(Xi: f(X)[X).

That is, the information complexity of f is no greater than the information available about
each input in the output of f.

Corollary 2.4.2. If f is a boolean function, then for all v, e

RNOFICE(f) <k —1.
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Proof. We assume the existence of a zero-information protocol in the private-channel
case and show how to simulate private channels with NOF randomness. The idea is
simple: each pair of players i, j share a secret with which they can securely encrypt their
communication. That secret is the XOR of the random bits on the foreheads of all other
players. By standard arguments about one-time padding, no player [ # 4, j can compute
anything about any message thus encrypted, so ¢, have an untappable private channel.
Thus, players can simulate the zero-information protocol using private channels to achieve
the desired protocol for f. O

As the following two sections show, NOF randomness is crucial to this result. Without
the shared secrets that NOF randomness gives players, it is not possible in general to
compute without nontrivial information leakage.

2.5 The Information Complexity of AND

In this section, we develop a family of related techniques to prove explicit multiparty
information complexity lower bounds. Our model function will be AN Dy, the AND of
k bits. We will present the simplest technique first, which permits bounds on DIC' and
RPUIC, to lay bare the core combinatorial idea, and then we will generalize to allow
private randomness.

Our techniques rely on identifying very small families of inputs on which we can tightly
characterize sensitivities of both AN D and the messages in our protocol to small changes
in the input vector. These small families form combinatorial squares, which we call critical
squares. In the deterministic case, a single critical square is all that’s needed to get a strong
lower bound. When private randomness is added, the players become able to spread out
the information they share over arbitrarily-many messages and therefore we to get a strong
bound will need to work with many critical squares; however, our techniques are not yet
capable of this.

Our techniques should extend readily to functions with similar input sensitivity to
AN Dy, (for example, ORy). It is not yet clear how and whether the technique generalizes
to more complicated functions (such as GIP or DISJ).

2.5.1 Lower Bounds on DIC(AND) and RP*IC(AND)

In this section we prove the following theorem:
Theorem 2.5.1 (restatement of [3.2]).

k+1
2k—1

k+1
2k—1

DIC,(ANDy) >

RPICY(ANDy) >

The following lemma captures the main new intuition behind the proof. We prove
a deterministic version here, which gives strong lower bounds but does not apply to the
randomized case. (Later, we will prove a randomized version which gives weaker bounds.)
version.
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Lemma 2.5.2. Let I be a protocol computing AN Dy, exactly. Let T be the protocol tree
for 1. Given a family o of inputs, let T, be the subtree of T induced by considering only
mputs in o. Suppose there exists a player i so that there is a node owned by a player
g in Ty N Ty NTy; N Tyiy which is labeled by a function f so that f|,; is nonconstant.
Then I(X;; TH(X)|X_;, ANDy(X)) > 2=%=1  where the information is with respect to the

uniform distribution on inputs.

Proof. The proof is just a calculation:
(X3 (X)X, ANDy(X)) = Eo_ox_ [L(Xs; I(X) | X = 23, AN Dy, (X))]

1 .
> e (X T(X)| X = 17, ANDy(X))

Since AN Dy|,; is constantly 0, this is exactly

1

gt (X TI(X X =17).

Since we know f appears in the transcript II(X) when X takes a value in 17 ;» we get that
this is at least

1 , 1
o1 I(XG; f(X )|X—z'=1]_i):F
as desired. .

Proof of theorem 2.5.1. We begin by proving DIC, (AN Dy) > 2k T
Let IT be a k-way deterministic protocol exactly computing AN Dj.. By definition and
the chain rule for mutual information,

Z I(X3I(X)[ X)) = > T(Xi30ut T(X)[ X ;) + (X3 TL(X)| X, out TI(X)).

We will deal with the boring part first. We know out II(X) = ANDy(X), and it is not
too hard to see that

1 1

Em NX%[I(XHAND]C(XNX—Z = ‘,L'—Z)] 2k 1 (XZ’ANDk( )|X_Z - l_i) - 2k_1

—1

and therefore that

k
> I(XioutI(X)|X_;) = ST

Now for the interesting part. We must show that

1
Z[ X (X)| X i, ANDw(X)) > o

20
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It will be sufficient to find a node of T satisfying the requirements of lemma

Let f be the function labeling the least-depth node across all T _; (for 1 <1 < k) so
that f|1_, is nonconstant (such an f must exist, since the last message of II is AN Dy (X)
which is clearly nonconstant when restricted to 1_;). Let g = f|1_ .;- Let j be the index
of the player who speaks g. Since g is the least-depth function nonconstant on 1_;, clearly
g € Ty NTyi. If g ¢ Ty; then there is some lower-depth f’ which is noncontant on 1_j;,
contrary to construction. Finally, if g ¢ Ty:; then there is some lower-depth f’ which is
noncontant on both 17 ; and 1i_j, satisfying the hypotheses of the lemma, so without loss
of generality we assume f € Th_, ;.

The combinatorial square of inputs 1_; ; is a critical square for f. We use the term
loosely to mean that g = f|1_;; can be shown to satisfy the hypotheses of lemma
for either 1j_i or 1i_j.

Write g(a,b) for the value of g when ; = a and x; = b (note that this is abuse of
notation since technically g does not have z; as an input). If ¢(0,0) # ¢(1,0) we are
done. Suppose otherwise. We know ¢(1,1) # ¢(0,1). Then either ¢g(1,1) # g(1,0) or
9(0,0) # ¢(0,1). If the latter, we are done. The former is impossible: if g(1,1) # ¢(1,0),
then fq1_, is nonconstant, but since f does not have x; as an input, there is some lower-
depth f’ which is nonconstant on 1_;. This is contrary to construction, which completes
the proof of the first bound.

The second result, that RP“PT CS(AN Dy) > 2]“;[11, now follows quickly. Let II be a
protocol with public randomness computing AN Dj. with zero error under pu. We think
of II as a distribution over deterministic protocols II,. Each deterministic protocol II,
has IC,(IL,) > 2’“,:211 by the deterministic lower bound. Also, observe that where R is the
public randomness in II, we have that X — II(X) — R forms a Markov chain. Thus,

IC, (1) = > E[I(X;I(X)|X_; = 2]
> Y E[I(X;T(X)| X =z, R)]
=Y Ex,[Br[I(X;TI(X)| X =2, R=7)]
(Xi; T (X)) | X —3)]]

2.5.2 Extension to Private Randomness

We conjecture that the bound we prove in the deterministic and public-coin cases also
applies in the private-coin case.

Conjecture 2.5.3.

k+1
RICL(ANDy) > S

It appears that the private-coin case is a great deal more complicated than the public-
coin case. We are only able to prove partial results towards this conjecture, and they
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involve somewhat more technical tools. We are able to prove that no private-coin protocol
can compute AN D;, with zero information, and in the case of bounded rounds we are able
to prove a quantitative lower bound. However, our quantitative lower bound decays to
zero as the number of rounds grows, so we are unable to rule out the possibility that the
private-coin information complexity of AN Dy, is asymptotically zero.

The first difficulty is that the player who speaks the t-th message may vary on a
fixed input across choices of random coins. We fix this by converting general public
coin protocols to protocols which proceed by rounds. A protocol proceeds by rounds if
the speaking order is round-robin: players always speak in the order 1,2,3,...,k,1,....
This means that the speaking order of the players is oblivious to both the input and the
randomness in the protocol, which is what we desire.

Lemma 2.5.4. Let II be a randomized protocol. Then there is a protocol II' which proceeds
by rounds and for every input has output distributed exactly as those of 11 so that for any
distribution v,

IC, (1) = IC,(1T).
Furthermore, the number of rounds in II' is ezactly the communication cost of II.

Intuitively, lemma 254l says that the speaking order of the players does not itself carry
information. The reason for this is that by definition at each point in the execution of a
protocol every player knows whose turn it is to speak.

Proof of lemma[2.57) Fix a protocol II. In our protocol IT', players will simulate II. The
protocol IT' has a round of communication for every message in II. Suppose that for some
fixing of the inputs and private randomness of 1, player j speaks the rth message. Then
in round 7 of II' (with the same inputs and private coins), every player but j sends a 0,
and player j sends whatever she would have in protocol II.

It is easy to see that the “filler” messages carry no information when conditioned
on all preceding messages, so the information cost of I’ is precisely that of II. Since
there is a round in II’ for every message of II, the number of rounds in II' is exactly the
communication cost of II. ]

The following lemma is the probabilistic analogue of lemma

Lemma 2.5.5. Fiz a private-coin randomized protocol 11 which proceeds by rounds and
exactly computes AN Dy. Denote its input vector by X. For a fized input y € {0,1}™ there
a distribution of transcripts 11| X = y. Furthermore, at each time t in the protocol (when
there are t bits of II|X =t on the blackboard) there is an estimate of 11| X = y using the
information on the blackboard. Denote this estimate by II'|X = y. Suppose there are i, j
and t so that

(I X = 1,111 X =1%) — h(ITH X =1, 11| X = 19) > 6.
Then

82/2+k
1C,(II) > o1
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Proof. The /<;/2k_1 term is, as in the deterministic case, the information between the
final output and the inputs. Similarly to the deterministic case, we will find §2/2 bits of
information in a very tightly concentrated distribution and lose a factor of 2¢~! in passing
to the uniform distribution. Again as in the deterministic case, we will do this by looking
at input distributions on which the output is known to most players before the protocol
is even run and showing that players still learn about their inputs when the protocol is
executed.
By hypothesis, there are i, j,¢ so that

R(ITHX = 1,111 X =1°) — K(ITH X =1, |X = 19) > 6.
Recall that h is a metric and therefore satisfies the triangle inequality. Therefore,
AITX =17 | TI| X = 1) + h(IT| X = 1", TT"| X = 1)
> h(II'|X =17, IT"|X =17
>hIX =1, 01X =1°) — AT X =1, X =17) >§
and by Cauchy-Schwartz,

. S o . S o 52
AT X =17 | I X = 1%9) + p3(IV|X = 1", IV | X = 1%) > 5

By Lin’s lemma (lemma [[.2.29)),

. . 52

[Vi(Xi;Ht’X_i == 1j) + ij(Xj;Ht‘X_j = 12) Z E

where v; is uniform on 1j_ ; and vj is uniform on 1% j Note that Ht]X = y can be obtained
from I1|X = y by dropping all but the first ¢ bits and computing the estimate IT'|X = y.
Thus by the data processing inequality,

L, (XX =19) < I (X;; )X, = 17).

and similarly for j.
The result now follows by the same argument as in the deterministic case. O

Theorem 2.5.6 (restatement of [[L33)). Let IT be a protocol with r rounds exactly com-
puting AN Dy, with private coins. Then

1 k

0(11) >
[Cﬂ(H) — 8(1{77‘)22k_1 + Qk—l'

The proof will rely on the following lemma.

Lemma 2.5.7. Let I be a protocol with r rounds exactly computing AN Dy with private
coins. Then for all i,

AIX =18IX =1)=1
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Proof of lemma[2.5.7. Let the random variables IT1|X = 1% and IT|X = 1 be distributed
according to vy and vq, respectively. The length of transcripts of II is exactly kr, so there
are 2" possible transcripts. Without loss of generality, let the last bit of the transcript
be the output. (this can be preserved in the rounds-based setting by slightly altering the
transformation of the protocol to rounds). Let Uy be the set of transcripts ending in a 0
and Uj those ending in a 1. Then 1 is supported on Uy and v, is supported on U;. Then
vy and vq have disjoint support, so

h(vo, 1) = % S (V) — V@2 + 3 (Vi) — Vi (@)?

zelp zeUy

Z vo(x V1 ()

xzelUy zelUy

Proof of theorem 2.5.6. For each player i, define the sequence hj ... h};r where
hi = h(IT' X =19, ' X =1).

That is, h is the Hellinger distance between the estimate at time ¢ of the final transcript
when X = 1° and her prediction when X = 1.

For all i, clearly hjjy = 0, and by lemma 2Z5.7] we know h};r = 1. So for all ¢ there is
some t so that

, . 1
hi —h} > —
t t—1 = kr
Fix a player ¢ and let ¢ be such that
. . 1
hl o (2 > _
t t—1 = kr

as above. Let player j speak message t. Then clearly h{ = h{_l, so we get

1

hi — k] + hi_, h;1>kr

Therefore, either hi — h] > 1/(2kr) or h{_l — Rt | >1/(2kr).
Now lemma applies to give the result. O
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Chapter 3

Conclusions and Open Problems

We believe that the results in this thesis demonstrate that there is hope for a useful theory
of multiparty information complexity, and that furthermore the lower-bound techniques
made available by such a theory are candidates to break the logn barrier and tighten
bounds on DISJ in multiparty communication. Our results are, however, are merely
proofs of concept. In the following section, we list some open problems whose solutions we
believe to be probable next steps in the development of multiparty information complexity.

3.1 Open Problems

On our line of investigation, it is open whether any function has private-coin information
complexity bounded away from zero independent of the number of rounds. Specifically, it
is open to prove conjecture

Our lower bounds are proved for a function whose input is a single bit to each player
and whose sensitivity structure with respect to those bits is quite simple. It is open to
prove an information complexity lower bound for a function on more than single bits, or
whose sensitivity is less simple than AN Dy,.

We know that in a general randomness-on-forehead setting the information complexity
of an arbitrary function goes to zero. However, it is unclear whether the same is true if
the number of messages is limited. In particular, we conjecture that in the simultaneous
model, where each player sends exactly one message to an external referee who computes
the output (and who does not seem the inputs or the randomness), some function has
nonzero information complexity even with randomness on the forehead.

On a more metatheoretical tack: the inspiration to investigate multiparty information
comes from the two-player result that information bounds beat rectangle bounds. It is
open whether the analogous result holds for more than two parties. Extending the two-
party proof seems to require new multiparty rejection sampling techniques.
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