
Instance-Based Recognition of Screen-Rendered
Text in a System for Pixel-Based

Reverse-Engineering of Graphical Interfaces

By Stephen Joe Jonany
Advised By Professor James Fogarty

•

A senior thesis submitted in partial fulfillment of
the requirements for the degree of

Bachelor of Science
With Departmental Honors

Computer Science & Engineering
University ofWashington

t innJune 2013

Presentation of work given on June 6, 2013^/
Thesis and presentation approved by / J/Lf^ (/>
Date Q/ t$ / tftit

Abstract
Pixel&based+systems+for+reverse+engineering+interfaces+have+made+it+possible+

to+modify+ existing+ user+ interfaces+without+ access+ to+ their+ underlying+ source+ code.+
Rather+than+waiting+for+a+company+to+incorporate+a+new+feature+into+an+application,+
pixel&based+ systems+ empower+ any+ developer+ to+ make+ an+ application+ more+
accessible,+usable,+ and+useful.+ In+ contrast+ to+ standard+computer+vision+ techniques,+
these+systems+work+by+leveraging+the+fact+that+common+interface+components+have+
a+consistent+appearance.+Widgets+are+rendered+procedurally,+and+so+it+is+possible+to+
exactly+ match+ their+ pixels+ for+ fast+ and+ accurate+ interpretation.+Unfortunately, this
same strategy fails when it comes to recognizing screen-rendered text, limiting the
capabilities of pixel-based systems. Due to sub-pixel rendering and antialiasing, the
appearance of a single character can vary in many subtle ways, which makes exact
matching strategies ineffective. Moreover, off-the-shelf OCR technologies that are
usually tailored for recognizing high-resolution handwritten text are generally ineffective
because of the extreme low resolution of typical interface text. This paper discusses a
scalable method that leverages the consistency of this type of text, overcomes the
problems entailed by low-resolution images, and allows us to recognize screen-rendered
text with reasonable speed and high accuracy.

1. Introduction

Current methods for implementing graphical user interfaces create fundamental
challenges for HCI research and practice. Most interfaces do not usually expose their
underlying source code to the public. Because of this, researchers are often unable to
demonstrate or evaluate new techniques beyond small toy applications, and practitioners
are often unable to adopt methods from the literature in new and existing applications.
For the same reason, the development of new interfaces is also hindered with the
duplication of efforts. Fortunately, pixel-based systems for runtime interface modification
offer great potential to address these problems. Because all graphical interfaces ultimately
consist of pixels, these methods can enable modification of interfaces without their
source code and independent of their implementation. For example, prior pixel-based
systems demonstrate a variety of promising runtime enhancements to existing interfaces,
including accessibility enhancements, interface language translation, testing frameworks,
interaction techniques, automation tools, and contextual help systems [5, 6].

Unfortunately, these pixel-based systems are limited by their inability to interpret
interface text. Current pixel-based systems are at best capable of identifying the presence
of text, but not interpreting its value. Existing pixel-based modifications either limit their
functionality such that they can ignore text, or employ ad-hoc methods for interpreting
text, which are difficult to reuse, manage, and scale [2]. Pixel-based systems are built on
the insight that the pixels of a widget are procedurally defined, which is critical to their
performance because it allows for exact or nearly exact matching of pixel values to detect
interface elements. However, the appearance of textual content varies more substantially,
and cannot be easily identified through exact matching. Modern toolkits often employ
sub-pixel rendering and anti-aliasing techniques in text rendering, as can be seen in
Figure 1. While these techniques improve readability, they also modify the pixel-level

appearance of text in unpredictable ways. Moreover, off-the-shelf OCR technologies that
are usually tailored for recognizing high-resolution handwritten text are generally
ineffective because of the extreme low resolution of typical interface text.

Figure 1. Sample Input
Challenges include low-resolution and
anti-aliasing.

We address this problem with novel pixel-based methods for interpreting interface
text. Instead of abstractly representing a collection of example characters with a complex
model, we store all examples and directly compare their pixel values to a candidate
image. This instance-based approach leverages the insight that despite the variation in a
character’s raw pixel values, the arrangement of its pixels is highly consistent. Unlike
previous instance-based attempts [3], our methods automatically expand the corpus of
example characters with unsegmented images of words. This strategy enables us to
improve the accuracy of the system while maintaining its performance. We provide initial
evaluation of our methods using a corpus of over seven thousand images captured from a
variety of common applications running in Microsoft Windows 7. Our methods achieved
about 85% accuracy, and discounting single-character errors gave 95% accuracy. The
results showed their potential for use in many practical applications.

2. Component Overview
 Our goal is to efficiently and accurately provide labels for images of word-length
text. Figure 1 illustrates an example of a typical image input into our system. Because
state-of-the-art pixel-based technologies, such as Prefab [2], already have methods for
reliably identifying text, we assume that the input images have already been cropped to
only the region containing relevant content. Given this assumption, there are two major
tasks left to address. One is to segment an image into characters, and the other is to assign
labels to those characters.

Our framework consists of 2 main components, illustrated in Figure 2. First, we
have an example set which contains images of characters labeled with their
corresponding text values. We call the process of building this set of example glyphs the
extraction step (Section 4). Second, we have an algorithm that simultaneously segments
and classifies input images. We call this process the recognition step (Section 3). This
algorithm works by searching through potential segmentations and then comparing those
segments to glyphs in our example set. In summary, the extraction step serves to build
the example set, which will guide the recognition step, whereas the recognition step is the
main component that will perform the actual recognition.

3. Recognition Step

As mentioned, the recognition step leverages the corpus of example images in
order to generate a label for an input image. The algorithm works by (1) normalizing the
input image to reduce potential variations in its appearance (2) searching through possible
segmentations of the image, (3) assigning labels to each segment, and (4) choosing the
best combination of segments and corresponding labels according to a cost function. The
search algorithm is an efficient dynamic programming solution that reuses segmentation
and classification of portions of the image. To obtain a label for a possible segment, our
algorithm finds the character in our example set with an appearance that is most similar
to the segment. Finally, a cost function based on Euclidean distance is used to rank each
segmentation. This section describes each of these steps in more detail.

3.1 Normalization

To reduce potential inconsistencies in the appearance of an image, we normalize
input images by converting them to greyscale. We performed background removal by
first creating the monochrome version of the same image, and then removing pixels in the
greyscale image that correspond to white pixels in its monochrome version, while leaving
the remaining pixels unchanged. The monochrome algorithm used is Otsu’s method,
because our need fits in nicely with the assumption of the algorithm, which is that the
pixels in the image are divided into two classes, namely foreground and background. This
might leave an expanse of white pixels around the foreground pixels. The final step to the
background removal was to crop the image down to the smallest rectangle such that all
foreground pixels are captured.

Figure'3.'Background'Removal'

The cropped image is then resized to a constant height to speed up the dynamic

programming algorithm. Finally, the color range of the greyscale image is linearly

"E" "d"

...

Pick the
Best Segmentation

"t""i"

Recognition

Simultaneous
Classification and

Segmentation

Cost = 1000

Cost = 10

Extraction

"A"
"A"

"B"

"B"

Populate the
Example Set

Figure'2.'Component'Overview'

stretched so it ranges from 0 to 255. This is because there are some images that are darker
or lighter than most of the images. In our distance calculation between two different
greyscale images, we want to only capture the notion of how a pixel is relatively darker
than the other, instead of the absolute difference.

3.2 Dynamic Programming
 The core of the recognition step is dynamic programming, where we try to find a
way to segment the image into several non-overlapping rectangles such that the
maximum over all costs incurred by each of these rectangular regions is minimized. After
we find such segmentation, we generate the predicted text content by concatenating the
characters represented by each region in order from left to right.

Before showing the algorithm, there are some notations that have to be introduced:
1. Img = The input image that has been normalized
2. bestMatch(i,j) = The lowest cost to match a segment spanning column i to j of Img
3. MaxNumChar = The maximum number of characters Img can represent

 The computation of bestMatch(i,j) involves computing the euclidean distance
between the greyscaled, 10x10 version of the region bounded by columns i and j of Img,
and each of the samples in the example set. The final result is the minimum across all the
computed distances, and represents the best cost of identifying the subregion as a single
character.

The algorithm can be more formally specified with the notions like so
Input : Sample Image Img
Output: {region[1], region[2], …, region[n]}
 i.e. segmentation of Img into n regions such that

 Max{bestMatch(region[1]), …, bestMatch(region[n])} is minimized.

We need to first determine the number of characters to segment the image into,
and for this, we approximate MaxNumChar, which is the maximum number of
characters. We apply the heuristics that it is unlikely for all the characters in the image to
all have heights which are greater than 4 times its width. By guessing that the maximum
aspect ratio of any character in the image is 4.0, we can compute the minimum character
width by dividing the height of the image with maximum aspect ratio. MaxNumChar is
then obtained by dividing the width of Img with the minimum character width. Now that
we know that largest number of segmentations, we try to segment the image into varying
number of characters up to MaxNumChar, and pick one with the minimum total cost.

The structure of the problem lends itself nicely to a dynamic programming
solution, where the subproblems entail finding the best way to segment the first few
columns of Img into a certain number of characters. We are going to capture the result of
this subproblem with the notation OPT(c,i), which represents the optimal cost of
segmenting the first i columns of Img into c characters.

Consider how OPT(c,i) can be computed from smaller subproblems. Suppose that
we know the best choice for the very last column cut to make is at column j, that is,
column j is where the c-1th character should end. We note that the optimal cost for the
subproblem, which is the lowest cost for segmenting the first j columns of Img into c-1
characters, is OPT(c-1,j). With this information, we can solve the problem optimally for
those c-1 characters, and combine that subproblem solution with the cth character to get
the optimal solution for the entire c characters. The extra cost incurred for appending the
cth character, which spans from column j+1 to i, is bestMatch(j+1,i).
The total penalty for the entire solution is given below.

OPT(c-1,j) + bestMatch(j+1,i)

However, we made the assumption that we know the value of j. Fortunately, even
though we do not know which column j will minimize this value, we know that j <= i.
The optimal choice for j will then be among these possibilities, and so we simply go
through all the possible values for j, and pick the best one.
The recurrence relation is given by the equation below.

OPT(c,i) = min1≤j≤i {OPT(c-1,j) + bestMatch(j+1, i)}

 We consider a concrete example, where we try to compute OPT(3,100) of the
provided image, that is, we want to compute the lowest cost of segment the first 100
columns of the image into 3 characters. According the recurrence relation, we have to go
through all the possible candidates for j, which is the column where the second character
ends, and pick one that minimizes the overall cost. We present 2 of such scenarios to
illustrate the intuition behind the algorithm.

 In Figure 4, we consider the case where j = 20, that is, we consider the case where
the first 20 columns will be segmented into 2 characters, and the third character spans
from column 21 to 100.

Figure 4. Simulation with j = 20

We observe that this choice for j is likely to incur a high cost because OPT(2,20),
which stores the lowest cost for segmenting the first 20 columns into 2 characters, is
likely to be high. On the left hand side, we can see an example of oversegmentation,

i = 100j = 20

Max{OPT(2,20), bestMatch(21,100)}

OPT(2,20) bestMatch(21,100)
HIGHHIGH

where there an attempt to segment an image of the letter ‘r’ into two characters, and there
is no good way to divide ‘r’ into regions of pixels where each region is similar to samples
in the example set. On the other hand, undersegmentation causes bestMatch(21,100) to be
high, since there should not be any character sample in the example set that can
correspond the pixels representing the two letters “dw”. We note from this example that
for each choice of j, we take into account not only the previous cost of segmenting the
first c-1 characters, as represented by OPT(2,20), but also the additional cost of
appending the leftover cth character, as captured by bestMatch(21,100). By minimizing
the maximum over these two values, we can intuitively see that we are also minimizing
the maximum cost over each segmentation we make.

We now consider the scenario where we set j to 60. This time, we can see that our
choice is likely to be the best candidate to minimize OPT(3,100). As can be seen in
Figure 5, bestMatch(61,100) is likely going to have a low cost because there will be a
match to a dictionary entry corresponding to the letter ‘w’. Opt(2,60) is also likely to be a
low number because the first 40 columns can be segmented nicely into two characters,
namely ‘r’ and ‘d’. The maximum across these two low values is thus likely to be low as
well.

Figure 5. Simulation with j = 60

3.3 Optimization

Most of the computing time of this algorithm lies in the calculation of
bestMatch(i,j), which is the distance of the closest sample in the example set to the
segment Img[i,j]. A possible approach is to simply compute the distances between all
samples in the example set to the segment of interest. However, we noticed that there are
some common properties of screen rendered text that can be leveraged. This observation
coupled with the availability of the size and location of the segment in question allowed
us to reduce the size of our search space quickly.

Below is a list of the heuristics used:
(a) A segment whose height is < ¼ of Img.height can’t possibly be an alphabet or a digit.

(b) If the segment contains an offset from bottom which is > 1/4 of bitmap height, it can’t
possibly correspond to alphabets with dangling bottom tails like 'g','j','p','q','y'.

i = 100j = 60

Max{OPT(2,60), bestMatch(61,100)}

OPT(2,60) bestMatch(61,100)

LOW LOW

?

"u"

"j"

Consider all
candidates

Given a region
to identify

Use heuristics to
prune candidates

(c) If the segment contains an offset from top which is > 1/4 of bitmap height, it can’t
correspond to capital letters, numbers, and lowercase letters that have a head that reach
the ceiling of images such as ‘b’, ‘d’, ‘f’, ‘h’, ‘k’ , or ‘l’

(d) If segment’s aspect ratio is greater than the hardcoded maximum aspect ratio for a
character, or is less than the minimum aspect ratio for a character, it can’t correspond to
the character. These min and max aspect ratio values are manually hardcoded by
eyeballing a number of the text images.

'
'
'
'
'
'
'
'
'
'
'
'
Figure'6.'Pruning'Heuristic'(b)'in'action.''
The'segment'in'question'can’t'possibly'correspond'to'a'character'with'a'
dangling'tail'like'“j”'since'it'has'a'noticeable'offset'from'the'bottom.

4. Extraction Step

The goal of the extraction step is to accumulate a corpus of image-character label
pairs, which will help guide the recognition step. Since the recognition step uses the
example set to calculate its segmentation costs, this corpus of examples defines the
accuracy of the system.

Accumulating these character images and their labels is a non-trivial task.

Automatically generating images of characters using library method calls does not allow
the example set to learn new character sets without having detailed information on the
types of font that have to be covered. Fortunately, common UI components provide a rich
set of text images that we can use. The problem is that the locations of these images need
to be isolated from a given screenshot. Once the relevant regions have been identified,
they will need to be labeled. Furthermore, since many of these images correspond to
words, and we have to recover the mapping between each letter of the word label to the
relevant region of pixels to finally produce image-character label pairs ourselves. Finally,
we have to deal with noisy samples to maintain the quality of the samples in the example
set.

The extraction pipeline can then be classified into two majors steps, as shown in
Figure 7. The first is the gathering of weakly-labeled samples, which is a collection of
image-word labels. The second step is to produce actual image-character pairs that will
be added to the example set.

Figure 7. Extraction Step Overview

4.1 Obtaining Weakly-Labeled Samples
4.1.1 Gathering Images of Text
 We obtained images of these texts by using Prefab on popular user interfaces and
websites such as Windows Explorer and Wikipedia[2]. Each session of gathering these
images involves having a person navigate across different user interfaces, and having the
screen activity recorded as a video footage. Prefab will then be applied on the video
recording to extract cropped images of text. At the end of this step, we have a set of
unlabeled images of text. We assume that every image has been tightly cropped to the
relevant region containing text by Prefab, and this assumption removes the need to
perform further word boundary detection.

4.1.2 Labeling Images

We were able to provide word labels to the obtained images with the help of
Amazon Mechanical Turk. Workers were given the task of labeling a set of images with
their respective text content. Ideally, we would like to have the labels to indicate the
mapping between single characters to regions of pixels in the image. However, we
decided that this task is too much to ask for turk workers to do, not only because it is
time-consuming, but also because it requires each region to be accurately cropped. We
settled with the labels being the word corresponding to the entire image, and in addition,
the workers were required to indicate extra attributes of the text. These extra attributes
help us filter out images that either do not contain text, or are hardly recognizable.

Besides the problem of having noisy unlabeled images, we also encounter noise in

the labels provided by the turk workers. The sources of noise are mostly attributable to
human errors, such as typographical errors. Interestingly, some annotations were
suspected to be generated by off-the-shelf OCR technologies. We tried to remedy this by
providing a tutorial page with sample tasks which require more involved human
interaction to be solved. We also had multiple works review the same image, so we could
pick the label which the majority of the workers agreed upon.

"design"

"Edit"

Gather Weakly-Labeled
Samples

"A"
"A"

"B"

"B"

Expand
the Example set

...

...

Figure'8.'Example'of'a'Single'
Annotation'Task

4.2 Expanding the Example Set from Weakly-Labeled Samples

The obtained set of weakly-labeled samples will have to pass a sequence of
criteria before being used to expand the example set. These samples are not directly
usable because they are image-word label pairs, whereas the example set contains only
image-character label pairs. Thus, the weakly-labeled samples have to go through an
intermediate step before being absorbed into the example set.

The example set initially contains seed data. We cannot make use of the

weakly-labeled samples with an empty example set because the conversion from the
image-word label pairs to image-character label pairs require some images to compare
against. The seed data are automatically generated by library method calls. There are 5
different entries for each alphabet. Each of the 5 entries corresponds to one of the 5
predetermined fonts, which are chosen so that they cover the different features of
characters of different fonts. For instance, some of the chosen fonts are serif, while the
others are sans-serif. By making the seed data as diverse as possible, we are more likely
to capture a wide variety of new samples from the training set.

We perform several iterations of randomly sampling from the weakly-labeled
training samples, filtering training candidates, and expanding the example set with the
interpreted training samples. A training log is also kept to establish the mapping between
weakly-labeled samples, as well as the elements in the expanded example set that are
produced by them. This iteration is repeated until we are confident that the example set
allows recognition to be performed accurately.

Finally, not all of the training samples will directly contribute to the expansion of

the example set. We introduced several filtering steps which training samples had to go
through in order to be included in the expanded example set. The need for filtering
trainings samples arises out of the concern for efficiency and accuracy. The larger the
example set is, the slower the recognition step will be, whereas a bad or noisy training
sample might mislead the recognition step and reduce accuracy.

With this motivation, we are going to go through the pipeline which converts a

randomly sampled, weakly-labeled example to a collection of usable image-character
label pairs.

4.2.1 Attempt at Character Recognition
The first check was to attempt OCR the training image itself using the current

state of the example set, and to see if the predict result matches the true label. If the result
matches, we reason that the current example set is comprehensive enough to identify the
image, and that including the training sample in the example set will just be redundant. In
this case, we just randomly sample another one.

On the case where the OCR result does not match the annotation, we assume that
the annotation is right, and reason that the example set will benefit from including this
training sample. Since we are doing random sampling with replacement, there is a
possibility that the same training sample might have been included in the example set
previously. We reason that there is no point in having multiple entries generated from the
same sample. In fact, it might be possible that the previous entries were inaccurate due to
bad segmentation. Thus, we go through the training log, and delete all the previous
character entries that were produced from the same sample, and allow the training sample
to continue through the filtering process.

4.2.2 Guided Segmentation

 The fact that our training samples are weakly-labeled introduces the need to
detect the mapping between each character in the label to certain segments in the image.
The input to this algorithm is then an image and the text corresponding to the image. The
output is a list of rectangular regions that, where each region shows a part of the image
that corresponds to a single character in the word label.
+

At the core of the algorithm is dynamic programming, and is very similar to the
algorithm used in the recognition step. The problem statement is as such:

Input : 1. Word label w = w[1],w[2],…,w[n]
 2. Sample Image Img
Output: 1. {region[1], region[2], …, region[n]}

 i.e. the segmentation of Img into n regions such that
 Max{Cost(region[1]), Cost(region[2]), …, Cost(region[n])} is minimized.

The details as to how the cost is calculated, as well as the solution to the problem,

are discussed in detail in section 3. The vital difference between this algorithm and the

"Edit" "E" "d" "i" "t"

Figure'9.'Guided'Segmentation'Algorithm'
For'the'weaklyRlabeled'samples'to'be'useful,'we'have'to'find'the'
mapping'between'each'character'in'the'label'and'regions'of'pixels'in'
the'original'image.'

one used in the recognition step is that this algorithm is provided with the true label itself,
and attempts to find the best way to segment the image into rectangular regions such that
each region best depicts a particular character in the word label. Recognition step, on the
other hand, is only provided with the unlabeled image, and its goal is to find the best
segmentation and word label that describes the image.

In conclusion, the result of the guided segmentation algorithm is a compilation of

image-character label pairs, each of which is a possible candidate for expanding the
example set.

4.2.3 Candidate Filter

The filters so far only act upon the training sample as a single image-word label
pair. Now that we have obtained these candidates, these image-character label pairs have
to individually go through yet another filtering process before finally being accepted into
the example set.

4.2.3.1 Negative Samples Filter

The candidates produced by
guided segmentation algorithm are
not necessarily right, even if the
provided annotation is correct. After
all, the segmentation process itself is
just an algorithm, and is based on the
current state of the example set.
Thus, there are many occurrences
where we encounter poorly
segmented images. With the
presence of such poor labels, some
of which are slight, but repeated,
alterations of similar-looking glyphs
with the same character label, the
example set might eventually contain
a mapping between a nonsensical glyph to a particular character. The proposed counter to
this problem is to have a negative example set, which contains the supposedly bad
samples.

Each segmented region obtained from the guided segmetation step will only be
added to the positive example set only if the region’s distance (please see section 4.3) to
its closest positive sample is less than its distance to its closest negative sample.
Collecting the entries for the negative dictionary is for the most part a manual process,
since we want to the prevent the possibility of a negative example set ever containing a
positive example. If this were to happen, all future possible positive entries will be
rejected. The process of collecting these negative samples is aided by having a driver that
automatically goes through each entry in the positive example set, and checks if its
distance to the other positive entries is less than the distance to the negative entries. A list
of positive entries that fail this condition will be compiled, and the list will be manually

Positive SamplesCandidatesNegative Samples

Figure'10.'Negative'Samples'Filter'
In'this'case,'the'candidate'‘i’'is'closer'to'a'
negative'sample'than'a'positive'sample,'and'is'
not'added'to'the'example'set.'

gone through to see if these suspicious entries should indeed be moved to the negative
example set. By expanding both positive and negative example set, we hope to achieve a
higher accuracy by detecting bad training samples, and accepting good training samples
that are similar to the content of the positive example set.

4.2.3.2 Evaluation Set Filter

The last check on the segmented regions is to see if retaining these regions will
improve the accuracy of the OCR over all the possible inputs. Since this is impossible to
check, a validation set containing 100 image-label pairs is set aside from the training set.
The validation set stays the same throughout the extraction step, and we perform some
preprocessing beforehand so that the recognitions step can jump right to the calculations
without doing any image-modifications. A record of the best performance on the
evaluation set is maintained throughout the training iterations. The remaining candidates
in the filtering pipeline will finally be accepted into the example set only if they have not
decreased the recorded best performance over the validation set.

5. Experimental Results
5.1 Setup
 Measuring the performance of this custom approach is a challenging task due to
the specificity of the problem we are trying to solve, as well the as the diversity in
screen-rendered text. We decided not to compare this custom approach to off-the-shelf
OCR technologies such as Tesseract since these solutions are tailored for handwritten
text, and do not perform as well on low-resolution text. Since the main purpose of this
tool is to identify screen-rendered text embedded in common user interfaces, we limited
our testing to images of text which are not italicized, rotated, or distorted in any way. We
obtained images of these texts by using Prefab on popular user interfaces and websites
such as Windows Explorer and Wikipedia [2].

Out of about 10,000 image-word label pairs, we used 3000 for training, and the
remaining 7000 as our testing set. Before experimentation, we have prepared an
automatically generated example set of 260 image-character label pairs. We used the
training set to expand the example set to contain a total of 1000 image-character label
pairs. This process involved some human supervision to ensure that the initial example
set contains reliable seed data, and that most of the common segmentation errors were
recorded in the negative example set. The expanded example set obtained after training
achieved around 95% accuracy over the training set. Although this number does not
indicate anything about the performance on the test data, we note that by using only 1000
image-character label pairs, where 260 of which were the seed data which were generated
by libraries, we were able generalize over the entire 3000 words pretty well.

The main strength of this custom approach is its ability to expand its example set.

As such, the goal of our experiment is to show how varying the number of training
samples affects the accuracy and performance of the OCR. For each fixed number of
samples to train on, we repeatedly picked a random subset from the testing set, trained on
it without any human supervision, and measured accuracy of the expanded example set

on 1000 samples of the remaining untrained subset. Every time we increase the number
of training examples, we start afresh with the initial example set of 1000 image-character
label pairs.

5.2 Results
 As expected, the accuracy increases with the number of training samples. Starting
with the initial example set, our average accuracy was 61.76%. We noted that there was a
sudden increase in accuracy when we just used 100 training samples, where this caused
an increase in accuracy of over 12% to 74.22%. From that point onwards, the accuracy
only slowly increases with the training sample. The highest observed accuracy of 86.44%
was achieved when 3600 word image-label pairs were used, and increasing the number of
training examples to 5000 does not seem to improve or detract the performance much.

Figure 11. The accuracy of our system varied against the example set size.

5.3 Error Analysis

Despite incorrectly identifying about 15% of the samples, we observed that a
majority of the erroneous OCR results can be argued to be understandable, or not that too
far off from the true labels. About one-third of the errors can be fixed by the replacement
of a single character. The main cause of such errors is the fact that some characters have
similar, if not, same pixel representations. Most of these ambiguous pairs are comprised
of pairs of lowercase and uppercase forms of the same character, and also pairs of distinct
characters that are inherently ambiguous, as can be seen from Figure 12.

0.6+

0.65+

0.7+

0.75+

0.8+

0.85+

0.9+

0.95+

1+

0+ 500+ 1000+ 1500+ 2000+ 2500+ 3000+ 3500+ 4000+ 4500+ 5000+

Ac
cu
ra
cy
'

Number'of'training'samples'
'

Figure 12. An example of an indistinguishable pair of
characters

The second major cause of the overall error is due to a single over-segmentation
of a character into two characters. Most of such cases involve the splitting of a particular
character into that same character, plus an additional vertical-line-like character like ‘l’.
The absence of penalty in splitting characters allows the OCR to over-segment text to
achieve a lower overall objective cost. Thus, when the OCR is presented with a new
representation of a certain character, it has a tendency to indirectly remove some blocks
of pixels out of the new image by identifying them as characters like ‘l’. By doing this, it
essentially has the ability to crop the new representation to make it look more similar to
the representations contained in the example set. These kinds of errors are hard to fix
even with large training samples, because the OCR can attain very low distance costs for
each segment by performing its own cropping.

 If we were to be more lenient in the calculation of our accuracy and permit cases
fixable by single character deletion or substitution, we would attain over 10% increase in
overall accuracy. With just 100 training samples, the OCR attains over 90% accuracy,
and with 4100 training samples, the OCR attains its peak of 95.78% accuracy. This
perhaps indicates that most of the OCR results, even the wrong ones, would still be
understandable by humans, or easy to fix if the context of the text of were known.

Figure 13. Accuracy graph showing the effect of varying the number of training

samples, but discounting errors caused by single character over-segmentation, or
single character substitution.

0.8+

0.85+

0.9+

0.95+

1+

0+ 500+ 1000+ 1500+ 2000+ 2500+ 3000+ 3500+ 4000+ 4500+ 5000+

Ac
cu
ra
cy
'

Number'of'training'samples'

6. Future Work
 We believe that handling the previously mentioned major sources of error, which
are single-character over-segmentation and substitution, would dramatically improve the
accuracy of the OCR.

There have been previous attempts at the recognition low-resolution text, which
started off by identifying indivisible chunks of pixels, where no attempts of further
segmentation will be made on these regions [4]. Our approach, on the other hand, treats
every single column as the smallest indivisible region of pixels. We believe that having a
better knowledge on which regions are indivisible will alleviate the problem of
single-character over-segmentation, especially in cases where it is very obvious that two
regions of pixels are strongly connected such those cases that result in an extra ‘l’.

 Having a language model may help in both reducing over-segmentation, as well
as distinguishing between ambiguous character pairs. We can gather the probabilities of
transitioning from a character to another by performing some statistical analysis on
common user interface text, which can be more accurate if the domain of the user
interfaces to OCR on is confined enough. Since the dynamic programming algorithm
identifies a new character incrementally, it is possible to incorporate the probability of
transitioning between different characters into its cost calculation, and discourage bad
segmentations that result in unexpected words.

We have considered including aspect ratios in our cost calculation. Since our

distance calculation automatically resizes all images to be 10x10 in dimension, we lose
track of any differences in aspect ratios. Because of this, characters like ‘i’ and ‘l’, which
have fairly different aspect ratios, are considered to be similar.

It is possible to allow the algorithm to take into account the difference in aspect ratios
between two images while keeping the distance function Euclidean by incorporating the
aspect ratio difference into the dynamic programming cost calculation.

7. Conclusion

We have presented a novel way of recognizing screen-rendered text, which is
based on instance-based learning, and relies on dynamic programming for segmentation.
With the analysis of the errors, and its accuracy, we believe that our custom approach has
the potential for use in many practical applications.

8. Acknowledgement

I would like to thank Professor James Fogarty for allowing me to work on this
interesting project. I also received useful advice from Professor Dan Weld, and I am
grateful to have Morgan Dixon as my supervising grad student.

Figure 14. Ambiguity
arising due to ignorance of
aspect ratios +

9. References
[1] Morgan Dixon and James Fogarty. 2010. Prefab: implementing advanced

behaviors using pixel-based reverse engineering of interface structure.
In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems (CHI '10). ACM, New York, NY, USA, 1525-1534.
DOI=10.1145/1753326.1753554 http://doi.acm.org/10.1145/1753326.1753554

[2] Morgan Dixon, Daniel Leventhal, and James Fogarty. 2011. Content and
hierarchy in pixel-based methods for reverse engineering interface structure.
In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems (CHI '11). ACM, New York, NY, USA, 969-978.
DOI=10.1145/1978942.1979086 http://doi.acm.org/10.1145/1978942.1979086

[3] S. Wachenfeld, H. Klein, and Xiaoyi Jiang, "Recognition of screen-rendered text,
" in Pattern Recognition, 2006. ICPR 2006. 18th International Conference on, 0-0
2006, vol. 2, pp. 1086-1089.

[4] S. Wachenfeld, H. Klein, S. Fleischer, and X. Jiang, "Segmentation of very low
resolution screen-rendered text," in Proc. of Int. Conf. on Doc. Anal. and Rec., 2007.

[5] Hourcade, J.P., Perry, K.B. and Sharma, A. PointAssist: Helping Four Year Olds
Point with Ease. IDC 2008. 202-209.

[6] Hwang, F., Keates, S., Langdon, P. and Clarkson, P.J. Multiple Haptic Targets for
Motion-Impaired Computer Users. CHI 2003. 41-48.

